xref: /linux-6.15/include/linux/dmaengine.h (revision e756bc56)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
23 
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/bug.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <linux/types.h>
30 #include <asm/page.h>
31 
32 /**
33  * typedef dma_cookie_t - an opaque DMA cookie
34  *
35  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
36  */
37 typedef s32 dma_cookie_t;
38 #define DMA_MIN_COOKIE	1
39 #define DMA_MAX_COOKIE	INT_MAX
40 
41 static inline int dma_submit_error(dma_cookie_t cookie)
42 {
43 	return cookie < 0 ? cookie : 0;
44 }
45 
46 /**
47  * enum dma_status - DMA transaction status
48  * @DMA_COMPLETE: transaction completed
49  * @DMA_IN_PROGRESS: transaction not yet processed
50  * @DMA_PAUSED: transaction is paused
51  * @DMA_ERROR: transaction failed
52  */
53 enum dma_status {
54 	DMA_COMPLETE,
55 	DMA_IN_PROGRESS,
56 	DMA_PAUSED,
57 	DMA_ERROR,
58 };
59 
60 /**
61  * enum dma_transaction_type - DMA transaction types/indexes
62  *
63  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
64  * automatically set as dma devices are registered.
65  */
66 enum dma_transaction_type {
67 	DMA_MEMCPY,
68 	DMA_XOR,
69 	DMA_PQ,
70 	DMA_XOR_VAL,
71 	DMA_PQ_VAL,
72 	DMA_INTERRUPT,
73 	DMA_SG,
74 	DMA_PRIVATE,
75 	DMA_ASYNC_TX,
76 	DMA_SLAVE,
77 	DMA_CYCLIC,
78 	DMA_INTERLEAVE,
79 /* last transaction type for creation of the capabilities mask */
80 	DMA_TX_TYPE_END,
81 };
82 
83 /**
84  * enum dma_transfer_direction - dma transfer mode and direction indicator
85  * @DMA_MEM_TO_MEM: Async/Memcpy mode
86  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
87  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
88  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
89  */
90 enum dma_transfer_direction {
91 	DMA_MEM_TO_MEM,
92 	DMA_MEM_TO_DEV,
93 	DMA_DEV_TO_MEM,
94 	DMA_DEV_TO_DEV,
95 	DMA_TRANS_NONE,
96 };
97 
98 /**
99  * Interleaved Transfer Request
100  * ----------------------------
101  * A chunk is collection of contiguous bytes to be transfered.
102  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
103  * ICGs may or maynot change between chunks.
104  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
105  *  that when repeated an integral number of times, specifies the transfer.
106  * A transfer template is specification of a Frame, the number of times
107  *  it is to be repeated and other per-transfer attributes.
108  *
109  * Practically, a client driver would have ready a template for each
110  *  type of transfer it is going to need during its lifetime and
111  *  set only 'src_start' and 'dst_start' before submitting the requests.
112  *
113  *
114  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
115  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
116  *
117  *    ==  Chunk size
118  *    ... ICG
119  */
120 
121 /**
122  * struct data_chunk - Element of scatter-gather list that makes a frame.
123  * @size: Number of bytes to read from source.
124  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
125  * @icg: Number of bytes to jump after last src/dst address of this
126  *	 chunk and before first src/dst address for next chunk.
127  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
128  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
129  */
130 struct data_chunk {
131 	size_t size;
132 	size_t icg;
133 };
134 
135 /**
136  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
137  *	 and attributes.
138  * @src_start: Bus address of source for the first chunk.
139  * @dst_start: Bus address of destination for the first chunk.
140  * @dir: Specifies the type of Source and Destination.
141  * @src_inc: If the source address increments after reading from it.
142  * @dst_inc: If the destination address increments after writing to it.
143  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
144  *		Otherwise, source is read contiguously (icg ignored).
145  *		Ignored if src_inc is false.
146  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
147  *		Otherwise, destination is filled contiguously (icg ignored).
148  *		Ignored if dst_inc is false.
149  * @numf: Number of frames in this template.
