xref: /linux-6.15/include/linux/dmaengine.h (revision eb5ef071)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
23 
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/dma-direction.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <asm/page.h>
30 
31 /**
32  * typedef dma_cookie_t - an opaque DMA cookie
33  *
34  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
35  */
36 typedef s32 dma_cookie_t;
37 #define DMA_MIN_COOKIE	1
38 #define DMA_MAX_COOKIE	INT_MAX
39 
40 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
41 
42 /**
43  * enum dma_status - DMA transaction status
44  * @DMA_SUCCESS: transaction completed successfully
45  * @DMA_IN_PROGRESS: transaction not yet processed
46  * @DMA_PAUSED: transaction is paused
47  * @DMA_ERROR: transaction failed
48  */
49 enum dma_status {
50 	DMA_SUCCESS,
51 	DMA_IN_PROGRESS,
52 	DMA_PAUSED,
53 	DMA_ERROR,
54 };
55 
56 /**
57  * enum dma_transaction_type - DMA transaction types/indexes
58  *
59  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
60  * automatically set as dma devices are registered.
61  */
62 enum dma_transaction_type {
63 	DMA_MEMCPY,
64 	DMA_XOR,
65 	DMA_PQ,
66 	DMA_XOR_VAL,
67 	DMA_PQ_VAL,
68 	DMA_MEMSET,
69 	DMA_INTERRUPT,
70 	DMA_SG,
71 	DMA_PRIVATE,
72 	DMA_ASYNC_TX,
73 	DMA_SLAVE,
74 	DMA_CYCLIC,
75 };
76 
77 /* last transaction type for creation of the capabilities mask */
78 #define DMA_TX_TYPE_END (DMA_CYCLIC + 1)
79 
80 
81 /**
82  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
83  *  control completion, and communicate status.
84  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
85  *  this transaction
86  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
87  *  acknowledges receipt, i.e. has has a chance to establish any dependency
88  *  chains
89  * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
90  * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
91  * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
92  * 	(if not set, do the source dma-unmapping as page)
93  * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
94  * 	(if not set, do the destination dma-unmapping as page)
95  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
96  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
97  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
98  *  sources that were the result of a previous operation, in the case of a PQ
99  *  operation it continues the calculation with new sources
100  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
101  *  on the result of this operation
102  */
103 enum dma_ctrl_flags {
104 	DMA_PREP_INTERRUPT = (1 << 0),
105 	DMA_CTRL_ACK = (1 << 1),
106 	DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
107 	DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
108 	DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
109 	DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
110 	DMA_PREP_PQ_DISABLE_P = (1 << 6),
111 	DMA_PREP_PQ_DISABLE_Q = (1 << 7),
112 	DMA_PREP_CONTINUE = (1 << 8),
113 	DMA_PREP_FENCE = (1 << 9),
114 };
115 
116 /**
117  * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
118  * on a running channel.
119  * @DMA_TERMINATE_ALL: terminate all ongoing transfers
120  * @DMA_PAUSE: pause ongoing transfers
121  * @DMA_RESUME: resume paused transfer
122  * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
123  * that need to runtime reconfigure the slave channels (as opposed to passing
124  * configuration data in statically from the platform). An additional
125  * argument of struct dma_slave_config must be passed in with this
126  * command.
127  * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
128  * into external start mode.
