xref: /linux-6.15/include/linux/dmaengine.h (revision dec102aa)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
23 
24 #include <linux/device.h>
25 #include <linux/err.h>
26 #include <linux/uio.h>
27 #include <linux/bug.h>
28 #include <linux/scatterlist.h>
29 #include <linux/bitmap.h>
30 #include <linux/types.h>
31 #include <asm/page.h>
32 
33 /**
34  * typedef dma_cookie_t - an opaque DMA cookie
35  *
36  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37  */
38 typedef s32 dma_cookie_t;
39 #define DMA_MIN_COOKIE	1
40 #define DMA_MAX_COOKIE	INT_MAX
41 
42 static inline int dma_submit_error(dma_cookie_t cookie)
43 {
44 	return cookie < 0 ? cookie : 0;
45 }
46 
47 /**
48  * enum dma_status - DMA transaction status
49  * @DMA_COMPLETE: transaction completed
50  * @DMA_IN_PROGRESS: transaction not yet processed
51  * @DMA_PAUSED: transaction is paused
52  * @DMA_ERROR: transaction failed
53  */
54 enum dma_status {
55 	DMA_COMPLETE,
56 	DMA_IN_PROGRESS,
57 	DMA_PAUSED,
58 	DMA_ERROR,
59 };
60 
61 /**
62  * enum dma_transaction_type - DMA transaction types/indexes
63  *
64  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
65  * automatically set as dma devices are registered.
66  */
67 enum dma_transaction_type {
68 	DMA_MEMCPY,
69 	DMA_XOR,
70 	DMA_PQ,
71 	DMA_XOR_VAL,
72 	DMA_PQ_VAL,
73 	DMA_INTERRUPT,
74 	DMA_SG,
75 	DMA_PRIVATE,
76 	DMA_ASYNC_TX,
77 	DMA_SLAVE,
78 	DMA_CYCLIC,
79 	DMA_INTERLEAVE,
80 /* last transaction type for creation of the capabilities mask */
81 	DMA_TX_TYPE_END,
82 };
83 
84 /**
85  * enum dma_transfer_direction - dma transfer mode and direction indicator
86  * @DMA_MEM_TO_MEM: Async/Memcpy mode
87  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
88  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
89  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
90  */
91 enum dma_transfer_direction {
92 	DMA_MEM_TO_MEM,
93 	DMA_MEM_TO_DEV,
94 	DMA_DEV_TO_MEM,
95 	DMA_DEV_TO_DEV,
96 	DMA_TRANS_NONE,
97 };
98 
99 /**
100  * Interleaved Transfer Request
101  * ----------------------------
102  * A chunk is collection of contiguous bytes to be transfered.
103  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
104  * ICGs may or maynot change between chunks.
105  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
106  *  that when repeated an integral number of times, specifies the transfer.
107  * A transfer template is specification of a Frame, the number of times
108  *  it is to be repeated and other per-transfer attributes.
109  *
110  * Practically, a client driver would have ready a template for each
111  *  type of transfer it is going to need during its lifetime and
112  *  set only 'src_start' and 'dst_start' before submitting the requests.
113  *
114  *
115  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
116  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
117  *
118  *    ==  Chunk size
119  *    ... ICG
120  */
121 
122 /**
123  * struct data_chunk - Element of scatter-gather list that makes a frame.
124  * @size: Number of bytes to read from source.
125  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
126  * @icg: Number of bytes to jump after last src/dst address of this
127  *	 chunk and before first src/dst address for next chunk.
128  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
129  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
130  */
131 struct data_chunk {
132 	size_t size;
133 	size_t icg;
134 };
135 
136 /**
137  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
138  *	 and attributes.
139  * @src_start: Bus address of source for the first chunk.
140  * @dst_start: Bus address of destination for the first chunk.
141  * @dir: Specifies the type of Source and Destination.
142  * @src_inc: If the source address increments after reading from it.
143  * @dst_inc: If the destination address increments after writing to it.
144  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
145  *		Otherwise, source is read contiguously (icg ignored).
146  *		Ignored if src_inc is false.
147  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
148  *		Otherwise, destination is filled contiguously (icg ignored).
149  *		Ignored if dst_inc is false.