150  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
151  * @sgl: Array of {chunk,icg} pairs that make up a frame.
152  */
153 struct dma_interleaved_template {
154 	dma_addr_t src_start;
155 	dma_addr_t dst_start;
156 	enum dma_transfer_direction dir;
157 	bool src_inc;
158 	bool dst_inc;
159 	bool src_sgl;
160 	bool dst_sgl;
161 	size_t numf;
162 	size_t frame_size;
163 	struct data_chunk sgl[0];
164 };
165 
166 /**
167  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
168  *  control completion, and communicate status.
169  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
170  *  this transaction
171  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
172  *  acknowledges receipt, i.e. has has a chance to establish any dependency
173  *  chains
174  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
175  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
176  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
177  *  sources that were the result of a previous operation, in the case of a PQ
178  *  operation it continues the calculation with new sources
179  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
180  *  on the result of this operation
181  */
182 enum dma_ctrl_flags {
183 	DMA_PREP_INTERRUPT = (1 << 0),
184 	DMA_CTRL_ACK = (1 << 1),
185 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
186 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
187 	DMA_PREP_CONTINUE = (1 << 4),
188 	DMA_PREP_FENCE = (1 << 5),
189 };
190 
191 /**
192  * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
193  * on a running channel.
194  * @DMA_TERMINATE_ALL: terminate all ongoing transfers
195  * @DMA_PAUSE: pause ongoing transfers
196  * @DMA_RESUME: resume paused transfer
197  * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
198  * that need to runtime reconfigure the slave channels (as opposed to passing
199  * configuration data in statically from the platform). An additional
200  * argument of struct dma_slave_config must be passed in with this
201  * command.
202  * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
203  * into external start mode.
204  */
205 enum dma_ctrl_cmd {
206 	DMA_TERMINATE_ALL,
207 	DMA_PAUSE,
208 	DMA_RESUME,
209 	DMA_SLAVE_CONFIG,
210 	FSLDMA_EXTERNAL_START,
211 };
212 
213 /**
214  * enum sum_check_bits - bit position of pq_check_flags
215  */
216 enum sum_check_bits {
217 	SUM_CHECK_P = 0,
218 	SUM_CHECK_Q = 1,
219 };
220 
221 /**
222  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
223  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
224  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
225  */
226 enum sum_check_flags {
227 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
228 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
229 };
230 
231 
232 /**
233  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
234  * See linux/cpumask.h
235  */
236 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
237 
238 /**
239  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
240  * @memcpy_count: transaction counter
241  * @bytes_transferred: byte counter
242  */
243 
244 struct dma_chan_percpu {
245 	/* stats */
246 	unsigned long memcpy_count;
247 	unsigned long bytes_transferred;
248 };
249 
250 /**
251  * struct dma_chan - devices supply DMA channels, clients use them
252  * @device: ptr to the dma device who supplies this channel, always !%NULL
253  * @cookie: last cookie value returned to client
254  * @completed_cookie: last completed cookie for this channel
255  * @chan_id: channel ID for sysfs
256  * @dev: class device for sysfs
257  * @device_node: used to add this to the device chan list
258  * @local: per-cpu pointer to a struct dma_chan_percpu
259  * @client-count: how many clients are using this channel
260  * @table_count: number of appearances in the mem-to-mem allocation table
261  * @private: private data for certain client-channel associations
262  */
263 struct dma_chan {
264 	struct dma_device *device;
265 	dma_cookie_t cookie;
266 	dma_cookie_t completed_cookie;
267 
268 	/* sysfs */
269 	int chan_id;
270 	struct dma_chan_dev *dev;
271 
272 	struct list_head device_node;
273 	struct dma_chan_percpu __percpu *local;
274 	int client_count;
275 	int table_count;
276 	void *private;
277 };
278 
279 /**
280  * struct dma_chan_dev - relate sysfs device node to backing channel device
281  * @chan - driver channel device
282  * @device - sysfs device
283  * @dev_id - parent dma_device dev_id
284  * @idr_ref - reference count to gate release of dma_device dev_id
285  */
286 struct dma_chan_dev {
287 	struct dma_chan *chan;
288 	struct device device;
289 	int dev_id;
290 	atomic_t *idr_ref;
291 };
292 
293 /**
294  * enum dma_slave_buswidth - defines bus with of the DMA slave
295  * device, source or target buses
296  */
297 enum dma_slave_buswidth {
298 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
299 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
300 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
301 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
302 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
303 };
304 
305 /**
306  * struct dma_slave_config - dma slave channel runtime config
307  * @direction: whether the data shall go in or out on this slave
308  * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
309  * legal values, DMA_BIDIRECTIONAL is not acceptable since we
310  * need to differentiate source and target addresses.