129  */
130 enum dma_ctrl_cmd {
131 	DMA_TERMINATE_ALL,
132 	DMA_PAUSE,
133 	DMA_RESUME,
134 	DMA_SLAVE_CONFIG,
135 	FSLDMA_EXTERNAL_START,
136 };
137 
138 /**
139  * enum sum_check_bits - bit position of pq_check_flags
140  */
141 enum sum_check_bits {
142 	SUM_CHECK_P = 0,
143 	SUM_CHECK_Q = 1,
144 };
145 
146 /**
147  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
148  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
149  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
150  */
151 enum sum_check_flags {
152 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
153 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
154 };
155 
156 
157 /**
158  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
159  * See linux/cpumask.h
160  */
161 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
162 
163 /**
164  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
165  * @memcpy_count: transaction counter
166  * @bytes_transferred: byte counter
167  */
168 
169 struct dma_chan_percpu {
170 	/* stats */
171 	unsigned long memcpy_count;
172 	unsigned long bytes_transferred;
173 };
174 
175 /**
176  * struct dma_chan - devices supply DMA channels, clients use them
177  * @device: ptr to the dma device who supplies this channel, always !%NULL
178  * @cookie: last cookie value returned to client
179  * @chan_id: channel ID for sysfs
180  * @dev: class device for sysfs
181  * @device_node: used to add this to the device chan list
182  * @local: per-cpu pointer to a struct dma_chan_percpu
183  * @client-count: how many clients are using this channel
184  * @table_count: number of appearances in the mem-to-mem allocation table
185  * @private: private data for certain client-channel associations
186  */
187 struct dma_chan {
188 	struct dma_device *device;
189 	dma_cookie_t cookie;
190 
191 	/* sysfs */
192 	int chan_id;
193 	struct dma_chan_dev *dev;
194 
195 	struct list_head device_node;
196 	struct dma_chan_percpu __percpu *local;
197 	int client_count;
198 	int table_count;
199 	void *private;
200 };
201 
202 /**
203  * struct dma_chan_dev - relate sysfs device node to backing channel device
204  * @chan - driver channel device
205  * @device - sysfs device
206  * @dev_id - parent dma_device dev_id
207  * @idr_ref - reference count to gate release of dma_device dev_id
208  */
209 struct dma_chan_dev {
210 	struct dma_chan *chan;
211 	struct device device;
212 	int dev_id;
213 	atomic_t *idr_ref;
214 };
215 
216 /**
217  * enum dma_slave_buswidth - defines bus with of the DMA slave
218  * device, source or target buses
219  */
220 enum dma_slave_buswidth {
221 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
222 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
223 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
224 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
225 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
226 };
227 
228 /**
229  * struct dma_slave_config - dma slave channel runtime config
230  * @direction: whether the data shall go in or out on this slave
231  * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
232  * legal values, DMA_BIDIRECTIONAL is not acceptable since we
233  * need to differentiate source and target addresses.
234  * @src_addr: this is the physical address where DMA slave data
235  * should be read (RX), if the source is memory this argument is
236  * ignored.
237  * @dst_addr: this is the physical address where DMA slave data
238  * should be written (TX), if the source is memory this argument
239  * is ignored.
240  * @src_addr_width: this is the width in bytes of the source (RX)
241  * register where DMA data shall be read. If the source
242  * is memory this may be ignored depending on architecture.
243  * Legal values: 1, 2, 4, 8.
244  * @dst_addr_width: same as src_addr_width but for destination
245  * target (TX) mutatis mutandis.
246  * @src_maxburst: the maximum number of words (note: words, as in
247  * units of the src_addr_width member, not bytes) that can be sent
248  * in one burst to the device. Typically something like half the
249  * FIFO depth on I/O peripherals so you don't overflow it. This
250  * may or may not be applicable on memory sources.
251  * @dst_maxburst: same as src_maxburst but for destination target
252  * mutatis mutandis.
253  *
254  * This struct is passed in as configuration data to a DMA engine
255  * in order to set up a certain channel for DMA transport at runtime.
256  * The DMA device/engine has to provide support for an additional
257  * command in the channel config interface, DMA_SLAVE_CONFIG
258  * and this struct will then be passed in as an argument to the
259  * DMA engine device_control() function.
260  *
261  * The rationale for adding configuration information to this struct
262  * is as follows: if it is likely that most DMA slave controllers in
263  * the world will support the configuration option, then make it
264  * generic. If not: if it is fixed so that it be sent in static from
265  * the platform data, then prefer to do that. Else, if it is neither
266  * fixed at runtime, nor generic enough (such as bus mastership on
267  * some CPU family and whatnot) then create a custom slave config
268  * struct and pass that, then make this config a member of that
269  * struct, if applicable.
