xref: /linux-6.15/include/linux/edac.h (revision 6fcd5f2c)
1 /*
2  * Generic EDAC defs
3  *
4  * Author: Dave Jiang <[email protected]>
5  *
6  * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7  * the terms of the GNU General Public License version 2. This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14 
15 #include <linux/atomic.h>
16 #include <linux/kobject.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 
20 struct device;
21 
22 #define EDAC_OPSTATE_INVAL	-1
23 #define EDAC_OPSTATE_POLL	0
24 #define EDAC_OPSTATE_NMI	1
25 #define EDAC_OPSTATE_INT	2
26 
27 extern int edac_op_state;
28 extern int edac_err_assert;
29 extern atomic_t edac_handlers;
30 extern struct bus_type edac_subsys;
31 
32 extern int edac_handler_set(void);
33 extern void edac_atomic_assert_error(void);
34 extern struct bus_type *edac_get_sysfs_subsys(void);
35 extern void edac_put_sysfs_subsys(void);
36 
37 static inline void opstate_init(void)
38 {
39 	switch (edac_op_state) {
40 	case EDAC_OPSTATE_POLL:
41 	case EDAC_OPSTATE_NMI:
42 		break;
43 	default:
44 		edac_op_state = EDAC_OPSTATE_POLL;
45 	}
46 	return;
47 }
48 
49 #define EDAC_MC_LABEL_LEN	31
50 #define MC_PROC_NAME_MAX_LEN	7
51 
52 /* memory devices */
53 enum dev_type {
54 	DEV_UNKNOWN = 0,
55 	DEV_X1,
56 	DEV_X2,
57 	DEV_X4,
58 	DEV_X8,
59 	DEV_X16,
60 	DEV_X32,		/* Do these parts exist? */
61 	DEV_X64			/* Do these parts exist? */
62 };
63 
64 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
65 #define DEV_FLAG_X1		BIT(DEV_X1)
66 #define DEV_FLAG_X2		BIT(DEV_X2)
67 #define DEV_FLAG_X4		BIT(DEV_X4)
68 #define DEV_FLAG_X8		BIT(DEV_X8)
69 #define DEV_FLAG_X16		BIT(DEV_X16)
70 #define DEV_FLAG_X32		BIT(DEV_X32)
71 #define DEV_FLAG_X64		BIT(DEV_X64)
72 
73 /**
74  * enum hw_event_mc_err_type - type of the detected error
75  *
76  * @HW_EVENT_ERR_CORRECTED:	Corrected Error - Indicates that an ECC
77  *				corrected error was detected
78  * @HW_EVENT_ERR_UNCORRECTED:	Uncorrected Error - Indicates an error that
79  *				can't be corrected by ECC, but it is not
80  *				fatal (maybe it is on an unused memory area,
81  *				or the memory controller could recover from
82  *				it for example, by re-trying the operation).
83  * @HW_EVENT_ERR_FATAL:		Fatal Error - Uncorrected error that could not
84  *				be recovered.
85  */
86 enum hw_event_mc_err_type {
87 	HW_EVENT_ERR_CORRECTED,
88 	HW_EVENT_ERR_UNCORRECTED,
89 	HW_EVENT_ERR_FATAL,
90 };
91 
92 /**
93  * enum mem_type - memory types. For a more detailed reference, please see
94  *			http://en.wikipedia.org/wiki/DRAM
95  *
96  * @MEM_EMPTY		Empty csrow
97  * @MEM_RESERVED:	Reserved csrow type
98  * @MEM_UNKNOWN:	Unknown csrow type
99  * @MEM_FPM:		FPM - Fast Page Mode, used on systems up to 1995.
100  * @MEM_EDO:		EDO - Extended data out, used on systems up to 1998.
101  * @MEM_BEDO:		BEDO - Burst Extended data out, an EDO variant.
102  * @MEM_SDR:		SDR - Single data rate SDRAM
103  *			http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
104  *			They use 3 pins for chip select: Pins 0 and 2 are
105  *			for rank 0; pins 1 and 3 are for rank 1, if the memory
106  *			is dual-rank.