311  * @src_addr: this is the physical address where DMA slave data
312  * should be read (RX), if the source is memory this argument is
313  * ignored.
314  * @dst_addr: this is the physical address where DMA slave data
315  * should be written (TX), if the source is memory this argument
316  * is ignored.
317  * @src_addr_width: this is the width in bytes of the source (RX)
318  * register where DMA data shall be read. If the source
319  * is memory this may be ignored depending on architecture.
320  * Legal values: 1, 2, 4, 8.
321  * @dst_addr_width: same as src_addr_width but for destination
322  * target (TX) mutatis mutandis.
323  * @src_maxburst: the maximum number of words (note: words, as in
324  * units of the src_addr_width member, not bytes) that can be sent
325  * in one burst to the device. Typically something like half the
326  * FIFO depth on I/O peripherals so you don't overflow it. This
327  * may or may not be applicable on memory sources.
328  * @dst_maxburst: same as src_maxburst but for destination target
329  * mutatis mutandis.
330  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
331  * with 'true' if peripheral should be flow controller. Direction will be
332  * selected at Runtime.
333  * @slave_id: Slave requester id. Only valid for slave channels. The dma
334  * slave peripheral will have unique id as dma requester which need to be
335  * pass as slave config.
336  *
337  * This struct is passed in as configuration data to a DMA engine
338  * in order to set up a certain channel for DMA transport at runtime.
339  * The DMA device/engine has to provide support for an additional
340  * command in the channel config interface, DMA_SLAVE_CONFIG
341  * and this struct will then be passed in as an argument to the
342  * DMA engine device_control() function.
343  *
344  * The rationale for adding configuration information to this struct
345  * is as follows: if it is likely that most DMA slave controllers in
346  * the world will support the configuration option, then make it
347  * generic. If not: if it is fixed so that it be sent in static from
348  * the platform data, then prefer to do that. Else, if it is neither
349  * fixed at runtime, nor generic enough (such as bus mastership on
350  * some CPU family and whatnot) then create a custom slave config
351  * struct and pass that, then make this config a member of that
352  * struct, if applicable.
353  */
354 struct dma_slave_config {
355 	enum dma_transfer_direction direction;
356 	dma_addr_t src_addr;
357 	dma_addr_t dst_addr;
358 	enum dma_slave_buswidth src_addr_width;
359 	enum dma_slave_buswidth dst_addr_width;
360 	u32 src_maxburst;
361 	u32 dst_maxburst;
362 	bool device_fc;
363 	unsigned int slave_id;
364 };
365 
366 /* struct dma_slave_caps - expose capabilities of a slave channel only
367  *
368  * @src_addr_widths: bit mask of src addr widths the channel supports
369  * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
370  * @directions: bit mask of slave direction the channel supported
371  * 	since the enum dma_transfer_direction is not defined as bits for each
372  * 	type of direction, the dma controller should fill (1 << <TYPE>) and same
373  * 	should be checked by controller as well
374  * @cmd_pause: true, if pause and thereby resume is supported
375  * @cmd_terminate: true, if terminate cmd is supported
376  */
377 struct dma_slave_caps {
378 	u32 src_addr_widths;
379 	u32 dstn_addr_widths;
380 	u32 directions;
381 	bool cmd_pause;
382 	bool cmd_terminate;
383 };
384 
385 static inline const char *dma_chan_name(struct dma_chan *chan)
386 {
387 	return dev_name(&chan->dev->device);
388 }
389 
390 void dma_chan_cleanup(struct kref *kref);
391 
392 /**
393  * typedef dma_filter_fn - callback filter for dma_request_channel
394  * @chan: channel to be reviewed
395  * @filter_param: opaque parameter passed through dma_request_channel
396  *
397  * When this optional parameter is specified in a call to dma_request_channel a
398  * suitable channel is passed to this routine for further dispositioning before
399  * being returned.  Where 'suitable' indicates a non-busy channel that
400  * satisfies the given capability mask.  It returns 'true' to indicate that the
401  * channel is suitable.
