1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21 #ifndef DMAENGINE_H 22 #define DMAENGINE_H 23 24 #include <linux/device.h> 25 #include <linux/uio.h> 26 #include <linux/dma-mapping.h> 27 28 /** 29 * typedef dma_cookie_t - an opaque DMA cookie 30 * 31 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 32 */ 33 typedef s32 dma_cookie_t; 34 #define DMA_MIN_COOKIE 1 35 #define DMA_MAX_COOKIE INT_MAX 36 37 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 38 39 /** 40 * enum dma_status - DMA transaction status 41 * @DMA_SUCCESS: transaction completed successfully 42 * @DMA_IN_PROGRESS: transaction not yet processed 43 * @DMA_PAUSED: transaction is paused 44 * @DMA_ERROR: transaction failed 45 */ 46 enum dma_status { 47 DMA_SUCCESS, 48 DMA_IN_PROGRESS, 49 DMA_PAUSED, 50 DMA_ERROR, 51 }; 52 53 /** 54 * enum dma_transaction_type - DMA transaction types/indexes 55 * 56 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 57 * automatically set as dma devices are registered. 58 */ 59 enum dma_transaction_type { 60 DMA_MEMCPY, 61 DMA_XOR, 62 DMA_PQ, 63 DMA_XOR_VAL, 64 DMA_PQ_VAL, 65 DMA_MEMSET, 66 DMA_INTERRUPT, 67 DMA_SG, 68 DMA_PRIVATE, 69 DMA_ASYNC_TX, 70 DMA_SLAVE, 71 DMA_CYCLIC, 72 }; 73 74 /* last transaction type for creation of the capabilities mask */ 75 #define DMA_TX_TYPE_END (DMA_CYCLIC + 1) 76 77 78 /** 79 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 80 * control completion, and communicate status. 81 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 82 * this transaction 83 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 84 * acknowledges receipt, i.e. has has a chance to establish any dependency 85 * chains 86 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 87 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 88 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 89 * (if not set, do the source dma-unmapping as page) 90 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 91 * (if not set, do the destination dma-unmapping as page) 92 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 93 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 94 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 95 * sources that were the result of a previous operation, in the case of a PQ 96 * operation it continues the calculation with new sources 97 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 98 * on the result of this operation 99 */ 100 enum dma_ctrl_flags { 101 DMA_PREP_INTERRUPT = (1 << 0), 102 DMA_CTRL_ACK = (1 << 1), 103 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 104 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 105 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 106 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 107 DMA_PREP_PQ_DISABLE_P = (1 << 6), 108 DMA_PREP_PQ_DISABLE_Q = (1 << 7), 109 DMA_PREP_CONTINUE = (1 << 8), 110 DMA_PREP_FENCE = (1 << 9), 111 }; 112 113 /** 114 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 115 * on a running channel. 116 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 117 * @DMA_PAUSE: pause ongoing transfers 118 * @DMA_RESUME: resume paused transfer 119 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 120 * that need to runtime reconfigure the slave channels (as opposed to passing 121 * configuration data in statically from the platform). An additional 122 * argument of struct dma_slave_config must be passed in with this 123 * command. 124 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller 125 * into external start mode. 126 */ 127 enum dma_ctrl_cmd { 128 DMA_TERMINATE_ALL, 129 DMA_PAUSE, 130 DMA_RESUME, 131 DMA_SLAVE_CONFIG, 132 FSLDMA_EXTERNAL_START, 133 }; 134 135 /** 136 * enum sum_check_bits - bit position of pq_check_flags 137 */ 138 enum sum_check_bits { 139 SUM_CHECK_P = 0, 140 SUM_CHECK_Q = 1, 141 }; 142 143 /** 144 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 145 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 146 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 147 */ 148 enum sum_check_flags { 149 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 150 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 151 }; 152 153 154 /** 155 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 156 * See linux/cpumask.h 157 */ 158 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 159 160 /** 161 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 162 * @memcpy_count: transaction counter 163 * @bytes_transferred: byte counter 164 */ 165 166 struct dma_chan_percpu { 167 /* stats */ 168 unsigned long memcpy_count; 169 unsigned long bytes_transferred; 170 }; 171 172 /** 173 * struct dma_chan - devices supply DMA channels, clients use them 174 * @device: ptr to the dma device who supplies this channel, always !