107  * @MEM_RDR:		Registered SDR SDRAM
108  * @MEM_DDR:		Double data rate SDRAM
109  *			http://en.wikipedia.org/wiki/DDR_SDRAM
110  * @MEM_RDDR:		Registered Double data rate SDRAM
111  *			This is a variant of the DDR memories.
112  *			A registered memory has a buffer inside it, hiding
113  *			part of the memory details to the memory controller.
114  * @MEM_RMBS:		Rambus DRAM, used on a few Pentium III/IV controllers.
115  * @MEM_DDR2:		DDR2 RAM, as described at JEDEC JESD79-2F.
116  *			Those memories are labed as "PC2-" instead of "PC" to
117  *			differenciate from DDR.
118  * @MEM_FB_DDR2:	Fully-Buffered DDR2, as described at JEDEC Std No. 205
119  *			and JESD206.
120  *			Those memories are accessed per DIMM slot, and not by
121  *			a chip select signal.
122  * @MEM_RDDR2:		Registered DDR2 RAM
123  *			This is a variant of the DDR2 memories.
124  * @MEM_XDR:		Rambus XDR
125  *			It is an evolution of the original RAMBUS memories,
126  *			created to compete with DDR2. Weren't used on any
127  *			x86 arch, but cell_edac PPC memory controller uses it.
128  * @MEM_DDR3:		DDR3 RAM
129  * @MEM_RDDR3:		Registered DDR3 RAM
130  *			This is a variant of the DDR3 memories.
131  */
132 enum mem_type {
133 	MEM_EMPTY = 0,
134 	MEM_RESERVED,
135 	MEM_UNKNOWN,
136 	MEM_FPM,
137 	MEM_EDO,
138 	MEM_BEDO,
139 	MEM_SDR,
140 	MEM_RDR,
141 	MEM_DDR,
142 	MEM_RDDR,
143 	MEM_RMBS,
144 	MEM_DDR2,
145 	MEM_FB_DDR2,
146 	MEM_RDDR2,
147 	MEM_XDR,
148 	MEM_DDR3,
149 	MEM_RDDR3,
150 };
151 
152 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
153 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
154 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
155 #define MEM_FLAG_FPM		BIT(MEM_FPM)
156 #define MEM_FLAG_EDO		BIT(MEM_EDO)
157 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
158 #define MEM_FLAG_SDR		BIT(MEM_SDR)
159 #define MEM_FLAG_RDR		BIT(MEM_RDR)
160 #define MEM_FLAG_DDR		BIT(MEM_DDR)
161 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
162 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
163 #define MEM_FLAG_DDR2           BIT(MEM_DDR2)
164 #define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
165 #define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
166 #define MEM_FLAG_XDR            BIT(MEM_XDR)
167 #define MEM_FLAG_DDR3		 BIT(MEM_DDR3)
168 #define MEM_FLAG_RDDR3		 BIT(MEM_RDDR3)
169 
170 /* chipset Error Detection and Correction capabilities and mode */
171 enum edac_type {
172 	EDAC_UNKNOWN = 0,	/* Unknown if ECC is available */
173 	EDAC_NONE,		/* Doesn't support ECC */
174 	EDAC_RESERVED,		/* Reserved ECC type */
175 	EDAC_PARITY,		/* Detects parity errors */
176 	EDAC_EC,		/* Error Checking - no correction */
177 	EDAC_SECDED,		/* Single bit error correction, Double detection */
178 	EDAC_S2ECD2ED,		/* Chipkill x2 devices - do these exist? */
179 	EDAC_S4ECD4ED,		/* Chipkill x4 devices */
180 	EDAC_S8ECD8ED,		/* Chipkill x8 devices */
181 	EDAC_S16ECD16ED,	/* Chipkill x16 devices */
182 };
183 
184 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
185 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
186 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
187 #define EDAC_FLAG_EC		BIT(EDAC_EC)
188 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
189 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
190 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
191 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
192 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
193 
194 /* scrubbing capabilities */
195 enum scrub_type {
196 	SCRUB_UNKNOWN = 0,	/* Unknown if scrubber is available */
197 	SCRUB_NONE,		/* No scrubber */
198 	SCRUB_SW_PROG,		/* SW progressive (sequential) scrubbing */
199 	SCRUB_SW_SRC,		/* Software scrub only errors */
200 	SCRUB_SW_PROG_SRC,	/* Progressive software scrub from an error */
201 	SCRUB_SW_TUNABLE,	/* Software scrub frequency is tunable */
202 	SCRUB_HW_PROG,		/* HW progressive (sequential) scrubbing */
203 	SCRUB_HW_SRC,		/* Hardware scrub only errors */