402  */
403 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
404 
405 typedef void (*dma_async_tx_callback)(void *dma_async_param);
406 
407 struct dmaengine_unmap_data {
408 	u8 to_cnt;
409 	u8 from_cnt;
410 	u8 bidi_cnt;
411 	struct device *dev;
412 	struct kref kref;
413 	size_t len;
414 	dma_addr_t addr[0];
415 };
416 
417 /**
418  * struct dma_async_tx_descriptor - async transaction descriptor
419  * ---dma generic offload fields---
420  * @cookie: tracking cookie for this transaction, set to -EBUSY if
421  *	this tx is sitting on a dependency list
422  * @flags: flags to augment operation preparation, control completion, and
423  * 	communicate status
424  * @phys: physical address of the descriptor
425  * @chan: target channel for this operation
426  * @tx_submit: set the prepared descriptor(s) to be executed by the engine
427  * @callback: routine to call after this operation is complete
428  * @callback_param: general parameter to pass to the callback routine
429  * ---async_tx api specific fields---
430  * @next: at completion submit this descriptor
431  * @parent: pointer to the next level up in the dependency chain
432  * @lock: protect the parent and next pointers
433  */
434 struct dma_async_tx_descriptor {
435 	dma_cookie_t cookie;
436 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
437 	dma_addr_t phys;
438 	struct dma_chan *chan;
439 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
440 	dma_async_tx_callback callback;
441 	void *callback_param;
442 	struct dmaengine_unmap_data *unmap;
443 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
444 	struct dma_async_tx_descriptor *next;
445 	struct dma_async_tx_descriptor *parent;
446 	spinlock_t lock;
447 #endif
448 };
449 
450 #ifdef CONFIG_DMA_ENGINE
451 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
452 				 struct dmaengine_unmap_data *unmap)
453 {
454 	kref_get(&unmap->kref);
455 	tx->unmap = unmap;
456 }
457 
458 struct dmaengine_unmap_data *
459 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
460 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
461 #else
462 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
463 				 struct dmaengine_unmap_data *unmap)
464 {
465 }
466 static inline struct dmaengine_unmap_data *
467 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
468 {
469 	return NULL;
470 }
471 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
472 {
473 }
474 #endif
475 
476 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
477 {
478 	if (tx->unmap) {
479 		dmaengine_unmap_put(tx->unmap);
480 		tx->unmap = NULL;
481 	}
482 }
483 
484 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
485 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
486 {
487 }
488 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
489 {
490 }
491 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
492 {
493 	BUG();
494 }
495 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
496 {
497 }
498 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
499 {
500 }
501 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
502 {
503 	return NULL;
504 }
505 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
506 {
507 	return NULL;
508 }
509 
510 #else
511 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
512 {
513 	spin_lock_bh(&txd->lock);
514 }
515 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
516 {
517 	spin_unlock_bh(&txd->lock);
518 }
519 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
520 {
521 	txd->next = next;
522 	next->parent = txd;
523 }
524 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
525 {
526 	txd->parent = NULL;
527 }
528 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
529 {
530 	txd->next = NULL;
531 }
532 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
533 {
534 	return txd->parent;
535 }
536 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
537 {
538 	return txd->next;
539 }
540 #endif
541 
542 /**
543  * struct dma_tx_state - filled in to report the status of
544  * a transfer.
