xref: /linux-6.15/include/linux/dmaengine.h (revision dcd454af)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
23 
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/bug.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <linux/types.h>
30 #include <asm/page.h>
31 
32 /**
33  * typedef dma_cookie_t - an opaque DMA cookie
34  *
35  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
36  */
37 typedef s32 dma_cookie_t;
38 #define DMA_MIN_COOKIE	1
39 #define DMA_MAX_COOKIE	INT_MAX
40 
41 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
42 
43 /**
44  * enum dma_status - DMA transaction status
45  * @DMA_SUCCESS: transaction completed successfully
46  * @DMA_IN_PROGRESS: transaction not yet processed
47  * @DMA_PAUSED: transaction is paused
48  * @DMA_ERROR: transaction failed
49  */
50 enum dma_status {
51 	DMA_SUCCESS,
52 	DMA_IN_PROGRESS,
53 	DMA_PAUSED,
54 	DMA_ERROR,
55 };
56 
57 /**
58  * enum dma_transaction_type - DMA transaction types/indexes
59  *
60  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
61  * automatically set as dma devices are registered.
62  */
63 enum dma_transaction_type {
64 	DMA_MEMCPY,
65 	DMA_XOR,
66 	DMA_PQ,
67 	DMA_XOR_VAL,
68 	DMA_PQ_VAL,
69 	DMA_INTERRUPT,
70 	DMA_SG,
71 	DMA_PRIVATE,
72 	DMA_ASYNC_TX,
73 	DMA_SLAVE,
74 	DMA_CYCLIC,
75 	DMA_INTERLEAVE,
76 /* last transaction type for creation of the capabilities mask */
77 	DMA_TX_TYPE_END,
78 };
79 
80 /**
81  * enum dma_transfer_direction - dma transfer mode and direction indicator
82  * @DMA_MEM_TO_MEM: Async/Memcpy mode
83  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
86  */
87 enum dma_transfer_direction {
88 	DMA_MEM_TO_MEM,
89 	DMA_MEM_TO_DEV,
90 	DMA_DEV_TO_MEM,
91 	DMA_DEV_TO_DEV,
92 	DMA_TRANS_NONE,
93 };
94 
95 /**
96  * Interleaved Transfer Request
97  * ----------------------------
98  * A chunk is collection of contiguous bytes to be transfered.
99  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100  * ICGs may or maynot change between chunks.
101  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102  *  that when repeated an integral number of times, specifies the transfer.
103  * A transfer template is specification of a Frame, the number of times
104  *  it is to be repeated and other per-transfer attributes.
105  *
106  * Practically, a client driver would have ready a template for each
107  *  type of transfer it is going to need during its lifetime and
108  *  set only 'src_start' and 'dst_start' before submitting the requests.
109  *
110  *
111  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
112  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
113  *
114  *    ==  Chunk size
115  *    ... ICG
116  */
117 
118 /**
119  * struct data_chunk - Element of scatter-gather list that makes a frame.
120  * @size: Number of bytes to read from source.
121  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
122  * @icg: Number of bytes to jump after last src/dst address of this
123  *	 chunk and before first src/dst address for next chunk.
124  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
126  */
127 struct data_chunk {
128 	size_t size;
129 	size_t icg;
130 };
131 
132 /**
133  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134  *	 and attributes.
135  * @src_start: Bus address of source for the first chunk.
136  * @dst_start: Bus address of destination for the first chunk.
137  * @dir: Specifies the type of Source and Destination.
138  * @src_inc: If the source address increments after reading from it.
139  * @dst_inc: If the destination address increments after writing to it.
140  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141  *		Otherwise, source is read contiguously (icg ignored).
142  *		Ignored if src_inc is false.
143  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144  *		Otherwise, destination is filled contiguously (icg ignored).
145  *		Ignored if dst_inc is false.
146  * @numf: Number of frames in this template.
147  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148  * @sgl: Array of {chunk,icg} pairs that make up a frame.
149  */
150 struct dma_interleaved_template {
151 	dma_addr_t src_start;
152 	dma_addr_t dst_start;
153 	enum dma_transfer_direction dir;
154 	bool src_inc;
155 	bool dst_inc;
156 	bool src_sgl;
157 	bool dst_sgl;
158 	size_t numf;
159 	size_t frame_size;
160 	struct data_chunk sgl[0];
161 };
162 
163 /**
164  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165  *  control completion, and communicate status.
