xref: /linux-6.15/include/linux/dmaengine.h (revision e7bbb7ac)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7 
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16 
17 /**
18  * typedef dma_cookie_t - an opaque DMA cookie
19  *
20  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21  */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE	1
24 
25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 	return cookie < 0 ? cookie : 0;
28 }
29 
30 /**
31  * enum dma_status - DMA transaction status
32  * @DMA_COMPLETE: transaction completed
33  * @DMA_IN_PROGRESS: transaction not yet processed
34  * @DMA_PAUSED: transaction is paused
35  * @DMA_ERROR: transaction failed
36  */
37 enum dma_status {
38 	DMA_COMPLETE,
39 	DMA_IN_PROGRESS,
40 	DMA_PAUSED,
41 	DMA_ERROR,
42 	DMA_OUT_OF_ORDER,
43 };
44 
45 /**
46  * enum dma_transaction_type - DMA transaction types/indexes
47  *
48  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
49  * automatically set as dma devices are registered.
50  */
51 enum dma_transaction_type {
52 	DMA_MEMCPY,
53 	DMA_XOR,
54 	DMA_PQ,
55 	DMA_XOR_VAL,
56 	DMA_PQ_VAL,
57 	DMA_MEMSET,
58 	DMA_MEMSET_SG,
59 	DMA_INTERRUPT,
60 	DMA_PRIVATE,
61 	DMA_ASYNC_TX,
62 	DMA_SLAVE,
63 	DMA_CYCLIC,
64 	DMA_INTERLEAVE,
65 	DMA_COMPLETION_NO_ORDER,
66 	DMA_REPEAT,
67 	DMA_LOAD_EOT,
68 /* last transaction type for creation of the capabilities mask */
69 	DMA_TX_TYPE_END,
70 };
71 
72 /**
73  * enum dma_transfer_direction - dma transfer mode and direction indicator
74  * @DMA_MEM_TO_MEM: Async/Memcpy mode
75  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78  */
79 enum dma_transfer_direction {
80 	DMA_MEM_TO_MEM,
81 	DMA_MEM_TO_DEV,
82 	DMA_DEV_TO_MEM,
83 	DMA_DEV_TO_DEV,
84 	DMA_TRANS_NONE,
85 };
86 
87 /**
88  * Interleaved Transfer Request
89  * ----------------------------
90  * A chunk is collection of contiguous bytes to be transferred.
91  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92  * ICGs may or may not change between chunks.
93  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94  *  that when repeated an integral number of times, specifies the transfer.
95  * A transfer template is specification of a Frame, the number of times
96  *  it is to be repeated and other per-transfer attributes.
97  *
98  * Practically, a client driver would have ready a template for each
99  *  type of transfer it is going to need during its lifetime and
100  *  set only 'src_start' and 'dst_start' before submitting the requests.
101  *
102  *
103  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
104  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105  *
106  *    ==  Chunk size
107  *    ... ICG
108  */
109 
110 /**
111  * struct data_chunk - Element of scatter-gather list that makes a frame.
112  * @size: Number of bytes to read from source.
113  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
114  * @icg: Number of bytes to jump after last src/dst address of this
115  *	 chunk and before first src/dst address for next chunk.
116  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118  * @dst_icg: Number of bytes to jump after last dst address of this
119  *	 chunk and before the first dst address for next chunk.
120  *	 Ignored if dst_inc is true and dst_sgl is false.
121  * @src_icg: Number of bytes to jump after last src address of this
122  *	 chunk and before the first src address for next chunk.
123  *	 Ignored if src_inc is true and src_sgl is false.
124  */
125 struct data_chunk {
126 	size_t size;
127 	size_t icg;
128 	size_t dst_icg;
129 	size_t src_icg;
130 };
131 
132 /**
133  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134  *	 and attributes.
135  * @src_start: Bus address of source for the first chunk.
136  * @dst_start: Bus address of destination for the first chunk.
137  * @dir: Specifies the type of Source and Destination.
138  * @src_inc: If the source address increments after reading from it.
139  * @dst_inc: If the destination address increments after writing to it.
140  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141  *		Otherwise, source is read contiguously (icg ignored).
142  *		Ignored if src_inc is false.
143  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144  *		Otherwise, destination is filled contiguously (icg ignored).
145  *		Ignored if dst_inc is false.
146  * @numf: Number of frames in this template.
147  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148  * @sgl: Array of {chunk,icg} pairs that make up a frame.
149  */
150 struct dma_interleaved_template {
151 	dma_addr_t src_start;
152 	dma_addr_t dst_start;
153 	enum dma_transfer_direction dir;
154 	bool src_inc;
155 	bool dst_inc;
156 	bool src_sgl;
157 	bool dst_sgl;
158 	size_t numf;
159 	size_t frame_size;
160 	struct data_chunk sgl[];
161 };
162 
163 /**
164  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165  *  control completion, and communicate status.
166  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167  *  this transaction
168  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169  *  acknowledges receipt, i.e. has a chance to establish any dependency
170  *  chains
171  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174  *  sources that were the result of a previous operation, in the case of a PQ
175  *  operation it continues the calculation with new sources
176  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177  *  on the result of this operation
178  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179  *  cleared or freed
180  * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181  *  data and the descriptor should be in different format from normal
182  *  data descriptors.
183  * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184  *  repeated when it ends until a transaction is issued on the same channel
185  *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186  *  interleaved transactions and is ignored for all other transaction types.
187  * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188  *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189  *  repeated transaction ends. Not setting this flag when the previously queued
190  *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191  *  to never be processed and stay in the issued queue forever. The flag is
192  *  ignored if the previous transaction is not a repeated transaction.
193  */
194 enum dma_ctrl_flags {
195 	DMA_PREP_INTERRUPT = (1 << 0),
196 	DMA_CTRL_ACK = (1 << 1),
197 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
198 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199 	DMA_PREP_CONTINUE = (1 << 4),
200 	DMA_PREP_FENCE = (1 << 5),
201 	DMA_CTRL_REUSE = (1 << 6),
202 	DMA_PREP_CMD = (1 << 7),
203 	DMA_PREP_REPEAT = (1 << 8),
204 	DMA_PREP_LOAD_EOT = (1 << 9),
205 };
206 
207 /**
208  * enum sum_check_bits - bit position of pq_check_flags
209  */
210 enum sum_check_bits {
211 	SUM_CHECK_P = 0,
212 	SUM_CHECK_Q = 1,
213 };
214 
215 /**
216  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219  */
220 enum sum_check_flags {
221 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223 };
224 
225 
226 /**
227  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
228  * See linux/cpumask.h
229  */
230 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
231 
232 /**
233  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
234  * @memcpy_count: transaction counter
235  * @bytes_transferred: byte counter
236  */
237 
238 /**
239  * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
240  * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
241  *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
242  *  helper) to the descriptor.