545  * @last: last completed DMA cookie
546  * @used: last issued DMA cookie (i.e. the one in progress)
547  * @residue: the remaining number of bytes left to transmit
548  *	on the selected transfer for states DMA_IN_PROGRESS and
549  *	DMA_PAUSED if this is implemented in the driver, else 0
550  */
551 struct dma_tx_state {
552 	dma_cookie_t last;
553 	dma_cookie_t used;
554 	u32 residue;
555 };
556 
557 /**
558  * struct dma_device - info on the entity supplying DMA services
559  * @chancnt: how many DMA channels are supported
560  * @privatecnt: how many DMA channels are requested by dma_request_channel
561  * @channels: the list of struct dma_chan
562  * @global_node: list_head for global dma_device_list
563  * @cap_mask: one or more dma_capability flags
564  * @max_xor: maximum number of xor sources, 0 if no capability
565  * @max_pq: maximum number of PQ sources and PQ-continue capability
566  * @copy_align: alignment shift for memcpy operations
567  * @xor_align: alignment shift for xor operations
568  * @pq_align: alignment shift for pq operations
569  * @fill_align: alignment shift for memset operations
570  * @dev_id: unique device ID
571  * @dev: struct device reference for dma mapping api
572  * @device_alloc_chan_resources: allocate resources and return the
573  *	number of allocated descriptors
574  * @device_free_chan_resources: release DMA channel's resources
575  * @device_prep_dma_memcpy: prepares a memcpy operation
576  * @device_prep_dma_xor: prepares a xor operation
577  * @device_prep_dma_xor_val: prepares a xor validation operation
578  * @device_prep_dma_pq: prepares a pq operation
579  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
580  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
581  * @device_prep_slave_sg: prepares a slave dma operation
582  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
583  *	The function takes a buffer of size buf_len. The callback function will
584  *	be called after period_len bytes have been transferred.
585  * @device_prep_interleaved_dma: Transfer expression in a generic way.
586  * @device_control: manipulate all pending operations on a channel, returns
587  *	zero or error code
588  * @device_tx_status: poll for transaction completion, the optional
589  *	txstate parameter can be supplied with a pointer to get a
590  *	struct with auxiliary transfer status information, otherwise the call
591  *	will just return a simple status code
592  * @device_issue_pending: push pending transactions to hardware
593  * @device_slave_caps: return the slave channel capabilities
594  */
595 struct dma_device {
596 
597 	unsigned int chancnt;
598 	unsigned int privatecnt;
599 	struct list_head channels;
600 	struct list_head global_node;
601 	dma_cap_mask_t  cap_mask;
602 	unsigned short max_xor;
603 	unsigned short max_pq;
604 	u8 copy_align;
605 	u8 xor_align;
606 	u8 pq_align;
607 	u8 fill_align;
608 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
609 
610 	int dev_id;
611 	struct device *dev;
612 
613 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
614 	void (*device_free_chan_resources)(struct dma_chan *chan);
615 
616 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
617 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
618 		size_t len, unsigned long flags);
619 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
620 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
621 		unsigned int src_cnt, size_t len, unsigned long flags);
622 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
623 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
624 		size_t len, enum sum_check_flags *result, unsigned long flags);
625 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
626 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
627 		unsigned int src_cnt, const unsigned char *scf,
628 		size_t len, unsigned long flags);
629 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
630 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
631 		unsigned int src_cnt, const unsigned char *scf, size_t len,
632 		enum sum_check_flags *pqres, unsigned long flags);
633 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
634 		struct dma_chan *chan, unsigned long flags);
635 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
636 		struct dma_chan *chan,
637 		struct scatterlist *dst_sg, unsigned int dst_nents,
638 		struct scatterlist *src_sg, unsigned int src_nents,
639 		unsigned long flags);
640 
641 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
642 		struct dma_chan *chan, struct scatterlist *sgl,
643 		unsigned int sg_len, enum dma_transfer_direction direction,
644 		unsigned long flags, void *context);
645 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
646 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
647 		size_t period_len, enum dma_transfer_direction direction,
648 		unsigned long flags, void *context);