270  */
271 struct dma_slave_config {
272 	enum dma_data_direction direction;
273 	dma_addr_t src_addr;
274 	dma_addr_t dst_addr;
275 	enum dma_slave_buswidth src_addr_width;
276 	enum dma_slave_buswidth dst_addr_width;
277 	u32 src_maxburst;
278 	u32 dst_maxburst;
279 };
280 
281 static inline const char *dma_chan_name(struct dma_chan *chan)
282 {
283 	return dev_name(&chan->dev->device);
284 }
285 
286 void dma_chan_cleanup(struct kref *kref);
287 
288 /**
289  * typedef dma_filter_fn - callback filter for dma_request_channel
290  * @chan: channel to be reviewed
291  * @filter_param: opaque parameter passed through dma_request_channel
292  *
293  * When this optional parameter is specified in a call to dma_request_channel a
294  * suitable channel is passed to this routine for further dispositioning before
295  * being returned.  Where 'suitable' indicates a non-busy channel that
296  * satisfies the given capability mask.  It returns 'true' to indicate that the
297  * channel is suitable.
298  */
299 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
300 
301 typedef void (*dma_async_tx_callback)(void *dma_async_param);
302 /**
303  * struct dma_async_tx_descriptor - async transaction descriptor
304  * ---dma generic offload fields---
305  * @cookie: tracking cookie for this transaction, set to -EBUSY if
306  *	this tx is sitting on a dependency list
307  * @flags: flags to augment operation preparation, control completion, and
308  * 	communicate status
309  * @phys: physical address of the descriptor
310  * @chan: target channel for this operation
311  * @tx_submit: set the prepared descriptor(s) to be executed by the engine
312  * @callback: routine to call after this operation is complete
313  * @callback_param: general parameter to pass to the callback routine
314  * ---async_tx api specific fields---
315  * @next: at completion submit this descriptor
316  * @parent: pointer to the next level up in the dependency chain
317  * @lock: protect the parent and next pointers
318  */
319 struct dma_async_tx_descriptor {
320 	dma_cookie_t cookie;
321 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
322 	dma_addr_t phys;
323 	struct dma_chan *chan;
324 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
325 	dma_async_tx_callback callback;
326 	void *callback_param;
327 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
328 	struct dma_async_tx_descriptor *next;
329 	struct dma_async_tx_descriptor *parent;
330 	spinlock_t lock;
331 #endif
332 };
333 
334 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
335 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
336 {
337 }
338 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
339 {
340 }
341 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
342 {
343 	BUG();
344 }
345 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
346 {
347 }
348 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
349 {
350 }
351 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
352 {
353 	return NULL;
354 }
355 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
356 {
357 	return NULL;
358 }
359 
360 #else
361 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
362 {
363 	spin_lock_bh(&txd->lock);
364 }
365 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
366 {
367 	spin_unlock_bh(&txd->lock);
368 }
369 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
370 {
371 	txd->next = next;
372 	next->parent = txd;
373 }
374 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
375 {
376 	txd->parent = NULL;
377 }
378 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
379 {
380 	txd->next = NULL;
381 }
382 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
383 {
384 	return txd->parent;
385 }
386 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
387 {
388 	return txd->next;
389 }
390 #endif
391 
392 /**
393  * struct dma_tx_state - filled in to report the status of
394  * a transfer.
395  * @last: last completed DMA cookie
396  * @used: last issued DMA cookie (i.e. the one in progress)
397  * @residue: the remaining number of bytes left to transmit
398  *	on the selected transfer for states DMA_IN_PROGRESS and
399  *	DMA_PAUSED if this is implemented in the driver, else 0
400  */
401 struct dma_tx_state {
402 	dma_cookie_t last;
403 	dma_cookie_t used;
404 	u32 residue;
405 };
406 
407 /**
408  * struct dma_device - info on the entity supplying DMA services
409  * @chancnt: how many DMA channels are supported
410  * @privatecnt: how many DMA channels are requested by dma_request_channel
411  * @channels: the list of struct dma_chan
412  * @global_node: list_head for global dma_device_list
413  * @cap_mask: one or more dma_capability flags
414  * @max_xor: maximum number of xor sources, 0 if no capability
415  * @max_pq: maximum number of PQ sources and PQ-continue capability
416  * @copy_align: alignment shift for memcpy operations
417  * @xor_align: alignment shift for xor operations
418  * @pq_align: alignment shift for pq operations
419  * @fill_align: alignment shift for memset operations
420  * @dev_id: unique device ID
421  * @dev: struct device reference for dma mapping api
422  * @device_alloc_chan_resources: allocate resources and return the
423  *	number of allocated descriptors
424  * @device_free_chan_resources: release DMA channel's resources
425  * @device_prep_dma_memcpy: prepares a memcpy operation
426  * @device_prep_dma_xor: prepares a xor operation
427  * @device_prep_dma_xor_val: prepares a xor validation operation
428  * @device_prep_dma_pq: prepares a pq operation
429  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
430  * @device_prep_dma_memset: prepares a memset operation
431  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
432  * @device_prep_slave_sg: prepares a slave dma operation
433  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
434  *	The function takes a buffer of size buf_len. The callback function will
435  *	be called after period_len bytes have been transferred.