%NULL 175 * @cookie: last cookie value returned to client 176 * @chan_id: channel ID for sysfs 177 * @dev: class device for sysfs 178 * @device_node: used to add this to the device chan list 179 * @local: per-cpu pointer to a struct dma_chan_percpu 180 * @client-count: how many clients are using this channel 181 * @table_count: number of appearances in the mem-to-mem allocation table 182 * @private: private data for certain client-channel associations 183 */ 184 struct dma_chan { 185 struct dma_device *device; 186 dma_cookie_t cookie; 187 188 /* sysfs */ 189 int chan_id; 190 struct dma_chan_dev *dev; 191 192 struct list_head device_node; 193 struct dma_chan_percpu __percpu *local; 194 int client_count; 195 int table_count; 196 void *private; 197 }; 198 199 /** 200 * struct dma_chan_dev - relate sysfs device node to backing channel device 201 * @chan - driver channel device 202 * @device - sysfs device 203 * @dev_id - parent dma_device dev_id 204 * @idr_ref - reference count to gate release of dma_device dev_id 205 */ 206 struct dma_chan_dev { 207 struct dma_chan *chan; 208 struct device device; 209 int dev_id; 210 atomic_t *idr_ref; 211 }; 212 213 /** 214 * enum dma_slave_buswidth - defines bus with of the DMA slave 215 * device, source or target buses 216 */ 217 enum dma_slave_buswidth { 218 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 219 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 220 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 221 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 222 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 223 }; 224 225 /** 226 * struct dma_slave_config - dma slave channel runtime config 227 * @direction: whether the data shall go in or out on this slave 228 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are 229 * legal values, DMA_BIDIRECTIONAL is not acceptable since we 230 * need to differentiate source and target addresses. 231 * @src_addr: this is the physical address where DMA slave data 232 * should be read (RX), if the source is memory this argument is 233 * ignored. 234 * @dst_addr: this is the physical address where DMA slave data 235 * should be written (TX), if the source is memory this argument 236 * is ignored. 237 * @src_addr_width: this is the width in bytes of the source (RX) 238 * register where DMA data shall be read. If the source 239 * is memory this may be ignored depending on architecture. 240 * Legal values: 1, 2, 4, 8. 241 * @dst_addr_width: same as src_addr_width but for destination 242 * target (TX) mutatis mutandis. 243 * @src_maxburst: the maximum number of words (note: words, as in 244 * units of the src_addr_width member, not bytes) that can be sent 245 * in one burst to the device. Typically something like half the 246 * FIFO depth on I/O peripherals so you don't overflow it. This 247 * may or may not be applicable on memory sources. 248 * @dst_maxburst: same as src_maxburst but for destination target 249 * mutatis mutandis. 250 * 251 * This struct is passed in as configuration data to a DMA engine 252 * in order to set up a certain channel for DMA transport at runtime. 253 * The DMA device/engine has to provide support for an additional 254 * command in the channel config interface, DMA_SLAVE_CONFIG 255 * and this struct will then be passed in as an argument to the 256 * DMA engine device_control() function. 257 * 258 * The rationale for adding configuration information to this struct 259 * is as follows: if it is likely that most DMA slave controllers in 260 * the world will support the configuration option, then make it 261 * generic. If not: if it is fixed so that it be sent in static from 262 * the platform data, then prefer to do that. Else, if it is neither 263 * fixed at runtime, nor generic enough (such as bus mastership on 264 * some CPU family and whatnot) then create a custom slave config 265 * struct and pass that, then make this config a member of that 266 * struct, if applicable. 267 */ 268 struct dma_slave_config { 269 enum dma_data_direction direction; 270 dma_addr_t src_addr; 271 dma_addr_t dst_addr; 272 enum dma_slave_buswidth src_addr_width; 273 enum dma_slave_buswidth dst_addr_width; 274 u32 src_maxburst; 275 u32 dst_maxburst; 276 }; 277 278 static inline const char *dma_chan_name(struct dma_chan *chan) 279 { 280 return dev_name(&chan->dev->device); 281 } 282 283 void dma_chan_cleanup(struct kref *kref); 284 285 /** 286 * typedef dma_filter_fn - callback filter for dma_request_channel 287 * @chan: channel to be reviewed 288 * @filter_param: opaque parameter passed through dma_request_channel 289 * 290 * When this optional parameter is specified in a call to dma_request_channel a 291 * suitable channel is passed to this routine for further dispositioning before 292 * being returned. Where 'suitable' indicates a non-busy channel that 293 * satisfies the given capability mask. It returns 'true' to indicate that the 294 * channel is suitable. 