243  *
244  * Client drivers interested to use this mode can follow:
245  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
246  *   1. prepare the descriptor (dmaengine_prep_*)
247  *	construct the metadata in the client's buffer
248  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
249  *	descriptor
250  *   3. submit the transfer
251  * - DMA_DEV_TO_MEM:
252  *   1. prepare the descriptor (dmaengine_prep_*)
253  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
254  *	descriptor
255  *   3. submit the transfer
256  *   4. when the transfer is completed, the metadata should be available in the
257  *	attached buffer
258  *
259  * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
260  *  driver. The client driver can ask for the pointer, maximum size and the
261  *  currently used size of the metadata and can directly update or read it.
262  *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
263  *  provided as helper functions.
264  *
265  *  Note: the metadata area for the descriptor is no longer valid after the
266  *  transfer has been completed (valid up to the point when the completion
267  *  callback returns if used).
268  *
269  * Client drivers interested to use this mode can follow:
270  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
271  *   1. prepare the descriptor (dmaengine_prep_*)
272  *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
273  *	metadata area
274  *   3. update the metadata at the pointer
275  *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
276  *	of data the client has placed into the metadata buffer
277  *   5. submit the transfer
278  * - DMA_DEV_TO_MEM:
279  *   1. prepare the descriptor (dmaengine_prep_*)
280  *   2. submit the transfer
281  *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
282  *	pointer to the engine's metadata area
283  *   4. Read out the metadata from the pointer
284  *
285  * Note: the two mode is not compatible and clients must use one mode for a
286  * descriptor.
287  */
288 enum dma_desc_metadata_mode {
289 	DESC_METADATA_NONE = 0,
290 	DESC_METADATA_CLIENT = BIT(0),
291 	DESC_METADATA_ENGINE = BIT(1),
292 };
293 
294 struct dma_chan_percpu {
295 	/* stats */
296 	unsigned long memcpy_count;
297 	unsigned long bytes_transferred;
298 };
299 
300 /**
301  * struct dma_router - DMA router structure
302  * @dev: pointer to the DMA router device
303  * @route_free: function to be called when the route can be disconnected
304  */
305 struct dma_router {
306 	struct device *dev;
307 	void (*route_free)(struct device *dev, void *route_data);
308 };
309 
310 /**
311  * struct dma_chan - devices supply DMA channels, clients use them
312  * @device: ptr to the dma device who supplies this channel, always !%NULL
313  * @slave: ptr to the device using this channel
314  * @cookie: last cookie value returned to client
315  * @completed_cookie: last completed cookie for this channel
316  * @chan_id: channel ID for sysfs
317  * @dev: class device for sysfs
318  * @name: backlink name for sysfs
319  * @dbg_client_name: slave name for debugfs in format:
320  *	dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
321  * @device_node: used to add this to the device chan list
322  * @local: per-cpu pointer to a struct dma_chan_percpu
323  * @client_count: how many clients are using this channel
324  * @table_count: number of appearances in the mem-to-mem allocation table
325  * @router: pointer to the DMA router structure
326  * @route_data: channel specific data for the router
327  * @private: private data for certain client-channel associations
328  */
329 struct dma_chan {
330 	struct dma_device *device;
331 	struct device *slave;
332 	dma_cookie_t cookie;
333 	dma_cookie_t completed_cookie;
334 
335 	/* sysfs */
336 	int chan_id;
337 	struct dma_chan_dev *dev;
338 	const char *name;
339 #ifdef CONFIG_DEBUG_FS
340 	char *dbg_client_name;
341 #endif
342 
343 	struct list_head device_node;
344 	struct dma_chan_percpu __percpu *local;
345 	int client_count;
346 	int table_count;
347 
348 	/* DMA router */
349 	struct dma_router *router;
350 	void *route_data;
351 
352 	void *private;
353 };
354 
355 /**
356  * struct dma_chan_dev - relate sysfs device node to backing channel device
357  * @chan: driver channel device
358  * @device: sysfs device
359  * @dev_id: parent dma_device dev_id
360  */
361 struct dma_chan_dev {
362 	struct dma_chan *chan;
363 	struct device device;
364 	int dev_id;
365 };
366 
367 /**
368  * enum dma_slave_buswidth - defines bus width of the DMA slave
369  * device, source or target buses
370  */
371 enum dma_slave_buswidth {
372 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
373 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
374 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
375 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
376 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
377 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
378 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
379 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
380 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
381 };
382 
383 /**
384  * struct dma_slave_config - dma slave channel runtime config
385  * @direction: whether the data shall go in or out on this slave
386  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
387  * legal values. DEPRECATED, drivers should use the direction argument
388  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
389  * the dir field in the dma_interleaved_template structure.
390  * @src_addr: this is the physical address where DMA slave data
391  * should be read (RX), if the source is memory this argument is
392  * ignored.
393  * @dst_addr: this is the physical address where DMA slave data
394  * should be written (TX), if the source is memory this argument
395  * is ignored.
396  * @src_addr_width: this is the width in bytes of the source (RX)
397  * register where DMA data shall be read. If the source
398  * is memory this may be ignored depending on architecture.
399  * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
400  * @dst_addr_width: same as src_addr_width but for destination
401  * target (TX) mutatis mutandis.
402  * @src_maxburst: the maximum number of words (note: words, as in
403  * units of the src_addr_width member, not bytes) that can be sent
404  * in one burst to the device. Typically something like half the
405  * FIFO depth on I/O peripherals so you don't overflow it. This
406  * may or may not be applicable on memory sources.
407  * @dst_maxburst: same as src_maxburst but for destination target
408  * mutatis mutandis.
409  * @src_port_window_size: The length of the register area in words the data need
410  * to be accessed on the device side. It is only used for devices which is using
411  * an area instead of a single register to receive the data. Typically the DMA
412  * loops in this area in order to transfer the data.