436  * @device_control: manipulate all pending operations on a channel, returns
437  *	zero or error code
438  * @device_tx_status: poll for transaction completion, the optional
439  *	txstate parameter can be supplied with a pointer to get a
440  *	struct with auxiliary transfer status information, otherwise the call
441  *	will just return a simple status code
442  * @device_issue_pending: push pending transactions to hardware
443  */
444 struct dma_device {
445 
446 	unsigned int chancnt;
447 	unsigned int privatecnt;
448 	struct list_head channels;
449 	struct list_head global_node;
450 	dma_cap_mask_t  cap_mask;
451 	unsigned short max_xor;
452 	unsigned short max_pq;
453 	u8 copy_align;
454 	u8 xor_align;
455 	u8 pq_align;
456 	u8 fill_align;
457 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
458 
459 	int dev_id;
460 	struct device *dev;
461 
462 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
463 	void (*device_free_chan_resources)(struct dma_chan *chan);
464 
465 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
466 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
467 		size_t len, unsigned long flags);
468 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
469 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
470 		unsigned int src_cnt, size_t len, unsigned long flags);
471 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
472 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
473 		size_t len, enum sum_check_flags *result, unsigned long flags);
474 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
475 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
476 		unsigned int src_cnt, const unsigned char *scf,
477 		size_t len, unsigned long flags);
478 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
479 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
480 		unsigned int src_cnt, const unsigned char *scf, size_t len,
481 		enum sum_check_flags *pqres, unsigned long flags);
482 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
483 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
484 		unsigned long flags);
485 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
486 		struct dma_chan *chan, unsigned long flags);
487 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
488 		struct dma_chan *chan,
489 		struct scatterlist *dst_sg, unsigned int dst_nents,
490 		struct scatterlist *src_sg, unsigned int src_nents,
491 		unsigned long flags);
492 
493 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
494 		struct dma_chan *chan, struct scatterlist *sgl,
495 		unsigned int sg_len, enum dma_data_direction direction,
496 		unsigned long flags);
497 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
498 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
499 		size_t period_len, enum dma_data_direction direction);
500 	int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
501 		unsigned long arg);
502 
503 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
504 					    dma_cookie_t cookie,
505 					    struct dma_tx_state *txstate);
506 	void (*device_issue_pending)(struct dma_chan *chan);
507 };
508 
509 static inline int dmaengine_device_control(struct dma_chan *chan,
510 					   enum dma_ctrl_cmd cmd,
511 					   unsigned long arg)
512 {
513 	return chan->device->device_control(chan, cmd, arg);
514 }
515 
516 static inline int dmaengine_slave_config(struct dma_chan *chan,
517 					  struct dma_slave_config *config)
518 {
519 	return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
520 			(unsigned long)config);
521 }
522 
523 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
524 	struct dma_chan *chan, void *buf, size_t len,
525 	enum dma_data_direction dir, unsigned long flags)
526 {
527 	struct scatterlist sg;
528 	sg_init_one(&sg, buf, len);
529 
530 	return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags);
531 }
532 
533 static inline int dmaengine_terminate_all(struct dma_chan *chan)
534 {
535 	return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
536 }
537 
538 static inline int dmaengine_pause(struct dma_chan *chan)
539 {
540 	return dmaengine_device_control(chan, DMA_PAUSE, 0);
541 }
542 
543 static inline int dmaengine_resume(struct dma_chan *chan)
544 {
545 	return dmaengine_device_control(chan, DMA_RESUME, 0);
546 }
547 
548 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
549 {
550 	return desc->tx_submit(desc);
551 }
552 
553 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
554 {
555 	size_t mask;
556 
557 	if (!align)
558 		return true;
559 	mask = (1 << align) - 1;
560 	if (mask & (off1 | off2 | len))
561 		return false;
562 	return true;
563 }
564 
565 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
566 				       size_t off2, size_t len)
567 {
568 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
569 }
570 
571 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
572 				      size_t off2, size_t len)
573 {
574 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
575 }
576 
577 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
578 				     size_t off2, size_t len)
579 {
580 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
581 }
582 
583 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
584 				       size_t off2, size_t len)
585 {
586 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
587 }
588 
589 static inline void