150  * @numf: Number of frames in this template.
151  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
152  * @sgl: Array of {chunk,icg} pairs that make up a frame.
153  */
154 struct dma_interleaved_template {
155 	dma_addr_t src_start;
156 	dma_addr_t dst_start;
157 	enum dma_transfer_direction dir;
158 	bool src_inc;
159 	bool dst_inc;
160 	bool src_sgl;
161 	bool dst_sgl;
162 	size_t numf;
163 	size_t frame_size;
164 	struct data_chunk sgl[0];
165 };
166 
167 /**
168  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
169  *  control completion, and communicate status.
170  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
171  *  this transaction
172  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
173  *  acknowledges receipt, i.e. has has a chance to establish any dependency
174  *  chains
175  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
176  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
177  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
178  *  sources that were the result of a previous operation, in the case of a PQ
179  *  operation it continues the calculation with new sources
180  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
181  *  on the result of this operation
182  */
183 enum dma_ctrl_flags {
184 	DMA_PREP_INTERRUPT = (1 << 0),
185 	DMA_CTRL_ACK = (1 << 1),
186 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
187 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
188 	DMA_PREP_CONTINUE = (1 << 4),
189 	DMA_PREP_FENCE = (1 << 5),
190 };
191 
192 /**
193  * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
194  * on a running channel.
195  * @DMA_TERMINATE_ALL: terminate all ongoing transfers
196  * @DMA_PAUSE: pause ongoing transfers
197  * @DMA_RESUME: resume paused transfer
198  * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
199  * that need to runtime reconfigure the slave channels (as opposed to passing
200  * configuration data in statically from the platform). An additional
201  * argument of struct dma_slave_config must be passed in with this
202  * command.
203  * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
204  * into external start mode.
205  */
206 enum dma_ctrl_cmd {
207 	DMA_TERMINATE_ALL,
208 	DMA_PAUSE,
209 	DMA_RESUME,
210 	DMA_SLAVE_CONFIG,
211 	FSLDMA_EXTERNAL_START,
212 };
213 
214 /**
215  * enum sum_check_bits - bit position of pq_check_flags
216  */
217 enum sum_check_bits {
218 	SUM_CHECK_P = 0,
219 	SUM_CHECK_Q = 1,
220 };
221 
222 /**
223  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
224  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
225  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
226  */
227 enum sum_check_flags {
228 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
229 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
230 };
231 
232 
233 /**
234  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
235  * See linux/cpumask.h
236  */
237 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
238 
239 /**
240  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
241  * @memcpy_count: transaction counter
242  * @bytes_transferred: byte counter
243  */
244 
245 struct dma_chan_percpu {
246 	/* stats */
247 	unsigned long memcpy_count;
248 	unsigned long bytes_transferred;
249 };
250 
251 /**
252  * struct dma_chan - devices supply DMA channels, clients use them
253  * @device: ptr to the dma device who supplies this channel, always !%NULL
254  * @cookie: last cookie value returned to client
255  * @completed_cookie: last completed cookie for this channel
256  * @chan_id: channel ID for sysfs
257  * @dev: class device for sysfs
258  * @device_node: used to add this to the device chan list
259  * @local: per-cpu pointer to a struct dma_chan_percpu
260  * @client_count: how many clients are using this channel
261  * @table_count: number of appearances in the mem-to-mem allocation table
262  * @private: private data for certain client-channel associations
263  */
264 struct dma_chan {
265 	struct dma_device *device;
266 	dma_cookie_t cookie;
267 	dma_cookie_t completed_cookie;
268 
269 	/* sysfs */
270 	int chan_id;
271 	struct dma_chan_dev *dev;
272 
273 	struct list_head device_node;
274 	struct dma_chan_percpu __percpu *local;
275 	int client_count;
276 	int table_count;
277 	void *private;
278 };
279 
280 /**
281  * struct dma_chan_dev - relate sysfs device node to backing channel device
282  * @chan: driver channel device
283  * @device: sysfs device
284  * @dev_id: parent dma_device dev_id
285  * @idr_ref: reference count to gate release of dma_device dev_id
286  */
287 struct dma_chan_dev {
288 	struct dma_chan *chan;
289 	struct device device;
290 	int dev_id;
291 	atomic_t *idr_ref;
292 };
293 
294 /**
295  * enum dma_slave_buswidth - defines bus with of the DMA slave
296  * device, source or target buses
297  */
298 enum dma_slave_buswidth {
299 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
300 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
301 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
302 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
303 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
304 };
305 
306 /**
307  * struct dma_slave_config - dma slave channel runtime config
308  * @direction: whether the data shall go in or out on this slave
309  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
310  * legal values.