204 	SCRUB_HW_PROG_SRC,	/* Progressive hardware scrub from an error */
205 	SCRUB_HW_TUNABLE	/* Hardware scrub frequency is tunable */
206 };
207 
208 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
209 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
210 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
211 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
212 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
213 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
214 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
215 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
216 
217 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
218 
219 /* EDAC internal operation states */
220 #define	OP_ALLOC		0x100
221 #define OP_RUNNING_POLL		0x201
222 #define OP_RUNNING_INTERRUPT	0x202
223 #define OP_RUNNING_POLL_INTR	0x203
224 #define OP_OFFLINE		0x300
225 
226 /*
227  * Concepts used at the EDAC subsystem
228  *
229  * There are several things to be aware of that aren't at all obvious:
230  *
231  * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
232  *
233  * These are some of the many terms that are thrown about that don't always
234  * mean what people think they mean (Inconceivable!).  In the interest of
235  * creating a common ground for discussion, terms and their definitions
236  * will be established.
237  *
238  * Memory devices:	The individual DRAM chips on a memory stick.  These
239  *			devices commonly output 4 and 8 bits each (x4, x8).
240  *			Grouping several of these in parallel provides the
241  *			number of bits that the memory controller expects:
242  *			typically 72 bits, in order to provide 64 bits +
243  *			8 bits of ECC data.
244  *
245  * Memory Stick:	A printed circuit board that aggregates multiple
246  *			memory devices in parallel.  In general, this is the
247  *			Field Replaceable Unit (FRU) which gets replaced, in
248  *			the case of excessive errors. Most often it is also
249  *			called DIMM (Dual Inline Memory Module).
250  *
251  * Memory Socket:	A physical connector on the motherboard that accepts
252  *			a single memory stick. Also called as "slot" on several
253  *			datasheets.
254  *
255  * Channel:		A memory controller channel, responsible to communicate
256  *			with a group of DIMMs. Each channel has its own
257  *			independent control (command) and data bus, and can
258  *			be used independently or grouped with other channels.
259  *
260  * Branch:		It is typically the highest hierarchy on a
261  *			Fully-Buffered DIMM memory controller.
262  *			Typically, it contains two channels.
263  *			Two channels at the same branch can be used in single
264  *			mode or in lockstep mode.
265  *			When lockstep is enabled, the cacheline is doubled,
266  *			but it generally brings some performance penalty.
267  *			Also, it is generally not possible to point to just one
268  *			memory stick when an error occurs, as the error
269  *			correction code is calculated using two DIMMs instead
270  *			of one. Due to that, it is capable of correcting more
271  *			errors than on single mode.
272  *
273  * Single-channel:	The data accessed by the memory controller is contained
274  *			into one dimm only. E. g. if the data is 64 bits-wide,
275  *			the data flows to the CPU using one 64 bits parallel
276  *			access.
277  *			Typically used with SDR, DDR, DDR2 and DDR3 memories.
278  *			FB-DIMM and RAMBUS use a different concept for channel,
279  *			so this concept doesn't apply there.
280  *
281  * Double-channel:	The data size accessed by the memory controller is
282  *			interlaced into two dimms, accessed at the same time.
283  *			E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
284  *			the data flows to the CPU using a 128 bits parallel
285  *			access.
286  *
287  * Chip-select row:	This is the name of the DRAM signal used to select the
288  *			DRAM ranks to be accessed. Common chip-select rows for
289  *			single channel are 64 bits, for dual channel 128 bits.