649 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
650 		struct dma_chan *chan, struct dma_interleaved_template *xt,
651 		unsigned long flags);
652 	int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
653 		unsigned long arg);
654 
655 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
656 					    dma_cookie_t cookie,
657 					    struct dma_tx_state *txstate);
658 	void (*device_issue_pending)(struct dma_chan *chan);
659 	int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
660 };
661 
662 static inline int dmaengine_device_control(struct dma_chan *chan,
663 					   enum dma_ctrl_cmd cmd,
664 					   unsigned long arg)
665 {
666 	if (chan->device->device_control)
667 		return chan->device->device_control(chan, cmd, arg);
668 
669 	return -ENOSYS;
670 }
671 
672 static inline int dmaengine_slave_config(struct dma_chan *chan,
673 					  struct dma_slave_config *config)
674 {
675 	return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
676 			(unsigned long)config);
677 }
678 
679 static inline bool is_slave_direction(enum dma_transfer_direction direction)
680 {
681 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
682 }
683 
684 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
685 	struct dma_chan *chan, dma_addr_t buf, size_t len,
686 	enum dma_transfer_direction dir, unsigned long flags)
687 {
688 	struct scatterlist sg;
689 	sg_init_table(&sg, 1);
690 	sg_dma_address(&sg) = buf;
691 	sg_dma_len(&sg) = len;
692 
693 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
694 						  dir, flags, NULL);
695 }
696 
697 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
698 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
699 	enum dma_transfer_direction dir, unsigned long flags)
700 {
701 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
702 						  dir, flags, NULL);
703 }
704 
705 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
706 struct rio_dma_ext;
707 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
708 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
709 	enum dma_transfer_direction dir, unsigned long flags,
710 	struct rio_dma_ext *rio_ext)
711 {
712 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
713 						  dir, flags, rio_ext);
714 }
715 #endif
716 
717 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
718 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
719 		size_t period_len, enum dma_transfer_direction dir,
720 		unsigned long flags)
721 {
722 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
723 						period_len, dir, flags, NULL);
724 }
725 
726 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
727 		struct dma_chan *chan, struct dma_interleaved_template *xt,
728 		unsigned long flags)
729 {
730 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
731 }
732 
733 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
734 {
735 	if (!chan || !caps)
736 		return -EINVAL;
737 
738 	/* check if the channel supports slave transactions */
739 	if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
740 		return -ENXIO;
741 
742 	if (chan->device->device_slave_caps)
743 		return chan->device->device_slave_caps(chan, caps);
744 
745 	return -ENXIO;
746 }
747 
748 static inline int dmaengine_terminate_all(struct dma_chan *chan)
749 {
750 	return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
751 }
752 
753 static inline int dmaengine_pause(struct dma_chan *chan)
754 {
755 	return dmaengine_device_control(chan, DMA_PAUSE, 0);
756 }
757 
758 static inline int dmaengine_resume(struct dma_chan *chan)
759 {
760 	return dmaengine_device_control(chan, DMA_RESUME, 0);
761 }
762 
763 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
764 	dma_cookie_t cookie, struct dma_tx_state *state)
765 {
766 	return chan->device->device_tx_status(chan, cookie, state);
767 }
768 
769 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
770 {
771 	return desc->tx_submit(desc);
772 }
773 
774 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
775 {
776 	size_t mask;
777 
778 	if (!align)
779 		return true;
780 	mask = (1 << align) - 1;
781 	if (mask & (off1 | off2 | len))
782 		return false;
783 	return true;
784 }
785 
786 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
787 				       size_t off2, size_t len)
788 {
789 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
790 }
791 
792 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
793 				      size_t off2, size_t len)
794 {
795 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
796 }
797 
798 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
799 				     size_t off2, size_t len)
800 {
801 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
802 }
803 
804 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
805 				       size_t off2, size_t len)
806 {
807 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
808 }
809 
810 static inline void