166  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167  *  this transaction
168  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169  *  acknowledges receipt, i.e. has has a chance to establish any dependency
170  *  chains
171  * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
172  * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
173  * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
174  * 	(if not set, do the source dma-unmapping as page)
175  * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
176  * 	(if not set, do the destination dma-unmapping as page)
177  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
178  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
179  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
180  *  sources that were the result of a previous operation, in the case of a PQ
181  *  operation it continues the calculation with new sources
182  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
183  *  on the result of this operation
184  */
185 enum dma_ctrl_flags {
186 	DMA_PREP_INTERRUPT = (1 << 0),
187 	DMA_CTRL_ACK = (1 << 1),
188 	DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
189 	DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
190 	DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
191 	DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
192 	DMA_PREP_PQ_DISABLE_P = (1 << 6),
193 	DMA_PREP_PQ_DISABLE_Q = (1 << 7),
194 	DMA_PREP_CONTINUE = (1 << 8),
195 	DMA_PREP_FENCE = (1 << 9),
196 };
197 
198 /**
199  * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
200  * on a running channel.
201  * @DMA_TERMINATE_ALL: terminate all ongoing transfers
202  * @DMA_PAUSE: pause ongoing transfers
203  * @DMA_RESUME: resume paused transfer
204  * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
205  * that need to runtime reconfigure the slave channels (as opposed to passing
206  * configuration data in statically from the platform). An additional
207  * argument of struct dma_slave_config must be passed in with this
208  * command.
209  * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
210  * into external start mode.
211  */
212 enum dma_ctrl_cmd {
213 	DMA_TERMINATE_ALL,
214 	DMA_PAUSE,
215 	DMA_RESUME,
216 	DMA_SLAVE_CONFIG,
217 	FSLDMA_EXTERNAL_START,
218 };
219 
220 /**
221  * enum sum_check_bits - bit position of pq_check_flags
222  */
223 enum sum_check_bits {
224 	SUM_CHECK_P = 0,
225 	SUM_CHECK_Q = 1,
226 };
227 
228 /**
229  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
230  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
231  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
232  */
233 enum sum_check_flags {
234 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
235 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
236 };
237 
238 
239 /**
240  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
241  * See linux/cpumask.h
242  */
243 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
244 
245 /**
246  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
247  * @memcpy_count: transaction counter
248  * @bytes_transferred: byte counter
249  */
250 
251 struct dma_chan_percpu {
252 	/* stats */
253 	unsigned long memcpy_count;
254 	unsigned long bytes_transferred;
255 };
256 
257 /**
258  * struct dma_chan - devices supply DMA channels, clients use them
259  * @device: ptr to the dma device who supplies this channel, always !%NULL
260  * @cookie: last cookie value returned to client
261  * @completed_cookie: last completed cookie for this channel
262  * @chan_id: channel ID for sysfs
263  * @dev: class device for sysfs
264  * @device_node: used to add this to the device chan list
265  * @local: per-cpu pointer to a struct dma_chan_percpu
266  * @client-count: how many clients are using this channel
267  * @table_count: number of appearances in the mem-to-mem allocation table
268  * @private: private data for certain client-channel associations
269  */
270 struct dma_chan {
271 	struct dma_device *device;
272 	dma_cookie_t cookie;
273 	dma_cookie_t completed_cookie;
274 
275 	/* sysfs */
276 	int chan_id;
277 	struct dma_chan_dev *dev;
278 
279 	struct list_head device_node;
280 	struct dma_chan_percpu __percpu *local;
281 	int client_count;
282 	int table_count;
283 	void *private;
284 };
285 
286 /**
287  * struct dma_chan_dev - relate sysfs device node to backing channel device
288  * @chan - driver channel device
289  * @device - sysfs device
290  * @dev_id - parent dma_device dev_id
291  * @idr_ref - reference count to gate release of dma_device dev_id
292  */
293 struct dma_chan_dev {
294 	struct dma_chan *chan;
295 	struct device device;
296 	int dev_id;
297 	atomic_t *idr_ref;
298 };
299 
300 /**
301  * enum dma_slave_buswidth - defines bus with of the DMA slave
302  * device, source or target buses
303  */
304 enum dma_slave_buswidth {
305 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
306 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
307 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
308 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
309 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
310 };
311 
312 /**
313  * struct dma_slave_config - dma slave channel runtime config
314  * @direction: whether the data shall go in or out on this slave
315  * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
316  * legal values, DMA_BIDIRECTIONAL is not acceptable since we
317  * need to differentiate source and target addresses.