290  *			It may not be visible by the memory controller, as some
291  *			DIMM types have a memory buffer that can hide direct
292  *			access to it from the Memory Controller.
293  *
294  * Single-Ranked stick:	A Single-ranked stick has 1 chip-select row of memory.
295  *			Motherboards commonly drive two chip-select pins to
296  *			a memory stick. A single-ranked stick, will occupy
297  *			only one of those rows. The other will be unused.
298  *
299  * Double-Ranked stick:	A double-ranked stick has two chip-select rows which
300  *			access different sets of memory devices.  The two
301  *			rows cannot be accessed concurrently.
302  *
303  * Double-sided stick:	DEPRECATED TERM, see Double-Ranked stick.
304  *			A double-sided stick has two chip-select rows which
305  *			access different sets of memory devices. The two
306  *			rows cannot be accessed concurrently. "Double-sided"
307  *			is irrespective of the memory devices being mounted
308  *			on both sides of the memory stick.
309  *
310  * Socket set:		All of the memory sticks that are required for
311  *			a single memory access or all of the memory sticks
312  *			spanned by a chip-select row.  A single socket set
313  *			has two chip-select rows and if double-sided sticks
314  *			are used these will occupy those chip-select rows.
315  *
316  * Bank:		This term is avoided because it is unclear when
317  *			needing to distinguish between chip-select rows and
318  *			socket sets.
319  *
320  * Controller pages:
321  *
322  * Physical pages:
323  *
324  * Virtual pages:
325  *
326  *
327  * STRUCTURE ORGANIZATION AND CHOICES
328  *
329  *
330  *
331  * PS - I enjoyed writing all that about as much as you enjoyed reading it.
332  */
333 
334 /**
335  * enum edac_mc_layer - memory controller hierarchy layer
336  *
337  * @EDAC_MC_LAYER_BRANCH:	memory layer is named "branch"
338  * @EDAC_MC_LAYER_CHANNEL:	memory layer is named "channel"
339  * @EDAC_MC_LAYER_SLOT:		memory layer is named "slot"
340  * @EDAC_MC_LAYER_CHIP_SELECT:	memory layer is named "chip select"
341  *
342  * This enum is used by the drivers to tell edac_mc_sysfs what name should
343  * be used when describing a memory stick location.
344  */
345 enum edac_mc_layer_type {
346 	EDAC_MC_LAYER_BRANCH,
347 	EDAC_MC_LAYER_CHANNEL,
348 	EDAC_MC_LAYER_SLOT,
349 	EDAC_MC_LAYER_CHIP_SELECT,
350 };
351 
352 /**
353  * struct edac_mc_layer - describes the memory controller hierarchy
354  * @layer:		layer type
355  * @size:		number of components per layer. For example,
356  *			if the channel layer has two channels, size = 2
357  * @is_virt_csrow:	This layer is part of the "csrow" when old API
358  *			compatibility mode is enabled. Otherwise, it is
359  *			a channel
360  */
361 struct edac_mc_layer {
362 	enum edac_mc_layer_type	type;
363 	unsigned		size;
364 	bool			is_virt_csrow;
365 };
366 
367 /*
368  * Maximum number of layers used by the memory controller to uniquely
369  * identify a single memory stick.
370  * NOTE: Changing this constant requires not only to change the constant
371  * below, but also to change the existing code at the core, as there are
372  * some code there that are optimized for 3 layers.
373  */
374 #define EDAC_MAX_LAYERS		3
375 
376 /**
377  * EDAC_DIMM_PTR - Macro responsible to find a pointer inside a pointer array
378  *		   for the element given by [layer0,layer1,layer2] position
379  *
380  * @layers:	a struct edac_mc_layer array, describing how many elements
381  *		were allocated for each layer
382  * @var:	name of the var where we want to get the pointer
383  *		(like mci->dimms)
384  * @n_layers:	Number of layers at the @layers array
385  * @layer0:	layer0 position
386  * @layer1:	layer1 position. Unused if n_layers < 2
387  * @layer2:	layer2 position. Unused if n_layers < 3
388  *
389  * For 1 layer, this macro returns &var[layer0]
390  * For 2 layers, this macro is similar to allocate a bi-dimensional array
391  *		and to return "&var[layer0][layer1]"
392  * For 3 layers, this macro is similar to allocate a tri-dimensional array
393  *		and to return "&var[layer0][layer1][layer2]"
394  *
395  * A loop could be used here to make it more generic, but, as we only have
396  * 3 layers, this is a little faster.