413  * @dst_port_window_size: same as src_port_window_size but for the destination
414  * port.
415  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
416  * with 'true' if peripheral should be flow controller. Direction will be
417  * selected at Runtime.
418  * @slave_id: Slave requester id. Only valid for slave channels. The dma
419  * slave peripheral will have unique id as dma requester which need to be
420  * pass as slave config.
421  * @peripheral_config: peripheral configuration for programming peripheral
422  * for dmaengine transfer
423  * @peripheral_size: peripheral configuration buffer size
424  *
425  * This struct is passed in as configuration data to a DMA engine
426  * in order to set up a certain channel for DMA transport at runtime.
427  * The DMA device/engine has to provide support for an additional
428  * callback in the dma_device structure, device_config and this struct
429  * will then be passed in as an argument to the function.
430  *
431  * The rationale for adding configuration information to this struct is as
432  * follows: if it is likely that more than one DMA slave controllers in
433  * the world will support the configuration option, then make it generic.
434  * If not: if it is fixed so that it be sent in static from the platform
435  * data, then prefer to do that.
436  */
437 struct dma_slave_config {
438 	enum dma_transfer_direction direction;
439 	phys_addr_t src_addr;
440 	phys_addr_t dst_addr;
441 	enum dma_slave_buswidth src_addr_width;
442 	enum dma_slave_buswidth dst_addr_width;
443 	u32 src_maxburst;
444 	u32 dst_maxburst;
445 	u32 src_port_window_size;
446 	u32 dst_port_window_size;
447 	bool device_fc;
448 	unsigned int slave_id;
449 	void *peripheral_config;
450 	size_t peripheral_size;
451 };
452 
453 /**
454  * enum dma_residue_granularity - Granularity of the reported transfer residue
455  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
456  *  DMA channel is only able to tell whether a descriptor has been completed or
457  *  not, which means residue reporting is not supported by this channel. The
458  *  residue field of the dma_tx_state field will always be 0.
459  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
460  *  completed segment of the transfer (For cyclic transfers this is after each
461  *  period). This is typically implemented by having the hardware generate an
462  *  interrupt after each transferred segment and then the drivers updates the
463  *  outstanding residue by the size of the segment. Another possibility is if
464  *  the hardware supports scatter-gather and the segment descriptor has a field
465  *  which gets set after the segment has been completed. The driver then counts
466  *  the number of segments without the flag set to compute the residue.
467  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
468  *  burst. This is typically only supported if the hardware has a progress
469  *  register of some sort (E.g. a register with the current read/write address
470  *  or a register with the amount of bursts/beats/bytes that have been
471  *  transferred or still need to be transferred).
472  */
473 enum dma_residue_granularity {
474 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
475 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
476 	DMA_RESIDUE_GRANULARITY_BURST = 2,
477 };
478 
479 /**
480  * struct dma_slave_caps - expose capabilities of a slave channel only
481  * @src_addr_widths: bit mask of src addr widths the channel supports.
482  *	Width is specified in bytes, e.g. for a channel supporting
483  *	a width of 4 the mask should have BIT(4) set.
484  * @dst_addr_widths: bit mask of dst addr widths the channel supports
485  * @directions: bit mask of slave directions the channel supports.
486  *	Since the enum dma_transfer_direction is not defined as bit flag for
487  *	each type, the dma controller should set BIT(<TYPE>) and same
488  *	should be checked by controller as well
489  * @min_burst: min burst capability per-transfer
490  * @max_burst: max burst capability per-transfer
491  * @max_sg_burst: max number of SG list entries executed in a single burst
492  *	DMA tansaction with no software intervention for reinitialization.
493  *	Zero value means unlimited number of entries.
494  * @cmd_pause: true, if pause is supported (i.e. for reading residue or
495  *	       for resume later)
496  * @cmd_resume: true, if resume is supported
497  * @cmd_terminate: true, if terminate cmd is supported
498  * @residue_granularity: granularity of the reported transfer residue
499  * @descriptor_reuse: if a descriptor can be reused by client and
500  * resubmitted multiple times
501  */
502 struct dma_slave_caps {
503 	u32 src_addr_widths;
504 	u32 dst_addr_widths;
505 	u32 directions;
506 	u32 min_burst;
507 	u32 max_burst;
508 	u32 max_sg_burst;
509 	bool cmd_pause;
510 	bool cmd_resume;
511 	bool cmd_terminate;
512 	enum dma_residue_granularity residue_granularity;
513 	bool descriptor_reuse;
514 };
515 
516 static inline const char *dma_chan_name(struct dma_chan *chan)
517 {
518 	return dev_name(&chan->dev->device);
519 }
520 
521 void dma_chan_cleanup(struct kref *kref);
522 
523 /**
524  * typedef dma_filter_fn - callback filter for dma_request_channel
525  * @chan: channel to be reviewed
526  * @filter_param: opaque parameter passed through dma_request_channel
527  *
528  * When this optional parameter is specified in a call to dma_request_channel a
529  * suitable channel is passed to this routine for further dispositioning before
530  * being returned.  Where 'suitable' indicates a non-busy channel that
531  * satisfies the given capability mask.  It returns 'true' to indicate that the
532  * channel is suitable.