311  * @src_addr: this is the physical address where DMA slave data
312  * should be read (RX), if the source is memory this argument is
313  * ignored.
314  * @dst_addr: this is the physical address where DMA slave data
315  * should be written (TX), if the source is memory this argument
316  * is ignored.
317  * @src_addr_width: this is the width in bytes of the source (RX)
318  * register where DMA data shall be read. If the source
319  * is memory this may be ignored depending on architecture.
320  * Legal values: 1, 2, 4, 8.
321  * @dst_addr_width: same as src_addr_width but for destination
322  * target (TX) mutatis mutandis.
323  * @src_maxburst: the maximum number of words (note: words, as in
324  * units of the src_addr_width member, not bytes) that can be sent
325  * in one burst to the device. Typically something like half the
326  * FIFO depth on I/O peripherals so you don't overflow it. This
327  * may or may not be applicable on memory sources.
328  * @dst_maxburst: same as src_maxburst but for destination target
329  * mutatis mutandis.
330  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
331  * with 'true' if peripheral should be flow controller. Direction will be
332  * selected at Runtime.
333  * @slave_id: Slave requester id. Only valid for slave channels. The dma
334  * slave peripheral will have unique id as dma requester which need to be
335  * pass as slave config.
336  *
337  * This struct is passed in as configuration data to a DMA engine
338  * in order to set up a certain channel for DMA transport at runtime.
339  * The DMA device/engine has to provide support for an additional
340  * command in the channel config interface, DMA_SLAVE_CONFIG
341  * and this struct will then be passed in as an argument to the
342  * DMA engine device_control() function.
343  *
344  * The rationale for adding configuration information to this struct is as
345  * follows: if it is likely that more than one DMA slave controllers in
346  * the world will support the configuration option, then make it generic.
347  * If not: if it is fixed so that it be sent in static from the platform
348  * data, then prefer to do that.
349  */
350 struct dma_slave_config {
351 	enum dma_transfer_direction direction;
352 	dma_addr_t src_addr;
353 	dma_addr_t dst_addr;
354 	enum dma_slave_buswidth src_addr_width;
355 	enum dma_slave_buswidth dst_addr_width;
356 	u32 src_maxburst;
357 	u32 dst_maxburst;
358 	bool device_fc;
359 	unsigned int slave_id;
360 };
361 
362 /**
363  * enum dma_residue_granularity - Granularity of the reported transfer residue
364  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
365  *  DMA channel is only able to tell whether a descriptor has been completed or
366  *  not, which means residue reporting is not supported by this channel. The
367  *  residue field of the dma_tx_state field will always be 0.
368  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
369  *  completed segment of the transfer (For cyclic transfers this is after each
370  *  period). This is typically implemented by having the hardware generate an
371  *  interrupt after each transferred segment and then the drivers updates the
372  *  outstanding residue by the size of the segment. Another possibility is if
373  *  the hardware supports scatter-gather and the segment descriptor has a field
374  *  which gets set after the segment has been completed. The driver then counts
375  *  the number of segments without the flag set to compute the residue.
376  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
377  *  burst. This is typically only supported if the hardware has a progress
378  *  register of some sort (E.g. a register with the current read/write address
379  *  or a register with the amount of bursts/beats/bytes that have been
380  *  transferred or still need to be transferred).