397  * By design, layers can never be 0 or more than 3. If that ever happens,
398  * a NULL is returned, causing an OOPS during the memory allocation routine,
399  * with would point to the developer that he's doing something wrong.
400  */
401 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({	\
402 	typeof(var) __p;						\
403 	if ((nlayers) == 1)						\
404 		__p = &var[layer0];					\
405 	else if ((nlayers) == 2)					\
406 		__p = &var[(layer1) + ((layers[1]).size * (layer0))];	\
407 	else if ((nlayers) == 3)					\
408 		__p = &var[(layer2) + ((layers[2]).size * ((layer1) +	\
409 			    ((layers[1]).size * (layer0))))];		\
410 	else								\
411 		__p = NULL;						\
412 	__p;								\
413 })
414 
415 
416 /* FIXME: add the proper per-location error counts */
417 struct dimm_info {
418 	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
419 
420 	/* Memory location data */
421 	unsigned location[EDAC_MAX_LAYERS];
422 
423 	struct mem_ctl_info *mci;	/* the parent */
424 
425 	u32 grain;		/* granularity of reported error in bytes */
426 	enum dev_type dtype;	/* memory device type */
427 	enum mem_type mtype;	/* memory dimm type */
428 	enum edac_type edac_mode;	/* EDAC mode for this dimm */
429 
430 	u32 nr_pages;			/* number of pages on this dimm */
431 
432 	unsigned csrow, cschannel;	/* Points to the old API data */
433 };
434 
435 /**
436  * struct rank_info - contains the information for one DIMM rank
437  *
438  * @chan_idx:	channel number where the rank is (typically, 0 or 1)
439  * @ce_count:	number of correctable errors for this rank
440  * @csrow:	A pointer to the chip select row structure (the parent
441  *		structure). The location of the rank is given by
442  *		the (csrow->csrow_idx, chan_idx) vector.
443  * @dimm:	A pointer to the DIMM structure, where the DIMM label
444  *		information is stored.
445  *
446  * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
447  *	  This is a bad assumption, but it makes this patch easier. Later
448  *	  patches in this series will fix this issue.
449  */
450 struct rank_info {
451 	int chan_idx;
452 	struct csrow_info *csrow;
453 	struct dimm_info *dimm;
454 
455 	u32 ce_count;		/* Correctable Errors for this csrow */
456 };
457 
458 struct csrow_info {
459 	/* Used only by edac_mc_find_csrow_by_page() */
460 	unsigned long first_page;	/* first page number in csrow */
461 	unsigned long last_page;	/* last page number in csrow */
462 	unsigned long page_mask;	/* used for interleaving -
463 					 * 0UL for non intlv */
464 
465 	int csrow_idx;			/* the chip-select row */
466 
467 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
468 	u32 ce_count;		/* Correctable Errors for this csrow */
469 
470 	struct mem_ctl_info *mci;	/* the parent */
471 
472 	struct kobject kobj;	/* sysfs kobject for this csrow */
473 
474 	/* channel information for this csrow */
475 	u32 nr_channels;
476 	struct rank_info *channels;
477 };
478 
479 struct mcidev_sysfs_group {
480 	const char *name;				/* group name */
481 	const struct mcidev_sysfs_attribute *mcidev_attr; /* group attributes */
482 };
483 
484 struct mcidev_sysfs_group_kobj {
485 	struct list_head list;		/* list for all instances within a mc */
486 
487 	struct kobject kobj;		/* kobj for the group */
488 
489 	const struct mcidev_sysfs_group *grp;	/* group description table */
490 	struct mem_ctl_info *mci;	/* the parent */
491 };
492 
493 /* mcidev_sysfs_attribute structure
494  *	used for driver sysfs attributes and in mem_ctl_info
495  * 	sysfs top level entries
496  */
497 struct mcidev_sysfs_attribute {
498 	/* It should use either attr or grp */
499 	struct attribute attr;
500 	const struct mcidev_sysfs_group *grp;	/* Points to a group of attributes */
501 
502 	/* Ops for show/store values at the attribute - not used on group */
503         ssize_t (*show)(struct mem_ctl_info *,char *);
504         ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
505 };
506 
507 /* MEMORY controller information structure
508  */
509 struct mem_ctl_info {
510 	struct list_head link;	/* for global list of mem_ctl_info structs */
511 
512 	struct module *owner;	/* Module owner of this control struct */
513 
514 	unsigned long mtype_cap;	/* memory types supported by mc */
515 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
516 	unsigned long edac_cap;	/* configuration capabilities - this is
517 				 * closely related to edac_ctl_cap.  The
518 				 * difference is that the controller may be
519 				 * capable of s4ecd4ed which would be listed
520 				 * in edac_ctl_cap, but if channels aren't
521 				 * capable of s4ecd4ed then the edac_cap would
522 				 * not have that capability.