295 */ 296 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 297 298 typedef void (*dma_async_tx_callback)(void *dma_async_param); 299 /** 300 * struct dma_async_tx_descriptor - async transaction descriptor 301 * ---dma generic offload fields--- 302 * @cookie: tracking cookie for this transaction, set to -EBUSY if 303 * this tx is sitting on a dependency list 304 * @flags: flags to augment operation preparation, control completion, and 305 * communicate status 306 * @phys: physical address of the descriptor 307 * @chan: target channel for this operation 308 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 309 * @callback: routine to call after this operation is complete 310 * @callback_param: general parameter to pass to the callback routine 311 * ---async_tx api specific fields--- 312 * @next: at completion submit this descriptor 313 * @parent: pointer to the next level up in the dependency chain 314 * @lock: protect the parent and next pointers 315 */ 316 struct dma_async_tx_descriptor { 317 dma_cookie_t cookie; 318 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 319 dma_addr_t phys; 320 struct dma_chan *chan; 321 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 322 dma_async_tx_callback callback; 323 void *callback_param; 324 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 325 struct dma_async_tx_descriptor *next; 326 struct dma_async_tx_descriptor *parent; 327 spinlock_t lock; 328 #endif 329 }; 330 331 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 332 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 333 { 334 } 335 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 336 { 337 } 338 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 339 { 340 BUG(); 341 } 342 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 343 { 344 } 345 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 346 { 347 } 348 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 349 { 350 return NULL; 351 } 352 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 353 { 354 return NULL; 355 } 356 357 #else 358 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 359 { 360 spin_lock_bh(&txd->lock); 361 } 362 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 363 { 364 spin_unlock_bh(&txd->lock); 365 } 366 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 367 { 368 txd->next = next; 369 next->parent = txd; 370 } 371 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 372 { 373 txd->parent = NULL; 374 } 375 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 376 { 377 txd->next = NULL; 378 } 379 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 380 { 381 return txd->parent; 382 } 383 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 384 { 385 return txd->next; 386 } 387 #endif 388 389 /** 390 * struct dma_tx_state - filled in to report the status of 391 * a transfer. 392 * @last: last completed DMA cookie 393 * @used: last issued DMA cookie (i.e. the one in progress) 394 * @residue: the remaining number of bytes left to transmit 395 * on the selected transfer for states DMA_IN_PROGRESS and 396 * DMA_PAUSED if this is implemented in the driver, else 0 397 */ 398 struct dma_tx_state { 399 dma_cookie_t last; 400 dma_cookie_t used; 401 u32 residue; 402 }; 403 404 /** 405 * struct dma_device - info on the entity supplying DMA services 406 * @chancnt: how many DMA channels are supported 407 * @privatecnt: how many DMA channels are requested by dma_request_channel 408 * @channels: the list of struct dma_chan 409 * @global_node: list_head for global dma_device_list 410 * @cap_mask: one or more dma_capability flags 411 * @max_xor: maximum number of xor sources, 0 if no capability 412 * @max_pq: maximum number of PQ sources and PQ-continue capability 413 * @copy_align: alignment shift for memcpy operations 414 * @xor_align: alignment shift for xor operations 415 * @pq_align: alignment shift for pq operations 416 * @fill_align: alignment shift for memset operations 417 * @dev_id: unique device ID 418 * @dev: struct device reference for dma mapping api 419 * @device_alloc_chan_resources: allocate resources and return the 420 * number of allocated descriptors 421 * @device_free_chan_resources: release DMA channel's resources 422 * @device_prep_dma_memcpy: prepares a memcpy operation 423 * @device_prep_dma_xor: prepares a xor operation 424 * @device_prep_dma_xor_val: prepares a xor validation operation 425 * @device_prep_dma_pq: prepares a pq operation 426 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 427 * @device_prep_dma_memset: prepares a memset operation 428 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 429 * @device_prep_slave_sg: prepares a slave dma operation 430 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 431 * The function takes a buffer of size buf_len. The callback function will 432 * be called after period_len bytes have been transferred. 