318  * @src_addr: this is the physical address where DMA slave data
319  * should be read (RX), if the source is memory this argument is
320  * ignored.
321  * @dst_addr: this is the physical address where DMA slave data
322  * should be written (TX), if the source is memory this argument
323  * is ignored.
324  * @src_addr_width: this is the width in bytes of the source (RX)
325  * register where DMA data shall be read. If the source
326  * is memory this may be ignored depending on architecture.
327  * Legal values: 1, 2, 4, 8.
328  * @dst_addr_width: same as src_addr_width but for destination
329  * target (TX) mutatis mutandis.
330  * @src_maxburst: the maximum number of words (note: words, as in
331  * units of the src_addr_width member, not bytes) that can be sent
332  * in one burst to the device. Typically something like half the
333  * FIFO depth on I/O peripherals so you don't overflow it. This
334  * may or may not be applicable on memory sources.
335  * @dst_maxburst: same as src_maxburst but for destination target
336  * mutatis mutandis.
337  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
338  * with 'true' if peripheral should be flow controller. Direction will be
339  * selected at Runtime.
340  * @slave_id: Slave requester id. Only valid for slave channels. The dma
341  * slave peripheral will have unique id as dma requester which need to be
342  * pass as slave config.
343  *
344  * This struct is passed in as configuration data to a DMA engine
345  * in order to set up a certain channel for DMA transport at runtime.
346  * The DMA device/engine has to provide support for an additional
347  * command in the channel config interface, DMA_SLAVE_CONFIG
348  * and this struct will then be passed in as an argument to the
349  * DMA engine device_control() function.
350  *
351  * The rationale for adding configuration information to this struct
352  * is as follows: if it is likely that most DMA slave controllers in
353  * the world will support the configuration option, then make it
354  * generic. If not: if it is fixed so that it be sent in static from
355  * the platform data, then prefer to do that. Else, if it is neither
356  * fixed at runtime, nor generic enough (such as bus mastership on
357  * some CPU family and whatnot) then create a custom slave config
358  * struct and pass that, then make this config a member of that
359  * struct, if applicable.
360  */
361 struct dma_slave_config {
362 	enum dma_transfer_direction direction;
363 	dma_addr_t src_addr;
364 	dma_addr_t dst_addr;
365 	enum dma_slave_buswidth src_addr_width;
366 	enum dma_slave_buswidth dst_addr_width;
367 	u32 src_maxburst;
368 	u32 dst_maxburst;
369 	bool device_fc;
370 	unsigned int slave_id;
371 };
372 
373 static inline const char *dma_chan_name(struct dma_chan *chan)
374 {
375 	return dev_name(&chan->dev->device);
376 }
377 
378 void dma_chan_cleanup(struct kref *kref);
379 
380 /**
381  * typedef dma_filter_fn - callback filter for dma_request_channel
382  * @chan: channel to be reviewed
383  * @filter_param: opaque parameter passed through dma_request_channel
384  *
385  * When this optional parameter is specified in a call to dma_request_channel a
386  * suitable channel is passed to this routine for further dispositioning before
387  * being returned.  Where 'suitable' indicates a non-busy channel that
388  * satisfies the given capability mask.  It returns 'true' to indicate that the
389  * channel is suitable.