381  */
382 enum dma_residue_granularity {
383 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
384 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
385 	DMA_RESIDUE_GRANULARITY_BURST = 2,
386 };
387 
388 /* struct dma_slave_caps - expose capabilities of a slave channel only
389  *
390  * @src_addr_widths: bit mask of src addr widths the channel supports
391  * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
392  * @directions: bit mask of slave direction the channel supported
393  * 	since the enum dma_transfer_direction is not defined as bits for each
394  * 	type of direction, the dma controller should fill (1 << <TYPE>) and same
395  * 	should be checked by controller as well
396  * @cmd_pause: true, if pause and thereby resume is supported
397  * @cmd_terminate: true, if terminate cmd is supported
398  * @residue_granularity: granularity of the reported transfer residue
399  */
400 struct dma_slave_caps {
401 	u32 src_addr_widths;
402 	u32 dstn_addr_widths;
403 	u32 directions;
404 	bool cmd_pause;
405 	bool cmd_terminate;
406 	enum dma_residue_granularity residue_granularity;
407 };
408 
409 static inline const char *dma_chan_name(struct dma_chan *chan)
410 {
411 	return dev_name(&chan->dev->device);
412 }
413 
414 void dma_chan_cleanup(struct kref *kref);
415 
416 /**
417  * typedef dma_filter_fn - callback filter for dma_request_channel
418  * @chan: channel to be reviewed
419  * @filter_param: opaque parameter passed through dma_request_channel
420  *
421  * When this optional parameter is specified in a call to dma_request_channel a
422  * suitable channel is passed to this routine for further dispositioning before
423  * being returned.  Where 'suitable' indicates a non-busy channel that
424  * satisfies the given capability mask.  It returns 'true' to indicate that the
425  * channel is suitable.
426  */
427 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
428 
429 typedef void (*dma_async_tx_callback)(void *dma_async_param);
430 
431 struct dmaengine_unmap_data {
432 	u8 to_cnt;
433 	u8 from_cnt;
434 	u8 bidi_cnt;
435 	struct device *dev;
436 	struct kref kref;
437 	size_t len;
438 	dma_addr_t addr[0];
439 };
440 
441 /**
442  * struct dma_async_tx_descriptor - async transaction descriptor
443  * ---dma generic offload fields---
444  * @cookie: tracking cookie for this transaction, set to -EBUSY if
445  *	this tx is sitting on a dependency list
446  * @flags: flags to augment operation preparation, control completion, and
447  * 	communicate status
448  * @phys: physical address of the descriptor
449  * @chan: target channel for this operation
450  * @tx_submit: set the prepared descriptor(s) to be executed by the engine
451  * @callback: routine to call after this operation is complete
452  * @callback_param: general parameter to pass to the callback routine
453  * ---async_tx api specific fields---
454  * @next: at completion submit this descriptor
455  * @parent: pointer to the next level up in the dependency chain
456  * @lock: protect the parent and next pointers
457  */
458 struct dma_async_tx_descriptor {
459 	dma_cookie_t cookie;
460 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
461 	dma_addr_t phys;
462 	struct dma_chan *chan;
463 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
464 	dma_async_tx_callback callback;
465 	void *callback_param;
466 	struct dmaengine_unmap_data *unmap;
467 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
468 	struct dma_async_tx_descriptor *next;
469 	struct dma_async_tx_descriptor *parent;
470 	spinlock_t lock;
471 #endif
472 };
473 
474 #ifdef CONFIG_DMA_ENGINE
475 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
476 				 struct dmaengine_unmap_data *unmap)
477 {
478 	kref_get(&unmap->kref);
479 	tx->unmap = unmap;
480 }
481 
482 struct dmaengine_unmap_data *
483 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
484 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
485 #else
486 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
487 				 struct dmaengine_unmap_data *unmap)
488 {
489 }
490 static inline struct dmaengine_unmap_data *
491 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
492 {
493 	return NULL;
494 }
495 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
496 {
497 }
498 #endif
499 
500 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
501 {
502 	if (tx->unmap) {
503 		dmaengine_unmap_put(tx->unmap);
504 		tx->unmap = NULL;
505 	}
506 }
507 
508 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
509 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
510 {
511 }
512 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
513 {
514 }
515 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
516 {
517 	BUG();
518 }
519 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
520 {
521 }
522 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
523 {
524 }
525 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
526 {
527 	return NULL;
528 }
529 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
530 {
531 	return NULL;
532 }
533 
534 #else
535 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
536 {
537 	spin_lock_bh(&txd->lock);
538 }
539 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
540 {
541 	spin_unlock_bh(&txd->lock);
542 }
543 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
544 {
545 	txd->next = next;
546 	next->parent = txd;
547 }
548 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
549 {
550 	txd->parent = NULL;
551 }
552 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
553 {
554 	txd->next = NULL;
555 }
556 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
557 {
558 	return txd->parent;
559 }
560 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
561 {
562 	return txd->next;
563 }
564 #endif
565 
566 /**
567  * struct dma_tx_state - filled in to report the status of
568  * a transfer.