533  */
534 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
535 
536 typedef void (*dma_async_tx_callback)(void *dma_async_param);
537 
538 enum dmaengine_tx_result {
539 	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
540 	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
541 	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
542 	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
543 };
544 
545 struct dmaengine_result {
546 	enum dmaengine_tx_result result;
547 	u32 residue;
548 };
549 
550 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
551 				const struct dmaengine_result *result);
552 
553 struct dmaengine_unmap_data {
554 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
555 	u16 map_cnt;
556 #else
557 	u8 map_cnt;
558 #endif
559 	u8 to_cnt;
560 	u8 from_cnt;
561 	u8 bidi_cnt;
562 	struct device *dev;
563 	struct kref kref;
564 	size_t len;
565 	dma_addr_t addr[];
566 };
567 
568 struct dma_async_tx_descriptor;
569 
570 struct dma_descriptor_metadata_ops {
571 	int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
572 		      size_t len);
573 
574 	void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
575 			 size_t *payload_len, size_t *max_len);
576 	int (*set_len)(struct dma_async_tx_descriptor *desc,
577 		       size_t payload_len);
578 };
579 
580 /**
581  * struct dma_async_tx_descriptor - async transaction descriptor
582  * ---dma generic offload fields---
583  * @cookie: tracking cookie for this transaction, set to -EBUSY if
584  *	this tx is sitting on a dependency list
585  * @flags: flags to augment operation preparation, control completion, and
586  *	communicate status
587  * @phys: physical address of the descriptor
588  * @chan: target channel for this operation
589  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
590  * descriptor pending. To be pushed on .issue_pending() call
591  * @callback: routine to call after this operation is complete
592  * @callback_param: general parameter to pass to the callback routine
593  * @desc_metadata_mode: core managed metadata mode to protect mixed use of
594  *	DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
595  *	DESC_METADATA_NONE
596  * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
597  *	DMA driver if metadata mode is supported with the descriptor
598  * ---async_tx api specific fields---
599  * @next: at completion submit this descriptor
600  * @parent: pointer to the next level up in the dependency chain
601  * @lock: protect the parent and next pointers
602  */
603 struct dma_async_tx_descriptor {
604 	dma_cookie_t cookie;
605 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
606 	dma_addr_t phys;
607 	struct dma_chan *chan;
608 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
609 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
610 	dma_async_tx_callback callback;
611 	dma_async_tx_callback_result callback_result;
612 	void *callback_param;
613 	struct dmaengine_unmap_data *unmap;
614 	enum dma_desc_metadata_mode desc_metadata_mode;
615 	struct dma_descriptor_metadata_ops *metadata_ops;
616 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
617 	struct dma_async_tx_descriptor *next;
618 	struct dma_async_tx_descriptor *parent;
619 	spinlock_t lock;
620 #endif
621 };
622 
623 #ifdef CONFIG_DMA_ENGINE
624 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
625 				 struct dmaengine_unmap_data *unmap)
626 {
627 	kref_get(&unmap->kref);
628 	tx->unmap = unmap;
629 }
630 
631 struct dmaengine_unmap_data *
632 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
633 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
634 #else
635 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
636 				 struct dmaengine_unmap_data *unmap)
637 {
638 }
639 static inline struct dmaengine_unmap_data *
640 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
641 {
642 	return NULL;
643 }
644 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
645 {
646 }
647 #endif
648 
649 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
650 {
651 	if (!tx->unmap)
652 		return;
653 
654 	dmaengine_unmap_put(tx->unmap);
655 	tx->unmap = NULL;
656 }
657 
658 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
659 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
660 {
661 }
662 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
663 {
664 }
665 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
666 {
667 	BUG();
668 }
669 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
670 {
671 }
672 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
673 {
674 }
675 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
676 {
677 	return NULL;
678 }
679 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
680 {
681 	return NULL;
682 }
683 
684 #else
685 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
686 {
687 	spin_lock_bh(&txd->lock);
688 }
689 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
690 {
691 	spin_unlock_bh(&txd->lock);
692 }
693 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
694 {
695 	txd->next = next;
696 	next->parent = txd;
697 }
698 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
699 {
700 	txd->parent = NULL;
701 }
702 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
703 {
704 	txd->next = NULL;
705 }
706 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
707 {
708 	return txd->parent;
709 }
710 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
711 {
712 	return txd->next;
713 }
714 #endif
715 
716 /**
717  * struct dma_tx_state - filled in to report the status of
718  * a transfer.
719  * @last: last completed DMA cookie
720  * @used: last issued DMA cookie (i.e. the one in progress)
721  * @residue: the remaining number of bytes left to transmit
722  *	on the selected transfer for states DMA_IN_PROGRESS and
723  *	DMA_PAUSED if this is implemented in the driver, else 0
724  * @in_flight_bytes: amount of data in bytes cached by the DMA.
725  */
726 struct dma_tx_state {
727 	dma_cookie_t last;
728 	dma_cookie_t used;
729 	u32 residue;
730 	u32 in_flight_bytes;
731 };
732 
733 /**
734  * enum dmaengine_alignment - defines alignment of the DMA async tx
735  * buffers
736  */
737 enum dmaengine_alignment {
738 	DMAENGINE_ALIGN_1_BYTE = 0,
739 	DMAENGINE_ALIGN_2_BYTES = 1,
740 	DMAENGINE_ALIGN_4_BYTES = 2,
741 	DMAENGINE_ALIGN_8_BYTES = 3,
742 	DMAENGINE_ALIGN_16_BYTES = 4,
743 	DMAENGINE_ALIGN_32_BYTES = 5,
744 	DMAENGINE_ALIGN_64_BYTES = 6,
745 };
746 
747 /**
748  * struct dma_slave_map - associates slave device and it's slave channel with
749  * parameter to be used by a filter function
750  * @devname: name of the device
751  * @slave: slave channel name
752  * @param: opaque parameter to pass to struct dma_filter.fn
753  */
754 struct dma_slave_map {
755 	const char *devname;
756 	const char *slave;
757 	void *param;
758 };
759 
760 /**
761  * struct dma_filter - information for slave device/channel to filter_fn/param
762  * mapping
763  * @fn: filter function callback
764  * @mapcnt: number of slave device/channel in the map
765  * @map: array of channel to filter mapping data
766  */
767 struct dma_filter {
768 	dma_filter_fn fn;
769 	int mapcnt;
770 	const struct dma_slave_map *map;
771 };
772 
773 /**
774  * struct dma_device - info on the entity supplying DMA services
775  * @chancnt: how many DMA channels are supported
776  * @privatecnt: how many DMA channels are requested by dma_request_channel
777  * @channels: the list of struct dma_chan
778  * @global_node: list_head for global dma_device_list
779  * @filter: information for device/slave to filter function/param mapping
780  * @cap_mask: one or more dma_capability flags
781  * @desc_metadata_modes: supported metadata modes by the DMA device
782  * @max_xor: maximum number of xor sources, 0 if no capability
783  * @max_pq: maximum number of PQ sources and PQ-continue capability
784  * @copy_align: alignment shift for memcpy operations
785  * @xor_align: alignment shift for xor operations
786  * @pq_align: alignment shift for pq operations
787  * @fill_align: alignment shift for memset operations
788  * @dev_id: unique device ID
789  * @dev: struct device reference for dma mapping api
790  * @owner: owner module (automatically set based on the provided dev)
791  * @src_addr_widths: bit mask of src addr widths the device supports
792  *	Width is specified in bytes, e.g. for a device supporting
793  *	a width of 4 the mask should have BIT(4) set.