433 * @device_control: manipulate all pending operations on a channel, returns 434 * zero or error code 435 * @device_tx_status: poll for transaction completion, the optional 436 * txstate parameter can be supplied with a pointer to get a 437 * struct with auxiliary transfer status information, otherwise the call 438 * will just return a simple status code 439 * @device_issue_pending: push pending transactions to hardware 440 */ 441 struct dma_device { 442 443 unsigned int chancnt; 444 unsigned int privatecnt; 445 struct list_head channels; 446 struct list_head global_node; 447 dma_cap_mask_t cap_mask; 448 unsigned short max_xor; 449 unsigned short max_pq; 450 u8 copy_align; 451 u8 xor_align; 452 u8 pq_align; 453 u8 fill_align; 454 #define DMA_HAS_PQ_CONTINUE (1 << 15) 455 456 int dev_id; 457 struct device *dev; 458 459 int (*device_alloc_chan_resources)(struct dma_chan *chan); 460 void (*device_free_chan_resources)(struct dma_chan *chan); 461 462 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 463 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 464 size_t len, unsigned long flags); 465 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 466 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 467 unsigned int src_cnt, size_t len, unsigned long flags); 468 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 469 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 470 size_t len, enum sum_check_flags *result, unsigned long flags); 471 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 472 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 473 unsigned int src_cnt, const unsigned char *scf, 474 size_t len, unsigned long flags); 475 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 476 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 477 unsigned int src_cnt, const unsigned char *scf, size_t len, 478 enum sum_check_flags *pqres, unsigned long flags); 479 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 480 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 481 unsigned long flags); 482 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 483 struct dma_chan *chan, unsigned long flags); 484 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 485 struct dma_chan *chan, 486 struct scatterlist *dst_sg, unsigned int dst_nents, 487 struct scatterlist *src_sg, unsigned int src_nents, 488 unsigned long flags); 489 490 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 491 struct dma_chan *chan, struct scatterlist *sgl, 492 unsigned int sg_len, enum dma_data_direction direction, 493 unsigned long flags); 494 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 495 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 496 size_t period_len, enum dma_data_direction direction); 497 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 498 unsigned long arg); 499 500 enum dma_status (*device_tx_status)(struct dma_chan *chan, 501 dma_cookie_t cookie, 502 struct dma_tx_state *txstate); 503 void (*device_issue_pending)(struct dma_chan *chan); 504 }; 505 506 static inline int dmaengine_device_control(struct dma_chan *chan, 507 enum dma_ctrl_cmd cmd, 508 unsigned long arg) 509 { 510 return chan->device->device_control(chan, cmd, arg); 511 } 512 513 static inline int dmaengine_slave_config(struct dma_chan *chan, 514 struct dma_slave_config *config) 515 { 516 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 517 (unsigned long)config); 518 } 519 520 static inline int dmaengine_terminate_all(struct dma_chan *chan) 521 { 522 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 523 } 524 525 static inline int dmaengine_pause(struct dma_chan *chan) 526 { 527 return dmaengine_device_control(chan, DMA_PAUSE, 0); 528 } 529 530 static inline int dmaengine_resume(struct dma_chan *chan) 531 { 532 return dmaengine_device_control(chan, DMA_RESUME, 0); 533 } 534 535 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 536 { 537 return desc->tx_submit(desc); 538 } 539 540 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 541 { 542 size_t mask; 543 544 if (!align) 545 return true; 546 mask = (1 << align) - 1; 547 if (mask & (off1 | off2 | len)) 548 return false; 549 return true; 550 } 551 552 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 553 size_t off2, size_t len) 554 { 555 return dmaengine_check_align(dev->copy_align, off1, off2, len); 556 } 557 558 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 559 size_t off2, size_t len) 560 { 561 return dmaengine_check_align(dev->xor_align, off1, off2, len); 562 } 563 