569  * @last: last completed DMA cookie
570  * @used: last issued DMA cookie (i.e. the one in progress)
571  * @residue: the remaining number of bytes left to transmit
572  *	on the selected transfer for states DMA_IN_PROGRESS and
573  *	DMA_PAUSED if this is implemented in the driver, else 0
574  */
575 struct dma_tx_state {
576 	dma_cookie_t last;
577 	dma_cookie_t used;
578 	u32 residue;
579 };
580 
581 /**
582  * struct dma_device - info on the entity supplying DMA services
583  * @chancnt: how many DMA channels are supported
584  * @privatecnt: how many DMA channels are requested by dma_request_channel
585  * @channels: the list of struct dma_chan
586  * @global_node: list_head for global dma_device_list
587  * @cap_mask: one or more dma_capability flags
588  * @max_xor: maximum number of xor sources, 0 if no capability
589  * @max_pq: maximum number of PQ sources and PQ-continue capability
590  * @copy_align: alignment shift for memcpy operations
591  * @xor_align: alignment shift for xor operations
592  * @pq_align: alignment shift for pq operations
593  * @fill_align: alignment shift for memset operations
594  * @dev_id: unique device ID
595  * @dev: struct device reference for dma mapping api
596  * @device_alloc_chan_resources: allocate resources and return the
597  *	number of allocated descriptors
598  * @device_free_chan_resources: release DMA channel's resources
599  * @device_prep_dma_memcpy: prepares a memcpy operation
600  * @device_prep_dma_xor: prepares a xor operation
601  * @device_prep_dma_xor_val: prepares a xor validation operation
602  * @device_prep_dma_pq: prepares a pq operation
603  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
604  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
605  * @device_prep_slave_sg: prepares a slave dma operation
606  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
607  *	The function takes a buffer of size buf_len. The callback function will
608  *	be called after period_len bytes have been transferred.
609  * @device_prep_interleaved_dma: Transfer expression in a generic way.
610  * @device_control: manipulate all pending operations on a channel, returns
611  *	zero or error code
612  * @device_tx_status: poll for transaction completion, the optional
613  *	txstate parameter can be supplied with a pointer to get a
614  *	struct with auxiliary transfer status information, otherwise the call
615  *	will just return a simple status code
616  * @device_issue_pending: push pending transactions to hardware
617  * @device_slave_caps: return the slave channel capabilities
618  */
619 struct dma_device {
620 
621 	unsigned int chancnt;
622 	unsigned int privatecnt;
623 	struct list_head channels;
624 	struct list_head global_node;
625 	dma_cap_mask_t  cap_mask;
626 	unsigned short max_xor;
627 	unsigned short max_pq;
628 	u8 copy_align;
629 	u8 xor_align;
630 	u8 pq_align;
631 	u8 fill_align;
632 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
633 
634 	int dev_id;
635 	struct device *dev;
636 
637 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
638 	void (*device_free_chan_resources)(struct dma_chan *chan);
639 
640 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
641 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
642 		size_t len, unsigned long flags);
643 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
644 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
645 		unsigned int src_cnt, size_t len, unsigned long flags);
646 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
647 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
648 		size_t len, enum sum_check_flags *result, unsigned long flags);
649 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
650 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
651 		unsigned int src_cnt, const unsigned char *scf,
652 		size_t len, unsigned long flags);
653 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
654 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
655 		unsigned int src_cnt, const unsigned char *scf, size_t len,
656 		enum sum_check_flags *pqres, unsigned long flags);
657 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
658 		struct dma_chan *chan, unsigned long flags);
659 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
660 		struct dma_chan *chan,
661 		struct scatterlist *dst_sg, unsigned int dst_nents,
662 		struct scatterlist *src_sg, unsigned int src_nents,
663 		unsigned long flags);
664 
665 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
666 		struct dma_chan *chan, struct scatterlist *sgl,
667 		unsigned int sg_len, enum dma_transfer_direction direction,
668 		unsigned long flags, void *context);
669 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
670 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
671 		size_t period_len, enum dma_transfer_direction direction,
672 		unsigned long flags, void *context);