811 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
812 {
813 	dma->max_pq = maxpq;
814 	if (has_pq_continue)
815 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
816 }
817 
818 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
819 {
820 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
821 }
822 
823 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
824 {
825 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
826 
827 	return (flags & mask) == mask;
828 }
829 
830 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
831 {
832 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
833 }
834 
835 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
836 {
837 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
838 }
839 
840 /* dma_maxpq - reduce maxpq in the face of continued operations
841  * @dma - dma device with PQ capability
842  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
843  *
844  * When an engine does not support native continuation we need 3 extra
845  * source slots to reuse P and Q with the following coefficients:
846  * 1/ {00} * P : remove P from Q', but use it as a source for P'
847  * 2/ {01} * Q : use Q to continue Q' calculation
848  * 3/ {00} * Q : subtract Q from P' to cancel (2)
849  *
850  * In the case where P is disabled we only need 1 extra source:
851  * 1/ {01} * Q : use Q to continue Q' calculation
852  */
853 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
854 {
855 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
856 		return dma_dev_to_maxpq(dma);
857 	else if (dmaf_p_disabled_continue(flags))
858 		return dma_dev_to_maxpq(dma) - 1;
859 	else if (dmaf_continue(flags))
860 		return dma_dev_to_maxpq(dma) - 3;
861 	BUG();
862 }
863 
864 /* --- public DMA engine API --- */
865 
866 #ifdef CONFIG_DMA_ENGINE
867 void dmaengine_get(void);
868 void dmaengine_put(void);
869 #else
870 static inline void dmaengine_get(void)
871 {
872 }
873 static inline void dmaengine_put(void)
874 {
875 }
876 #endif
877 
878 #ifdef CONFIG_NET_DMA
879 #define net_dmaengine_get()	dmaengine_get()
880 #define net_dmaengine_put()	dmaengine_put()
881 #else
882 static inline void net_dmaengine_get(void)
883 {
884 }
885 static inline void net_dmaengine_put(void)
886 {
887 }
888 #endif
889 
890 #ifdef CONFIG_ASYNC_TX_DMA
891 #define async_dmaengine_get()	dmaengine_get()
892 #define async_dmaengine_put()	dmaengine_put()
893 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
894 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
895 #else
896 #define async_dma_find_channel(type) dma_find_channel(type)
897 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
898 #else
899 static inline void async_dmaengine_get(void)
900 {
901 }
902 static inline void async_dmaengine_put(void)
903 {
904 }
905 static inline struct dma_chan *
906 async_dma_find_channel(enum dma_transaction_type type)
907 {
908 	return NULL;
909 }
910 #endif /* CONFIG_ASYNC_TX_DMA */
911 
912 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
913 	void *dest, void *src, size_t len);
914 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
915 	struct page *page, unsigned int offset, void *kdata, size_t len);
916 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
917 	struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
918 	unsigned int src_off, size_t len);
919 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
920 	struct dma_chan *chan);
921 
922 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
923 {
924 	tx->flags |= DMA_CTRL_ACK;
925 }
926 
927 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
928 {
929 	tx->flags &= ~DMA_CTRL_ACK;
930 }
931 
932 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
933 {
934 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
935 }
936 
937 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
938 static inline void
939 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
940 {
941 	set_bit(tx_type, dstp->bits);
942 }
943 
944 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
945 static inline void
946 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
947 {
948 	clear_bit(tx_type, dstp->bits);
949 }
950 
951 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
952 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
953 {
954 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
955 }
956 
957 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
958 static inline int
959 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
960 {
961 	return test_bit(tx_type, srcp->bits);
962 }
963 
964 #define for_each_dma_cap_mask(cap, mask) \
965 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
966 
967 /**
968  * dma_async_issue_pending - flush pending transactions to HW
969  * @chan: target DMA channel
970  *
971  * This allows drivers to push copies to HW in batches,
972  * reducing MMIO writes where possible.