794  * @dst_addr_widths: bit mask of dst addr widths the device supports
795  * @directions: bit mask of slave directions the device supports.
796  *	Since the enum dma_transfer_direction is not defined as bit flag for
797  *	each type, the dma controller should set BIT(<TYPE>) and same
798  *	should be checked by controller as well
799  * @min_burst: min burst capability per-transfer
800  * @max_burst: max burst capability per-transfer
801  * @max_sg_burst: max number of SG list entries executed in a single burst
802  *	DMA tansaction with no software intervention for reinitialization.
803  *	Zero value means unlimited number of entries.
804  * @residue_granularity: granularity of the transfer residue reported
805  *	by tx_status
806  * @device_alloc_chan_resources: allocate resources and return the
807  *	number of allocated descriptors
808  * @device_free_chan_resources: release DMA channel's resources
809  * @device_prep_dma_memcpy: prepares a memcpy operation
810  * @device_prep_dma_xor: prepares a xor operation
811  * @device_prep_dma_xor_val: prepares a xor validation operation
812  * @device_prep_dma_pq: prepares a pq operation
813  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
814  * @device_prep_dma_memset: prepares a memset operation
815  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
816  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
817  * @device_prep_slave_sg: prepares a slave dma operation
818  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
819  *	The function takes a buffer of size buf_len. The callback function will
820  *	be called after period_len bytes have been transferred.
821  * @device_prep_interleaved_dma: Transfer expression in a generic way.
822  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
823  * @device_caps: May be used to override the generic DMA slave capabilities
824  *	with per-channel specific ones
825  * @device_config: Pushes a new configuration to a channel, return 0 or an error
826  *	code
827  * @device_pause: Pauses any transfer happening on a channel. Returns
828  *	0 or an error code
829  * @device_resume: Resumes any transfer on a channel previously
830  *	paused. Returns 0 or an error code
831  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
832  *	or an error code
833  * @device_synchronize: Synchronizes the termination of a transfers to the
834  *  current context.
835  * @device_tx_status: poll for transaction completion, the optional
836  *	txstate parameter can be supplied with a pointer to get a
837  *	struct with auxiliary transfer status information, otherwise the call
838  *	will just return a simple status code
839  * @device_issue_pending: push pending transactions to hardware
840  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
841  * @device_release: called sometime atfer dma_async_device_unregister() is
842  *     called and there are no further references to this structure. This
843  *     must be implemented to free resources however many existing drivers
844  *     do not and are therefore not safe to unbind while in use.
845  * @dbg_summary_show: optional routine to show contents in debugfs; default code
846  *     will be used when this is omitted, but custom code can show extra,
847  *     controller specific information.
848  */
849 struct dma_device {
850 	struct kref ref;
851 	unsigned int chancnt;
852 	unsigned int privatecnt;
853 	struct list_head channels;
854 	struct list_head global_node;
855 	struct dma_filter filter;
856 	dma_cap_mask_t  cap_mask;
857 	enum dma_desc_metadata_mode desc_metadata_modes;
858 	unsigned short max_xor;
859 	unsigned short max_pq;
860 	enum dmaengine_alignment copy_align;
861 	enum dmaengine_alignment xor_align;
862 	enum dmaengine_alignment pq_align;
863 	enum dmaengine_alignment fill_align;
864 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
865 
866 	int dev_id;
867 	struct device *dev;
868 	struct module *owner;
869 	struct ida chan_ida;
870 	struct mutex chan_mutex;	/* to protect chan_ida */
871 
872 	u32 src_addr_widths;
873 	u32 dst_addr_widths;
874 	u32 directions;
875 	u32 min_burst;
876 	u32 max_burst;
877 	u32 max_sg_burst;
878 	bool descriptor_reuse;
879 	enum dma_residue_granularity residue_granularity;
880 
881 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
882 	void (*device_free_chan_resources)(struct dma_chan *chan);
883 
884 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
885 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
886 		size_t len, unsigned long flags);
887 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
888 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
889 		unsigned int src_cnt, size_t len, unsigned long flags);
890 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
891 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
892 		size_t len, enum sum_check_flags *result, unsigned long flags);
893 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
894 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
895 		unsigned int src_cnt, const unsigned char *scf,
896 		size_t len, unsigned long flags);
897 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
898 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
899 		unsigned int src_cnt, const unsigned char *scf, size_t len,
900 		enum sum_check_flags *pqres, unsigned long flags);
901 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
902 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
903 		unsigned long flags);
904 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
905 		struct dma_chan *chan, struct scatterlist *sg,
906 		unsigned int nents, int value, unsigned long flags);
907 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
908 		struct dma_chan *chan, unsigned long flags);
909 
910 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
911 		struct dma_chan *chan, struct scatterlist *sgl,
912 		unsigned int sg_len, enum dma_transfer_direction direction,
913 		unsigned long flags, void *context);
914 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
915 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
916 		size_t period_len, enum dma_transfer_direction direction,
917 		unsigned long flags);
918 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
919 		struct dma_chan *chan, struct dma_interleaved_template *xt,
920 		unsigned long flags);
921 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
922 		struct dma_chan *chan, dma_addr_t dst, u64 data,
923 		unsigned long flags);
924 
925 	void (*device_caps)(struct dma_chan *chan,
926 			    struct dma_slave_caps *caps);
927 	int (*device_config)(struct dma_chan *chan,
928 			     struct dma_slave_config *config);
929 	int (*device_pause)(struct dma_chan *chan);
930 	int (*device_resume)(struct dma_chan *chan);
931 	int (*device_terminate_all)(struct dma_chan *chan);
932 	void (*device_synchronize)(struct dma_chan *chan);
933 
934 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
935 					    dma_cookie_t cookie,
936 					    struct dma_tx_state *txstate);
937 	void (*device_issue_pending)(struct dma_chan *chan);
938 	void (*device_release)(struct dma_device *dev);
939 	/* debugfs support */
940 #ifdef CONFIG_DEBUG_FS
941 	void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