564 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 565 size_t off2, size_t len) 566 { 567 return dmaengine_check_align(dev->pq_align, off1, off2, len); 568 } 569 570 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 571 size_t off2, size_t len) 572 { 573 return dmaengine_check_align(dev->fill_align, off1, off2, len); 574 } 575 576 static inline void 577 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 578 { 579 dma->max_pq = maxpq; 580 if (has_pq_continue) 581 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 582 } 583 584 static inline bool dmaf_continue(enum dma_ctrl_flags flags) 585 { 586 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 587 } 588 589 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 590 { 591 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 592 593 return (flags & mask) == mask; 594 } 595 596 static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 597 { 598 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 599 } 600 601 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 602 { 603 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 604 } 605 606 /* dma_maxpq - reduce maxpq in the face of continued operations 607 * @dma - dma device with PQ capability 608 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 609 * 610 * When an engine does not support native continuation we need 3 extra 611 * source slots to reuse P and Q with the following coefficients: 612 * 1/ {00} * P : remove P from Q', but use it as a source for P' 613 * 2/ {01} * Q : use Q to continue Q' calculation 614 * 3/ {00} * Q : subtract Q from P' to cancel (2) 615 * 616 * In the case where P is disabled we only need 1 extra source: 617 * 1/ {01} * Q : use Q to continue Q' calculation 618 */ 619 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 620 { 621 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 622 return dma_dev_to_maxpq(dma); 623 else if (dmaf_p_disabled_continue(flags)) 624 return dma_dev_to_maxpq(dma) - 1; 625 else if (dmaf_continue(flags)) 626 return dma_dev_to_maxpq(dma) - 3; 627 BUG(); 628 } 629 630 /* --- public DMA engine API --- */ 631 632 #ifdef CONFIG_DMA_ENGINE 633 void dmaengine_get(void); 634 void dmaengine_put(void); 635 #else 636 static inline void dmaengine_get(void) 637 { 638 } 639 static inline void dmaengine_put(void) 640 { 641 } 642 #endif 643 644 #ifdef CONFIG_NET_DMA 645 #define net_dmaengine_get() dmaengine_get() 646 #define net_dmaengine_put() dmaengine_put() 647 #else 648 static inline void net_dmaengine_get(void) 649 { 650 } 651 static inline void net_dmaengine_put(void) 652 { 653 } 654 #endif 655 656 #ifdef CONFIG_ASYNC_TX_DMA 657 #define async_dmaengine_get() dmaengine_get() 658 #define async_dmaengine_put() dmaengine_put() 659 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 660 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 661 #else 662 #define async_dma_find_channel(type) dma_find_channel(type) 663 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 664 #else 665 static inline void async_dmaengine_get(void) 666 { 667 } 668 static inline void async_dmaengine_put(void) 669 { 670 } 671 static inline struct dma_chan * 672 async_dma_find_channel(enum dma_transaction_type type) 673 { 674 return NULL; 675 } 676 #endif /* CONFIG_ASYNC_TX_DMA */ 677 678 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 679 void *dest, void *src, size_t len); 680 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 681 struct page *page, unsigned int offset, void *kdata, size_t len); 682 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 683 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 684 unsigned int src_off, size_t len); 685 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 686 struct dma_chan *chan); 687 688 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 689 { 690 tx->flags |= DMA_CTRL_ACK; 691 } 692 693 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 694 { 695 tx->flags &= ~DMA_CTRL_ACK; 696 } 697 698 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 699 { 700 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 701 } 702 703 #define first_dma_cap(mask) __first_dma_cap(&(mask)) 704 static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 705 { 706 return min_t(int, DMA_TX_TYPE_END, 707 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 708 } 709 710 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 711 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 712 { 713 return min_t(int, DMA_TX_TYPE_END, 714 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 715 } 716 717 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 718 static inline void 719 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 720 { 721 set_bit(tx_type, dstp->bits); 722 } 723 724 