973  */
974 static inline void dma_async_issue_pending(struct dma_chan *chan)
975 {
976 	chan->device->device_issue_pending(chan);
977 }
978 
979 /**
980  * dma_async_is_tx_complete - poll for transaction completion
981  * @chan: DMA channel
982  * @cookie: transaction identifier to check status of
983  * @last: returns last completed cookie, can be NULL
984  * @used: returns last issued cookie, can be NULL
985  *
986  * If @last and @used are passed in, upon return they reflect the driver
987  * internal state and can be used with dma_async_is_complete() to check
988  * the status of multiple cookies without re-checking hardware state.
989  */
990 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
991 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
992 {
993 	struct dma_tx_state state;
994 	enum dma_status status;
995 
996 	status = chan->device->device_tx_status(chan, cookie, &state);
997 	if (last)
998 		*last = state.last;
999 	if (used)
1000 		*used = state.used;
1001 	return status;
1002 }
1003 
1004 /**
1005  * dma_async_is_complete - test a cookie against chan state
1006  * @cookie: transaction identifier to test status of
1007  * @last_complete: last know completed transaction
1008  * @last_used: last cookie value handed out
1009  *
1010  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1011  * the test logic is separated for lightweight testing of multiple cookies
1012  */
1013 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1014 			dma_cookie_t last_complete, dma_cookie_t last_used)
1015 {
1016 	if (last_complete <= last_used) {
1017 		if ((cookie <= last_complete) || (cookie > last_used))
1018 			return DMA_COMPLETE;
1019 	} else {
1020 		if ((cookie <= last_complete) && (cookie > last_used))
1021 			return DMA_COMPLETE;
1022 	}
1023 	return DMA_IN_PROGRESS;
1024 }
1025 
1026 static inline void
1027 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1028 {
1029 	if (st) {
1030 		st->last = last;
1031 		st->used = used;
1032 		st->residue = residue;
1033 	}
1034 }
1035 
1036 #ifdef CONFIG_DMA_ENGINE
1037 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1038 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1039 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1040 void dma_issue_pending_all(void);
1041 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1042 					dma_filter_fn fn, void *fn_param);
1043 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1044 void dma_release_channel(struct dma_chan *chan);
1045 #else
1046 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1047 {
1048 	return NULL;
1049 }
1050 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1051 {
1052 	return DMA_COMPLETE;
1053 }
1054 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1055 {
1056 	return DMA_COMPLETE;
1057 }
1058 static inline void dma_issue_pending_all(void)
1059 {
1060 }
1061 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1062 					      dma_filter_fn fn, void *fn_param)
1063 {
1064 	return NULL;
1065 }
1066 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1067 							 const char *name)
1068 {
1069 	return NULL;
1070 }
1071 static inline void dma_release_channel(struct dma_chan *chan)
1072 {
1073 }
1074 #endif
1075 
1076 /* --- DMA device --- */
1077 
1078 int dma_async_device_register(struct dma_device *device);
1079 void dma_async_device_unregister(struct dma_device *device);
1080 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1081 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1082 struct dma_chan *net_dma_find_channel(void);
1083 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1084 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1085 	__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1086 
1087 static inline struct dma_chan
1088 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1089 				  dma_filter_fn fn, void *fn_param,
1090 				  struct device *dev, char *name)
1091 {
1092 	struct dma_chan *chan;
1093 
1094 	chan = dma_request_slave_channel(dev, name);
1095 	if (chan)
1096 		return chan;
1097 
1098 	return __dma_request_channel(mask, fn, fn_param);
1099 }
1100 
1101 /* --- Helper iov-locking functions --- */
1102 
1103 struct dma_page_list {
1104 	char __user *base_address;
1105 	int nr_pages;
1106 	struct page **pages;
1107 };
1108 
1109 struct dma_pinned_list {
1110 	int nr_iovecs;
1111 	struct dma_page_list page_list[0];
1112 };
1113 
1114 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1115 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1116 
1117 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1118 	struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1119 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1120 	struct dma_pinned_list *pinned_list, struct page *page,
1121 	unsigned int offset, size_t len);
1122 
1123 #endif /* DMAENGINE_H */
1124