523 				 */
524 	unsigned long scrub_cap;	/* chipset scrub capabilities */
525 	enum scrub_type scrub_mode;	/* current scrub mode */
526 
527 	/* Translates sdram memory scrub rate given in bytes/sec to the
528 	   internal representation and configures whatever else needs
529 	   to be configured.
530 	 */
531 	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
532 
533 	/* Get the current sdram memory scrub rate from the internal
534 	   representation and converts it to the closest matching
535 	   bandwidth in bytes/sec.
536 	 */
537 	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
538 
539 
540 	/* pointer to edac checking routine */
541 	void (*edac_check) (struct mem_ctl_info * mci);
542 
543 	/*
544 	 * Remaps memory pages: controller pages to physical pages.
545 	 * For most MC's, this will be NULL.
546 	 */
547 	/* FIXME - why not send the phys page to begin with? */
548 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
549 					   unsigned long page);
550 	int mc_idx;
551 	struct csrow_info *csrows;
552 	unsigned nr_csrows, num_cschannel;
553 
554 	/* Memory Controller hierarchy */
555 	unsigned n_layers;
556 	struct edac_mc_layer *layers;
557 	bool mem_is_per_rank;
558 
559 	/*
560 	 * DIMM info. Will eventually remove the entire csrows_info some day
561 	 */
562 	unsigned tot_dimms;
563 	struct dimm_info *dimms;
564 
565 	/*
566 	 * FIXME - what about controllers on other busses? - IDs must be
567 	 * unique.  dev pointer should be sufficiently unique, but
568 	 * BUS:SLOT.FUNC numbers may not be unique.
569 	 */
570 	struct device *dev;
571 	const char *mod_name;
572 	const char *mod_ver;
573 	const char *ctl_name;
574 	const char *dev_name;
575 	char proc_name[MC_PROC_NAME_MAX_LEN + 1];
576 	void *pvt_info;
577 	unsigned long start_time;	/* mci load start time (in jiffies) */
578 
579 	/*
580 	 * drivers shouldn't access those fields directly, as the core
581 	 * already handles that.
582 	 */
583 	u32 ce_noinfo_count, ue_noinfo_count;
584 	u32 ue_mc, ce_mc;
585 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
586 
587 	struct completion complete;
588 
589 	/* edac sysfs device control */
590 	struct kobject edac_mci_kobj;
591 
592 	/* list for all grp instances within a mc */
593 	struct list_head grp_kobj_list;
594 
595 	/* Additional top controller level attributes, but specified
596 	 * by the low level driver.
597 	 *
598 	 * Set by the low level driver to provide attributes at the
599 	 * controller level.
600 	 * An array of structures, NULL terminated
601 	 *
602 	 * If attributes are desired, then set to array of attributes
603 	 * If no attributes are desired, leave NULL
604 	 */
605 	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
606 
607 	/* work struct for this MC */
608 	struct delayed_work work;
609 
610 	/* the internal state of this controller instance */
611 	int op_state;
612 };
613 
614 #endif
615