942 	struct dentry *dbg_dev_root;
943 #endif
944 };
945 
946 static inline int dmaengine_slave_config(struct dma_chan *chan,
947 					  struct dma_slave_config *config)
948 {
949 	if (chan->device->device_config)
950 		return chan->device->device_config(chan, config);
951 
952 	return -ENOSYS;
953 }
954 
955 static inline bool is_slave_direction(enum dma_transfer_direction direction)
956 {
957 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
958 }
959 
960 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
961 	struct dma_chan *chan, dma_addr_t buf, size_t len,
962 	enum dma_transfer_direction dir, unsigned long flags)
963 {
964 	struct scatterlist sg;
965 	sg_init_table(&sg, 1);
966 	sg_dma_address(&sg) = buf;
967 	sg_dma_len(&sg) = len;
968 
969 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
970 		return NULL;
971 
972 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
973 						  dir, flags, NULL);
974 }
975 
976 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
977 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
978 	enum dma_transfer_direction dir, unsigned long flags)
979 {
980 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
981 		return NULL;
982 
983 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
984 						  dir, flags, NULL);
985 }
986 
987 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
988 struct rio_dma_ext;
989 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
990 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
991 	enum dma_transfer_direction dir, unsigned long flags,
992 	struct rio_dma_ext *rio_ext)
993 {
994 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
995 		return NULL;
996 
997 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
998 						  dir, flags, rio_ext);
999 }
1000 #endif
1001 
1002 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1003 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1004 		size_t period_len, enum dma_transfer_direction dir,
1005 		unsigned long flags)
1006 {
1007 	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1008 		return NULL;
1009 
1010 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1011 						period_len, dir, flags);
1012 }
1013 
1014 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1015 		struct dma_chan *chan, struct dma_interleaved_template *xt,
1016 		unsigned long flags)
1017 {
1018 	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1019 		return NULL;
1020 	if (flags & DMA_PREP_REPEAT &&
1021 	    !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1022 		return NULL;
1023 
1024 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1025 }
1026 
1027 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1028 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1029 		unsigned long flags)
1030 {
1031 	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1032 		return NULL;
1033 
1034 	return chan->device->device_prep_dma_memset(chan, dest, value,
1035 						    len, flags);
1036 }
1037 
1038 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1039 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1040 		size_t len, unsigned long flags)
1041 {
1042 	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1043 		return NULL;
1044 
1045 	return chan->device->device_prep_dma_memcpy(chan, dest, src,
1046 						    len, flags);
1047 }
1048 
1049 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1050 		enum dma_desc_metadata_mode mode)
1051 {
1052 	if (!chan)
1053 		return false;
1054 
1055 	return !!(chan->device->desc_metadata_modes & mode);
1056 }
1057 
1058 #ifdef CONFIG_DMA_ENGINE
1059 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1060 				   void *data, size_t len);
1061 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1062 				      size_t *payload_len, size_t *max_len);
1063 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1064 				    size_t payload_len);
1065 #else /* CONFIG_DMA_ENGINE */
1066 static inline int dmaengine_desc_attach_metadata(
1067 		struct dma_async_tx_descriptor *desc, void *data, size_t len)
1068 {
1069 	return -EINVAL;
1070 }
1071 static inline void *dmaengine_desc_get_metadata_ptr(
1072 		struct dma_async_tx_descriptor *desc, size_t *payload_len,
1073 		size_t *max_len)
1074 {
1075 	return NULL;
1076 }
1077 static inline int dmaengine_desc_set_metadata_len(
1078 		struct dma_async_tx_descriptor *desc, size_t payload_len)
1079 {
1080 	return -EINVAL;
1081 }
1082 #endif /* CONFIG_DMA_ENGINE */
1083 
1084 /**
1085  * dmaengine_terminate_all() - Terminate all active DMA transfers
1086  * @chan: The channel for which to terminate the transfers
1087  *
1088  * This function is DEPRECATED use either dmaengine_terminate_sync() or
1089  * dmaengine_terminate_async() instead.
1090  */
1091 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1092 {
1093 	if (chan->device->device_terminate_all)
1094 		return chan->device->device_terminate_all(chan);
1095 
1096 	return -ENOSYS;
1097 }
1098 
1099 /**
1100  * dmaengine_terminate_async() - Terminate all active DMA transfers
1101  * @chan: The channel for which to terminate the transfers
1102  *
1103  * Calling this function will terminate all active and pending descriptors
1104  * that have previously been submitted to the channel. It is not guaranteed
1105  * though that the transfer for the active descriptor has stopped when the
1106  * function returns. Furthermore it is possible the complete callback of a
1107  * submitted transfer is still running when this function returns.
1108  *
1109  * dmaengine_synchronize() needs to be called before it is safe to free
1110  * any memory that is accessed by previously submitted descriptors or before
1111  * freeing any resources accessed from within the completion callback of any
1112  * previously submitted descriptors.
1113  *
1114  * This function can be called from atomic context as well as from within a
1115  * complete callback of a descriptor submitted on the same channel.
1116  *
1117  * If none of the two conditions above apply consider using
1118  * dmaengine_terminate_sync() instead.
1119  */
1120 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1121 {
1122 	if (chan->device->device_terminate_all)
1123 		return chan->device->device_terminate_all(chan);
1124 
1125 	return -EINVAL;
1126 }
1127 
1128 /**
1129  * dmaengine_synchronize() - Synchronize DMA channel termination
1130  * @chan: The channel to synchronize
1131  *
1132  * Synchronizes to the DMA channel termination to the current context. When this
1133  * function returns it is guaranteed that all transfers for previously issued
1134  * descriptors have stopped and it is safe to free the memory associated
1135  * with them. Furthermore it is guaranteed that all complete callback functions
1136  * for a previously submitted descriptor have finished running and it is safe to
1137  * free resources accessed from within the complete callbacks.
1138  *
1139  * The behavior of this function is undefined if dma_async_issue_pending() has
1140  * been called between dmaengine_terminate_async() and this function.
1141  *
1142  * This function must only be called from non-atomic context and must not be
1143  * called from within a complete callback of a descriptor submitted on the same
1144  * channel.