673 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
674 		struct dma_chan *chan, struct dma_interleaved_template *xt,
675 		unsigned long flags);
676 	int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
677 		unsigned long arg);
678 
679 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
680 					    dma_cookie_t cookie,
681 					    struct dma_tx_state *txstate);
682 	void (*device_issue_pending)(struct dma_chan *chan);
683 	int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
684 };
685 
686 static inline int dmaengine_device_control(struct dma_chan *chan,
687 					   enum dma_ctrl_cmd cmd,
688 					   unsigned long arg)
689 {
690 	if (chan->device->device_control)
691 		return chan->device->device_control(chan, cmd, arg);
692 
693 	return -ENOSYS;
694 }
695 
696 static inline int dmaengine_slave_config(struct dma_chan *chan,
697 					  struct dma_slave_config *config)
698 {
699 	return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
700 			(unsigned long)config);
701 }
702 
703 static inline bool is_slave_direction(enum dma_transfer_direction direction)
704 {
705 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
706 }
707 
708 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
709 	struct dma_chan *chan, dma_addr_t buf, size_t len,
710 	enum dma_transfer_direction dir, unsigned long flags)
711 {
712 	struct scatterlist sg;
713 	sg_init_table(&sg, 1);
714 	sg_dma_address(&sg) = buf;
715 	sg_dma_len(&sg) = len;
716 
717 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
718 						  dir, flags, NULL);
719 }
720 
721 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
722 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
723 	enum dma_transfer_direction dir, unsigned long flags)
724 {
725 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
726 						  dir, flags, NULL);
727 }
728 
729 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
730 struct rio_dma_ext;
731 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
732 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
733 	enum dma_transfer_direction dir, unsigned long flags,
734 	struct rio_dma_ext *rio_ext)
735 {
736 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
737 						  dir, flags, rio_ext);
738 }
739 #endif
740 
741 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
742 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
743 		size_t period_len, enum dma_transfer_direction dir,
744 		unsigned long flags)
745 {
746 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
747 						period_len, dir, flags, NULL);
748 }
749 
750 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
751 		struct dma_chan *chan, struct dma_interleaved_template *xt,
752 		unsigned long flags)
753 {
754 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
755 }
756 
757 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
758 {
759 	if (!chan || !caps)
760 		return -EINVAL;
761 
762 	/* check if the channel supports slave transactions */
763 	if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
764 		return -ENXIO;
765 
766 	if (chan->device->device_slave_caps)
767 		return chan->device->device_slave_caps(chan, caps);
768 
769 	return -ENXIO;
770 }
771 
772 static inline int dmaengine_terminate_all(struct dma_chan *chan)
773 {
774 	return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
775 }
776 
777 static inline int dmaengine_pause(struct dma_chan *chan)
778 {
779 	return dmaengine_device_control(chan, DMA_PAUSE, 0);
780 }
781 
782 static inline int dmaengine_resume(struct dma_chan *chan)
783 {
784 	return dmaengine_device_control(chan, DMA_RESUME, 0);
785 }
786 
787 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
788 	dma_cookie_t cookie, struct dma_tx_state *state)
789 {
790 	return chan->device->device_tx_status(chan, cookie, state);
791 }
792 
793 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
794 {
795 	return desc->tx_submit(desc);
796 }
797 
798 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
799 {
800 	size_t mask;
801 
802 	if (!align)
803 		return true;
804 	mask = (1 << align) - 1;
805 	if (mask & (off1 | off2 | len))
806 		return false;
807 	return true;
808 }
809 
810 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
811 				       size_t off2, size_t len)
812 {
813 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
814 }
815 
816 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
817 				      size_t off2, size_t len)
818 {
819 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
820 }
821 
822 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
823 				     size_t off2, size_t len)
824 {
825 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
826 }
827 
828 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
829 				       size_t off2, size_t len)
830 {
831 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
832 }
833 
834 static inline void