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 725 static inline void 726 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 727 { 728 clear_bit(tx_type, dstp->bits); 729 } 730 731 #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 732 static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 733 { 734 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 735 } 736 737 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 738 static inline int 739 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 740 { 741 return test_bit(tx_type, srcp->bits); 742 } 743 744 #define for_each_dma_cap_mask(cap, mask) \ 745 for ((cap) = first_dma_cap(mask); \ 746 (cap) < DMA_TX_TYPE_END; \ 747 (cap) = next_dma_cap((cap), (mask))) 748 749 /** 750 * dma_async_issue_pending - flush pending transactions to HW 751 * @chan: target DMA channel 752 * 753 * This allows drivers to push copies to HW in batches, 754 * reducing MMIO writes where possible. 755 */ 756 static inline void dma_async_issue_pending(struct dma_chan *chan) 757 { 758 chan->device->device_issue_pending(chan); 759 } 760 761 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 762 763 /** 764 * dma_async_is_tx_complete - poll for transaction completion 765 * @chan: DMA channel 766 * @cookie: transaction identifier to check status of 767 * @last: returns last completed cookie, can be NULL 768 * @used: returns last issued cookie, can be NULL 769 * 770 * If @last and @used are passed in, upon return they reflect the driver 771 * internal state and can be used with dma_async_is_complete() to check 772 * the status of multiple cookies without re-checking hardware state. 773 */ 774 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 775 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 776 { 777 struct dma_tx_state state; 778 enum dma_status status; 779 780 status = chan->device->device_tx_status(chan, cookie, &state); 781 if (last) 782 *last = state.last; 783 if (used) 784 *used = state.used; 785 return status; 786 } 787 788 #define dma_async_memcpy_complete(chan, cookie, last, used)\ 789 dma_async_is_tx_complete(chan, cookie, last, used) 790 791 /** 792 * dma_async_is_complete - test a cookie against chan state 793 * @cookie: transaction identifier to test status of 794 * @last_complete: last know completed transaction 795 * @last_used: last cookie value handed out 796 * 797 * dma_async_is_complete() is used in dma_async_memcpy_complete() 798 * the test logic is separated for lightweight testing of multiple cookies 799 */ 800 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 801 dma_cookie_t last_complete, dma_cookie_t last_used) 802 { 803 if (last_complete <= last_used) { 804 if ((cookie <= last_complete) || (cookie > last_used)) 805 return DMA_SUCCESS; 806 } else { 807 if ((cookie <= last_complete) && (cookie > last_used)) 808 return DMA_SUCCESS; 809 } 810 return DMA_IN_PROGRESS; 811 } 812 813 static inline void 814 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 815 { 816 if (st) { 817 st->last = last; 818 st->used = used; 819 st->residue = residue; 820 } 821 } 822 823 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 824 #ifdef CONFIG_DMA_ENGINE 825 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 826 void dma_issue_pending_all(void); 827 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 828 void dma_release_channel(struct dma_chan *chan); 829 #else 830 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 831 { 832 return DMA_SUCCESS; 833 } 834 static inline void dma_issue_pending_all(void) 835 { 836 } 837 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, 838 dma_filter_fn fn, void *fn_param) 839 { 840 return NULL; 841 } 842 static inline void dma_release_channel(struct dma_chan *chan) 843 { 844 } 845 #endif 846 847 /* --- DMA device --- */ 848 849 int dma_async_device_register(struct dma_device *device); 850 void dma_async_device_unregister(struct dma_device *device); 851 void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 852 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 853 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 854 855 /* --- Helper iov-locking functions --- */ 856 857 struct dma_page_list { 858 char __user *base_address; 859 int nr_pages; 860 struct page **pages; 861 }; 862 863 struct dma_pinned_list { 864 int nr_iovecs; 865 struct dma_page_list page_list[0]; 866 }; 867 868 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 869 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 870 871 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 872 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 873 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 874 struct dma_pinned_list *pinned_list, struct page *page, 875 unsigned int offset, size_t len); 876 877 #endif /* DMAENGINE_H */ 878