1145  */
1146 static inline void dmaengine_synchronize(struct dma_chan *chan)
1147 {
1148 	might_sleep();
1149 
1150 	if (chan->device->device_synchronize)
1151 		chan->device->device_synchronize(chan);
1152 }
1153 
1154 /**
1155  * dmaengine_terminate_sync() - Terminate all active DMA transfers
1156  * @chan: The channel for which to terminate the transfers
1157  *
1158  * Calling this function will terminate all active and pending transfers
1159  * that have previously been submitted to the channel. It is similar to
1160  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1161  * stopped and that all complete callbacks have finished running when the
1162  * function returns.
1163  *
1164  * This function must only be called from non-atomic context and must not be
1165  * called from within a complete callback of a descriptor submitted on the same
1166  * channel.
1167  */
1168 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1169 {
1170 	int ret;
1171 
1172 	ret = dmaengine_terminate_async(chan);
1173 	if (ret)
1174 		return ret;
1175 
1176 	dmaengine_synchronize(chan);
1177 
1178 	return 0;
1179 }
1180 
1181 static inline int dmaengine_pause(struct dma_chan *chan)
1182 {
1183 	if (chan->device->device_pause)
1184 		return chan->device->device_pause(chan);
1185 
1186 	return -ENOSYS;
1187 }
1188 
1189 static inline int dmaengine_resume(struct dma_chan *chan)
1190 {
1191 	if (chan->device->device_resume)
1192 		return chan->device->device_resume(chan);
1193 
1194 	return -ENOSYS;
1195 }
1196 
1197 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1198 	dma_cookie_t cookie, struct dma_tx_state *state)
1199 {
1200 	return chan->device->device_tx_status(chan, cookie, state);
1201 }
1202 
1203 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1204 {
1205 	return desc->tx_submit(desc);
1206 }
1207 
1208 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1209 					 size_t off1, size_t off2, size_t len)
1210 {
1211 	return !(((1 << align) - 1) & (off1 | off2 | len));
1212 }
1213 
1214 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1215 				       size_t off2, size_t len)
1216 {
1217 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1218 }
1219 
1220 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1221 				      size_t off2, size_t len)
1222 {
1223 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1224 }
1225 
1226 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1227 				     size_t off2, size_t len)
1228 {
1229 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1230 }
1231 
1232 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1233 				       size_t off2, size_t len)
1234 {
1235 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1236 }
1237 
1238 static inline void
1239 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1240 {
1241 	dma->max_pq = maxpq;
1242 	if (has_pq_continue)
1243 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1244 }
1245 
1246 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1247 {
1248 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1249 }
1250 
1251 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1252 {
1253 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1254 
1255 	return (flags & mask) == mask;
1256 }
1257 
1258 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1259 {
1260 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1261 }
1262 
1263 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1264 {
1265 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1266 }
1267 
1268 /* dma_maxpq - reduce maxpq in the face of continued operations
1269  * @dma - dma device with PQ capability
1270  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1271  *
1272  * When an engine does not support native continuation we need 3 extra
1273  * source slots to reuse P and Q with the following coefficients:
1274  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1275  * 2/ {01} * Q : use Q to continue Q' calculation
1276  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1277  *
1278  * In the case where P is disabled we only need 1 extra source:
1279  * 1/ {01} * Q : use Q to continue Q' calculation
1280  */
1281 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1282 {
1283 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1284 		return dma_dev_to_maxpq(dma);
1285 	if (dmaf_p_disabled_continue(flags))
1286 		return dma_dev_to_maxpq(dma) - 1;
1287 	if (dmaf_continue(flags))
1288 		return dma_dev_to_maxpq(dma) - 3;
1289 	BUG();
1290 }
1291 
1292 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1293 				      size_t dir_icg)
1294 {
1295 	if (inc) {
1296 		if (dir_icg)
1297 			return dir_icg;
1298 		if (sgl)
1299 			return icg;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1306 					   struct data_chunk *chunk)
1307 {
1308 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1309 				 chunk->icg, chunk->dst_icg);
1310 }
1311 
1312 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1313 					   struct data_chunk *chunk)
1314 {
1315 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1316 				 chunk->icg, chunk->src_icg);
1317 }
1318 
1319 /* --- public DMA engine API --- */
1320 
1321 #ifdef CONFIG_DMA_ENGINE
1322 void dmaengine_get(void);
1323 void dmaengine_put(void);
1324 #else
1325 static inline void dmaengine_get(void)
1326 {
1327 }
1328 static inline void dmaengine_put(void)
1329 {
1330 }
1331 #endif
1332 
1333 #ifdef CONFIG_ASYNC_TX_DMA
1334 #define async_dmaengine_get()	dmaengine_get()
1335 #define async_dmaengine_put()	dmaengine_put()
1336 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1337 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1338 #else
1339 #define async_dma_find_channel(type) dma_find_channel(type)
1340 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1341 #else
1342 static inline void async_dmaengine_get(void)
1343 {
1344 }
1345 static inline void async_dmaengine_put(void)
1346 {
1347 }
1348 static inline struct dma_chan *
1349 async_dma_find_channel(enum dma_transaction_type type)
1350 {
1351 	return NULL;
1352 }
1353 #endif /* CONFIG_ASYNC_TX_DMA */
1354 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1355 				  struct dma_chan *chan);
1356 
1357 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1358 {
1359 	tx->flags |= DMA_CTRL_ACK;
1360 }
1361 
1362 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1363 {
1364 	tx->flags &= ~DMA_CTRL_ACK;
1365 }
1366 
1367 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1368 {
1369 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1370 }
1371 
1372 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1373 static inline void
1374 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1375 {
1376 	set_bit(tx_type, dstp->bits);
1377 }
1378 
1379 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1380 static inline void
1381 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1382 {
1383 	clear_bit(tx_type, dstp->bits);
1384 }
1385 
1386 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1387 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1388 {
1389 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1390 }
1391 
1392 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1393 static inline int
1394 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1395 {
1396 	return test_bit(tx_type, srcp->bits);
1397 }
1398 
1399 #define for_each_dma_cap_mask(cap, mask) \
1400 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1401 
1402 /**
1403  * dma_async_issue_pending - flush pending transactions to HW
1404  * @chan: target DMA channel
1405  *
1406  * This allows drivers to push copies to HW in batches,
1407  * reducing MMIO writes where possible.