590 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
591 {
592 	dma->max_pq = maxpq;
593 	if (has_pq_continue)
594 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
595 }
596 
597 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
598 {
599 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
600 }
601 
602 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
603 {
604 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
605 
606 	return (flags & mask) == mask;
607 }
608 
609 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
610 {
611 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
612 }
613 
614 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
615 {
616 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
617 }
618 
619 /* dma_maxpq - reduce maxpq in the face of continued operations
620  * @dma - dma device with PQ capability
621  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
622  *
623  * When an engine does not support native continuation we need 3 extra
624  * source slots to reuse P and Q with the following coefficients:
625  * 1/ {00} * P : remove P from Q', but use it as a source for P'
626  * 2/ {01} * Q : use Q to continue Q' calculation
627  * 3/ {00} * Q : subtract Q from P' to cancel (2)
628  *
629  * In the case where P is disabled we only need 1 extra source:
630  * 1/ {01} * Q : use Q to continue Q' calculation
631  */
632 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
633 {
634 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
635 		return dma_dev_to_maxpq(dma);
636 	else if (dmaf_p_disabled_continue(flags))
637 		return dma_dev_to_maxpq(dma) - 1;
638 	else if (dmaf_continue(flags))
639 		return dma_dev_to_maxpq(dma) - 3;
640 	BUG();
641 }
642 
643 /* --- public DMA engine API --- */
644 
645 #ifdef CONFIG_DMA_ENGINE
646 void dmaengine_get(void);
647 void dmaengine_put(void);
648 #else
649 static inline void dmaengine_get(void)
650 {
651 }
652 static inline void dmaengine_put(void)
653 {
654 }
655 #endif
656 
657 #ifdef CONFIG_NET_DMA
658 #define net_dmaengine_get()	dmaengine_get()
659 #define net_dmaengine_put()	dmaengine_put()
660 #else
661 static inline void net_dmaengine_get(void)
662 {
663 }
664 static inline void net_dmaengine_put(void)
665 {
666 }
667 #endif
668 
669 #ifdef CONFIG_ASYNC_TX_DMA
670 #define async_dmaengine_get()	dmaengine_get()
671 #define async_dmaengine_put()	dmaengine_put()
672 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
673 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
674 #else
675 #define async_dma_find_channel(type) dma_find_channel(type)
676 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
677 #else
678 static inline void async_dmaengine_get(void)
679 {
680 }
681 static inline void async_dmaengine_put(void)
682 {
683 }
684 static inline struct dma_chan *
685 async_dma_find_channel(enum dma_transaction_type type)
686 {
687 	return NULL;
688 }
689 #endif /* CONFIG_ASYNC_TX_DMA */
690 
691 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
692 	void *dest, void *src, size_t len);
693 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
694 	struct page *page, unsigned int offset, void *kdata, size_t len);
695 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
696 	struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
697 	unsigned int src_off, size_t len);
698 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
699 	struct dma_chan *chan);
700 
701 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
702 {
703 	tx->flags |= DMA_CTRL_ACK;
704 }
705 
706 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
707 {
708 	tx->flags &= ~DMA_CTRL_ACK;
709 }
710 
711 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
712 {
713 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
714 }
715 
716 #define first_dma_cap(mask) __first_dma_cap(&(mask))
717 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
718 {
719 	return min_t(int, DMA_TX_TYPE_END,
720 		find_first_bit(srcp->bits, DMA_TX_TYPE_END));
721 }
722 
723 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
724 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
725 {
726 	return min_t(int, DMA_TX_TYPE_END,
727 		find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
728 }
729 
730 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
731 static inline void
732 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
733 {
734 	set_bit(tx_type, dstp->bits);
735 }
736 
737 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
738 static inline void
739 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
740 {
741 	clear_bit(tx_type, dstp->bits);
742 }
743 
744 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
745 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
746 {
747 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
748 }
749 
750 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
751 static inline int
752 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
753 {
754 	return test_bit(tx_type, srcp->bits);
755 }
756 
757 #define for_each_dma_cap_mask(cap, mask) \
758 	for ((cap) = first_dma_cap(mask);	\
759 		(cap) < DMA_TX_TYPE_END;	\
760 		(cap) = next_dma_cap((cap), (mask)))
761 
762 /**
763  * dma_async_issue_pending - flush pending transactions to HW
764  * @chan: target DMA channel
765  *
766  * This allows drivers to push copies to HW in batches,
767  * reducing MMIO writes where possible.