390  */
391 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
392 
393 typedef void (*dma_async_tx_callback)(void *dma_async_param);
394 /**
395  * struct dma_async_tx_descriptor - async transaction descriptor
396  * ---dma generic offload fields---
397  * @cookie: tracking cookie for this transaction, set to -EBUSY if
398  *	this tx is sitting on a dependency list
399  * @flags: flags to augment operation preparation, control completion, and
400  * 	communicate status
401  * @phys: physical address of the descriptor
402  * @chan: target channel for this operation
403  * @tx_submit: set the prepared descriptor(s) to be executed by the engine
404  * @callback: routine to call after this operation is complete
405  * @callback_param: general parameter to pass to the callback routine
406  * ---async_tx api specific fields---
407  * @next: at completion submit this descriptor
408  * @parent: pointer to the next level up in the dependency chain
409  * @lock: protect the parent and next pointers
410  */
411 struct dma_async_tx_descriptor {
412 	dma_cookie_t cookie;
413 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
414 	dma_addr_t phys;
415 	struct dma_chan *chan;
416 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
417 	dma_async_tx_callback callback;
418 	void *callback_param;
419 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
420 	struct dma_async_tx_descriptor *next;
421 	struct dma_async_tx_descriptor *parent;
422 	spinlock_t lock;
423 #endif
424 };
425 
426 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
427 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
428 {
429 }
430 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
431 {
432 }
433 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
434 {
435 	BUG();
436 }
437 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
438 {
439 }
440 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
441 {
442 }
443 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
444 {
445 	return NULL;
446 }
447 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
448 {
449 	return NULL;
450 }
451 
452 #else
453 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
454 {
455 	spin_lock_bh(&txd->lock);
456 }
457 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
458 {
459 	spin_unlock_bh(&txd->lock);
460 }
461 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
462 {
463 	txd->next = next;
464 	next->parent = txd;
465 }
466 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
467 {
468 	txd->parent = NULL;
469 }
470 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
471 {
472 	txd->next = NULL;
473 }
474 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
475 {
476 	return txd->parent;
477 }
478 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
479 {
480 	return txd->next;
481 }
482 #endif
483 
484 /**
485  * struct dma_tx_state - filled in to report the status of
486  * a transfer.
487  * @last: last completed DMA cookie
488  * @used: last issued DMA cookie (i.e. the one in progress)
489  * @residue: the remaining number of bytes left to transmit
490  *	on the selected transfer for states DMA_IN_PROGRESS and
491  *	DMA_PAUSED if this is implemented in the driver, else 0
492  */
493 struct dma_tx_state {
494 	dma_cookie_t last;
495 	dma_cookie_t used;
496 	u32 residue;
497 };
498 
499 /**
500  * struct dma_device - info on the entity supplying DMA services
501  * @chancnt: how many DMA channels are supported
502  * @privatecnt: how many DMA channels are requested by dma_request_channel
503  * @channels: the list of struct dma_chan
504  * @global_node: list_head for global dma_device_list
505  * @cap_mask: one or more dma_capability flags
506  * @max_xor: maximum number of xor sources, 0 if no capability
507  * @max_pq: maximum number of PQ sources and PQ-continue capability
508  * @copy_align: alignment shift for memcpy operations
509  * @xor_align: alignment shift for xor operations
510  * @pq_align: alignment shift for pq operations
511  * @fill_align: alignment shift for memset operations
512  * @dev_id: unique device ID
513  * @dev: struct device reference for dma mapping api
514  * @device_alloc_chan_resources: allocate resources and return the
515  *	number of allocated descriptors
516  * @device_free_chan_resources: release DMA channel's resources
517  * @device_prep_dma_memcpy: prepares a memcpy operation
518  * @device_prep_dma_xor: prepares a xor operation
519  * @device_prep_dma_xor_val: prepares a xor validation operation
520  * @device_prep_dma_pq: prepares a pq operation
521  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
522  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
523  * @device_prep_slave_sg: prepares a slave dma operation
524  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
525  *	The function takes a buffer of size buf_len. The callback function will
526  *	be called after period_len bytes have been transferred.
527  * @device_prep_interleaved_dma: Transfer expression in a generic way.