835 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
836 {
837 	dma->max_pq = maxpq;
838 	if (has_pq_continue)
839 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
840 }
841 
842 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
843 {
844 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
845 }
846 
847 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
848 {
849 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
850 
851 	return (flags & mask) == mask;
852 }
853 
854 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
855 {
856 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
857 }
858 
859 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
860 {
861 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
862 }
863 
864 /* dma_maxpq - reduce maxpq in the face of continued operations
865  * @dma - dma device with PQ capability
866  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
867  *
868  * When an engine does not support native continuation we need 3 extra
869  * source slots to reuse P and Q with the following coefficients:
870  * 1/ {00} * P : remove P from Q', but use it as a source for P'
871  * 2/ {01} * Q : use Q to continue Q' calculation
872  * 3/ {00} * Q : subtract Q from P' to cancel (2)
873  *
874  * In the case where P is disabled we only need 1 extra source:
875  * 1/ {01} * Q : use Q to continue Q' calculation
876  */
877 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
878 {
879 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
880 		return dma_dev_to_maxpq(dma);
881 	else if (dmaf_p_disabled_continue(flags))
882 		return dma_dev_to_maxpq(dma) - 1;
883 	else if (dmaf_continue(flags))
884 		return dma_dev_to_maxpq(dma) - 3;
885 	BUG();
886 }
887 
888 /* --- public DMA engine API --- */
889 
890 #ifdef CONFIG_DMA_ENGINE
891 void dmaengine_get(void);
892 void dmaengine_put(void);
893 #else
894 static inline void dmaengine_get(void)
895 {
896 }
897 static inline void dmaengine_put(void)
898 {
899 }
900 #endif
901 
902 #ifdef CONFIG_NET_DMA
903 #define net_dmaengine_get()	dmaengine_get()
904 #define net_dmaengine_put()	dmaengine_put()
905 #else
906 static inline void net_dmaengine_get(void)
907 {
908 }
909 static inline void net_dmaengine_put(void)
910 {
911 }
912 #endif
913 
914 #ifdef CONFIG_ASYNC_TX_DMA
915 #define async_dmaengine_get()	dmaengine_get()
916 #define async_dmaengine_put()	dmaengine_put()
917 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
918 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
919 #else
920 #define async_dma_find_channel(type) dma_find_channel(type)
921 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
922 #else
923 static inline void async_dmaengine_get(void)
924 {
925 }
926 static inline void async_dmaengine_put(void)
927 {
928 }
929 static inline struct dma_chan *
930 async_dma_find_channel(enum dma_transaction_type type)
931 {
932 	return NULL;
933 }
934 #endif /* CONFIG_ASYNC_TX_DMA */
935 
936 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
937 	void *dest, void *src, size_t len);
938 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
939 	struct page *page, unsigned int offset, void *kdata, size_t len);
940 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
941 	struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
942 	unsigned int src_off, size_t len);
943 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
944 	struct dma_chan *chan);
945 
946 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
947 {
948 	tx->flags |= DMA_CTRL_ACK;
949 }
950 
951 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
952 {
953 	tx->flags &= ~DMA_CTRL_ACK;
954 }
955 
956 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
957 {
958 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
959 }
960 
961 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
962 static inline void
963 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
964 {
965 	set_bit(tx_type, dstp->bits);
966 }
967 
968 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
969 static inline void
970 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
971 {
972 	clear_bit(tx_type, dstp->bits);
973 }
974 
975 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
976 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
977 {
978 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
979 }
980 
981 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
982 static inline int
983 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
984 {
985 	return test_bit(tx_type, srcp->bits);
986 }
987 
988 #define for_each_dma_cap_mask(cap, mask) \
989 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
990 
991 /**
992  * dma_async_issue_pending - flush pending transactions to HW
993  * @chan: target DMA channel
994  *
995  * This allows drivers to push copies to HW in batches,
996  * reducing MMIO writes where possible.