1408  */
1409 static inline void dma_async_issue_pending(struct dma_chan *chan)
1410 {
1411 	chan->device->device_issue_pending(chan);
1412 }
1413 
1414 /**
1415  * dma_async_is_tx_complete - poll for transaction completion
1416  * @chan: DMA channel
1417  * @cookie: transaction identifier to check status of
1418  * @last: returns last completed cookie, can be NULL
1419  * @used: returns last issued cookie, can be NULL
1420  *
1421  * If @last and @used are passed in, upon return they reflect the driver
1422  * internal state and can be used with dma_async_is_complete() to check
1423  * the status of multiple cookies without re-checking hardware state.
1424  */
1425 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1426 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1427 {
1428 	struct dma_tx_state state;
1429 	enum dma_status status;
1430 
1431 	status = chan->device->device_tx_status(chan, cookie, &state);
1432 	if (last)
1433 		*last = state.last;
1434 	if (used)
1435 		*used = state.used;
1436 	return status;
1437 }
1438 
1439 /**
1440  * dma_async_is_complete - test a cookie against chan state
1441  * @cookie: transaction identifier to test status of
1442  * @last_complete: last know completed transaction
1443  * @last_used: last cookie value handed out
1444  *
1445  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1446  * the test logic is separated for lightweight testing of multiple cookies
1447  */
1448 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1449 			dma_cookie_t last_complete, dma_cookie_t last_used)
1450 {
1451 	if (last_complete <= last_used) {
1452 		if ((cookie <= last_complete) || (cookie > last_used))
1453 			return DMA_COMPLETE;
1454 	} else {
1455 		if ((cookie <= last_complete) && (cookie > last_used))
1456 			return DMA_COMPLETE;
1457 	}
1458 	return DMA_IN_PROGRESS;
1459 }
1460 
1461 static inline void
1462 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1463 {
1464 	if (!st)
1465 		return;
1466 
1467 	st->last = last;
1468 	st->used = used;
1469 	st->residue = residue;
1470 }
1471 
1472 #ifdef CONFIG_DMA_ENGINE
1473 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1474 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1475 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1476 void dma_issue_pending_all(void);
1477 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1478 				       dma_filter_fn fn, void *fn_param,
1479 				       struct device_node *np);
1480 
1481 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1482 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1483 
1484 void dma_release_channel(struct dma_chan *chan);
1485 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1486 #else
1487 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1488 {
1489 	return NULL;
1490 }
1491 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1492 {
1493 	return DMA_COMPLETE;
1494 }
1495 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1496 {
1497 	return DMA_COMPLETE;
1498 }
1499 static inline void dma_issue_pending_all(void)
1500 {
1501 }
1502 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1503 						     dma_filter_fn fn,
1504 						     void *fn_param,
1505 						     struct device_node *np)
1506 {
1507 	return NULL;
1508 }
1509 static inline struct dma_chan *dma_request_chan(struct device *dev,
1510 						const char *name)
1511 {
1512 	return ERR_PTR(-ENODEV);
1513 }
1514 static inline struct dma_chan *dma_request_chan_by_mask(
1515 						const dma_cap_mask_t *mask)
1516 {
1517 	return ERR_PTR(-ENODEV);
1518 }
1519 static inline void dma_release_channel(struct dma_chan *chan)
1520 {
1521 }
1522 static inline int dma_get_slave_caps(struct dma_chan *chan,
1523 				     struct dma_slave_caps *caps)
1524 {
1525 	return -ENXIO;
1526 }
1527 #endif
1528 
1529 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1530 {
1531 	struct dma_slave_caps caps;
1532 	int ret;
1533 
1534 	ret = dma_get_slave_caps(tx->chan, &caps);
1535 	if (ret)
1536 		return ret;
1537 
1538 	if (!caps.descriptor_reuse)
1539 		return -EPERM;
1540 
1541 	tx->flags |= DMA_CTRL_REUSE;
1542 	return 0;
1543 }
1544 
1545 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1546 {
1547 	tx->flags &= ~DMA_CTRL_REUSE;
1548 }
1549 
1550 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1551 {
1552 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1553 }
1554 
1555 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1556 {
1557 	/* this is supported for reusable desc, so check that */
1558 	if (!dmaengine_desc_test_reuse(desc))
1559 		return -EPERM;
1560 
1561 	return desc->desc_free(desc);
1562 }
1563 
1564 /* --- DMA device --- */
1565 
1566 int dma_async_device_register(struct dma_device *device);
1567 int dmaenginem_async_device_register(struct dma_device *device);
1568 void dma_async_device_unregister(struct dma_device *device);
1569 int dma_async_device_channel_register(struct dma_device *device,
1570 				      struct dma_chan *chan);
1571 void dma_async_device_channel_unregister(struct dma_device *device,
1572 					 struct dma_chan *chan);
1573 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1574 #define dma_request_channel(mask, x, y) \
1575 	__dma_request_channel(&(mask), x, y, NULL)
1576 
1577 /* Deprecated, please use dma_request_chan() directly */
1578 static inline struct dma_chan * __deprecated
1579 dma_request_slave_channel(struct device *dev, const char *name)
1580 {
1581 	struct dma_chan *ch = dma_request_chan(dev, name);
1582 
1583 	return IS_ERR(ch) ? NULL : ch;
1584 }
1585 
1586 static inline struct dma_chan
1587 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1588 				  dma_filter_fn fn, void *fn_param,
1589 				  struct device *dev, const char *name)
1590 {
1591 	struct dma_chan *chan;
1592 
1593 	chan = dma_request_slave_channel(dev, name);
1594 	if (chan)
1595 		return chan;
1596 
1597 	if (!fn || !fn_param)
1598 		return NULL;
1599 
1600 	return __dma_request_channel(&mask, fn, fn_param, NULL);
1601 }
1602 
1603 static inline char *
1604 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1605 {
1606 	switch (dir) {
1607 	case DMA_DEV_TO_MEM:
1608 		return "DEV_TO_MEM";
1609 	case DMA_MEM_TO_DEV:
1610 		return "MEM_TO_DEV";
1611 	case DMA_MEM_TO_MEM:
1612 		return "MEM_TO_MEM";
1613 	case DMA_DEV_TO_DEV:
1614 		return "DEV_TO_DEV";
1615 	default:
1616 		return "invalid";
1617 	}
1618 }
1619 #endif /* DMAENGINE_H */
1620