768  */
769 static inline void dma_async_issue_pending(struct dma_chan *chan)
770 {
771 	chan->device->device_issue_pending(chan);
772 }
773 
774 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
775 
776 /**
777  * dma_async_is_tx_complete - poll for transaction completion
778  * @chan: DMA channel
779  * @cookie: transaction identifier to check status of
780  * @last: returns last completed cookie, can be NULL
781  * @used: returns last issued cookie, can be NULL
782  *
783  * If @last and @used are passed in, upon return they reflect the driver
784  * internal state and can be used with dma_async_is_complete() to check
785  * the status of multiple cookies without re-checking hardware state.
786  */
787 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
788 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
789 {
790 	struct dma_tx_state state;
791 	enum dma_status status;
792 
793 	status = chan->device->device_tx_status(chan, cookie, &state);
794 	if (last)
795 		*last = state.last;
796 	if (used)
797 		*used = state.used;
798 	return status;
799 }
800 
801 #define dma_async_memcpy_complete(chan, cookie, last, used)\
802 	dma_async_is_tx_complete(chan, cookie, last, used)
803 
804 /**
805  * dma_async_is_complete - test a cookie against chan state
806  * @cookie: transaction identifier to test status of
807  * @last_complete: last know completed transaction
808  * @last_used: last cookie value handed out
809  *
810  * dma_async_is_complete() is used in dma_async_memcpy_complete()
811  * the test logic is separated for lightweight testing of multiple cookies
812  */
813 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
814 			dma_cookie_t last_complete, dma_cookie_t last_used)
815 {
816 	if (last_complete <= last_used) {
817 		if ((cookie <= last_complete) || (cookie > last_used))
818 			return DMA_SUCCESS;
819 	} else {
820 		if ((cookie <= last_complete) && (cookie > last_used))
821 			return DMA_SUCCESS;
822 	}
823 	return DMA_IN_PROGRESS;
824 }
825 
826 static inline void
827 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
828 {
829 	if (st) {
830 		st->last = last;
831 		st->used = used;
832 		st->residue = residue;
833 	}
834 }
835 
836 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
837 #ifdef CONFIG_DMA_ENGINE
838 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
839 void dma_issue_pending_all(void);
840 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
841 void dma_release_channel(struct dma_chan *chan);
842 #else
843 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
844 {
845 	return DMA_SUCCESS;
846 }
847 static inline void dma_issue_pending_all(void)
848 {
849 }
850 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
851 					      dma_filter_fn fn, void *fn_param)
852 {
853 	return NULL;
854 }
855 static inline void dma_release_channel(struct dma_chan *chan)
856 {
857 }
858 #endif
859 
860 /* --- DMA device --- */
861 
862 int dma_async_device_register(struct dma_device *device);
863 void dma_async_device_unregister(struct dma_device *device);
864 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
865 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
866 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
867 
868 /* --- Helper iov-locking functions --- */
869 
870 struct dma_page_list {
871 	char __user *base_address;
872 	int nr_pages;
873 	struct page **pages;
874 };
875 
876 struct dma_pinned_list {
877 	int nr_iovecs;
878 	struct dma_page_list page_list[0];
879 };
880 
881 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
882 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
883 
884 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
885 	struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
886 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
887 	struct dma_pinned_list *pinned_list, struct page *page,
888 	unsigned int offset, size_t len);
889 
890 #endif /* DMAENGINE_H */
891