997  */
998 static inline void dma_async_issue_pending(struct dma_chan *chan)
999 {
1000 	chan->device->device_issue_pending(chan);
1001 }
1002 
1003 /**
1004  * dma_async_is_tx_complete - poll for transaction completion
1005  * @chan: DMA channel
1006  * @cookie: transaction identifier to check status of
1007  * @last: returns last completed cookie, can be NULL
1008  * @used: returns last issued cookie, can be NULL
1009  *
1010  * If @last and @used are passed in, upon return they reflect the driver
1011  * internal state and can be used with dma_async_is_complete() to check
1012  * the status of multiple cookies without re-checking hardware state.
1013  */
1014 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1015 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1016 {
1017 	struct dma_tx_state state;
1018 	enum dma_status status;
1019 
1020 	status = chan->device->device_tx_status(chan, cookie, &state);
1021 	if (last)
1022 		*last = state.last;
1023 	if (used)
1024 		*used = state.used;
1025 	return status;
1026 }
1027 
1028 /**
1029  * dma_async_is_complete - test a cookie against chan state
1030  * @cookie: transaction identifier to test status of
1031  * @last_complete: last know completed transaction
1032  * @last_used: last cookie value handed out
1033  *
1034  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1035  * the test logic is separated for lightweight testing of multiple cookies
1036  */
1037 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1038 			dma_cookie_t last_complete, dma_cookie_t last_used)
1039 {
1040 	if (last_complete <= last_used) {
1041 		if ((cookie <= last_complete) || (cookie > last_used))
1042 			return DMA_COMPLETE;
1043 	} else {
1044 		if ((cookie <= last_complete) && (cookie > last_used))
1045 			return DMA_COMPLETE;
1046 	}
1047 	return DMA_IN_PROGRESS;
1048 }
1049 
1050 static inline void
1051 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1052 {
1053 	if (st) {
1054 		st->last = last;
1055 		st->used = used;
1056 		st->residue = residue;
1057 	}
1058 }
1059 
1060 #ifdef CONFIG_DMA_ENGINE
1061 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1062 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1063 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1064 void dma_issue_pending_all(void);
1065 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1066 					dma_filter_fn fn, void *fn_param);
1067 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1068 						  const char *name);
1069 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1070 void dma_release_channel(struct dma_chan *chan);
1071 #else
1072 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1073 {
1074 	return NULL;
1075 }
1076 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1077 {
1078 	return DMA_COMPLETE;
1079 }
1080 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1081 {
1082 	return DMA_COMPLETE;
1083 }
1084 static inline void dma_issue_pending_all(void)
1085 {
1086 }
1087 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1088 					      dma_filter_fn fn, void *fn_param)
1089 {
1090 	return NULL;
1091 }
1092 static inline struct dma_chan *dma_request_slave_channel_reason(
1093 					struct device *dev, const char *name)
1094 {
1095 	return ERR_PTR(-ENODEV);
1096 }
1097 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1098 							 const char *name)
1099 {
1100 	return NULL;
1101 }
1102 static inline void dma_release_channel(struct dma_chan *chan)
1103 {
1104 }
1105 #endif
1106 
1107 /* --- DMA device --- */
1108 
1109 int dma_async_device_register(struct dma_device *device);
1110 void dma_async_device_unregister(struct dma_device *device);
1111 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1112 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1113 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1114 struct dma_chan *net_dma_find_channel(void);
1115 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1116 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1117 	__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1118 
1119 static inline struct dma_chan
1120 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1121 				  dma_filter_fn fn, void *fn_param,
1122 				  struct device *dev, char *name)
1123 {
1124 	struct dma_chan *chan;
1125 
1126 	chan = dma_request_slave_channel(dev, name);
1127 	if (chan)
1128 		return chan;
1129 
1130 	return __dma_request_channel(mask, fn, fn_param);
1131 }
1132 
1133 /* --- Helper iov-locking functions --- */
1134 
1135 struct dma_page_list {
1136 	char __user *base_address;
1137 	int nr_pages;
1138 	struct page **pages;
1139 };
1140 
1141 struct dma_pinned_list {
1142 	int nr_iovecs;
1143 	struct dma_page_list page_list[0];
1144 };
1145 
1146 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1147 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1148 
1149 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1150 	struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1151 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1152 	struct dma_pinned_list *pinned_list, struct page *page,
1153 	unsigned int offset, size_t len);
1154 
1155 #endif /* DMAENGINE_H */
1156