528  * @device_control: manipulate all pending operations on a channel, returns
529  *	zero or error code
530  * @device_tx_status: poll for transaction completion, the optional
531  *	txstate parameter can be supplied with a pointer to get a
532  *	struct with auxiliary transfer status information, otherwise the call
533  *	will just return a simple status code
534  * @device_issue_pending: push pending transactions to hardware
535  */
536 struct dma_device {
537 
538 	unsigned int chancnt;
539 	unsigned int privatecnt;
540 	struct list_head channels;
541 	struct list_head global_node;
542 	dma_cap_mask_t  cap_mask;
543 	unsigned short max_xor;
544 	unsigned short max_pq;
545 	u8 copy_align;
546 	u8 xor_align;
547 	u8 pq_align;
548 	u8 fill_align;
549 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
550 
551 	int dev_id;
552 	struct device *dev;
553 
554 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
555 	void (*device_free_chan_resources)(struct dma_chan *chan);
556 
557 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
558 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
559 		size_t len, unsigned long flags);
560 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
561 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
562 		unsigned int src_cnt, size_t len, unsigned long flags);
563 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
564 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
565 		size_t len, enum sum_check_flags *result, unsigned long flags);
566 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
567 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
568 		unsigned int src_cnt, const unsigned char *scf,
569 		size_t len, unsigned long flags);
570 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
571 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
572 		unsigned int src_cnt, const unsigned char *scf, size_t len,
573 		enum sum_check_flags *pqres, unsigned long flags);
574 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
575 		struct dma_chan *chan, unsigned long flags);
576 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
577 		struct dma_chan *chan,
578 		struct scatterlist *dst_sg, unsigned int dst_nents,
579 		struct scatterlist *src_sg, unsigned int src_nents,
580 		unsigned long flags);
581 
582 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
583 		struct dma_chan *chan, struct scatterlist *sgl,
584 		unsigned int sg_len, enum dma_transfer_direction direction,
585 		unsigned long flags, void *context);
586 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
587 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
588 		size_t period_len, enum dma_transfer_direction direction,
589 		unsigned long flags, void *context);
590 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
591 		struct dma_chan *chan, struct dma_interleaved_template *xt,
592 		unsigned long flags);
593 	int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
594 		unsigned long arg);
595 
596 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
597 					    dma_cookie_t cookie,
598 					    struct dma_tx_state *txstate);
599 	void (*device_issue_pending)(struct dma_chan *chan);
600 };
601 
602 static inline int dmaengine_device_control(struct dma_chan *chan,
603 					   enum dma_ctrl_cmd cmd,
604 					   unsigned long arg)
605 {
606 	if (chan->device->device_control)
607 		return chan->device->device_control(chan, cmd, arg);
608 
609 	return -ENOSYS;
610 }
611 
612 static inline int dmaengine_slave_config(struct dma_chan *chan,
613 					  struct dma_slave_config *config)
614 {
615 	return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
616 			(unsigned long)config);
617 }
618 
619 static inline bool is_slave_direction(enum dma_transfer_direction direction)
620 {
621 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
622 }
623 
624 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
625 	struct dma_chan *chan, dma_addr_t buf, size_t len,
626 	enum dma_transfer_direction dir, unsigned long flags)
627 {
628 	struct scatterlist sg;
629 	sg_init_table(&sg, 1);
630 	sg_dma_address(&sg) = buf;
631 	sg_dma_len(&sg) = len;
632 
633 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
634 						  dir, flags, NULL);
635 }
636 
637 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
638 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
639 	enum dma_transfer_direction dir, unsigned long flags)
640 {
641 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
642 						  dir, flags, NULL);
643 }
644 
645 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
646 struct rio_dma_ext;
647 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
648 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
649 	enum dma_transfer_direction dir, unsigned long flags,
650 	struct rio_dma_ext *rio_ext)
651 {
652 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
653 						  dir, flags, rio_ext);
654 }
655 #endif
656 
657 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
658 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
659 		size_t period_len, enum dma_transfer_direction dir,
660 		unsigned long flags)
661 {
662 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
663 						period_len, dir, flags, NULL);
664 }
665 
666 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
667 		struct dma_chan *chan, struct dma_interleaved_template *xt,
668 		unsigned long flags)
669 {
670 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
671 }
672 
673 static inline int dmaengine_terminate_all(struct dma_chan *chan)
674 {
675 	return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
676 }
677 
678 static inline int dmaengine_pause(struct dma_chan *chan)
679 {
680 	return dmaengine_device_control(chan, DMA_PAUSE, 0);
681 }
682 
683 static inline int dmaengine_resume(struct dma_chan *chan)
684 {
685 	return dmaengine_device_control(chan, DMA_RESUME, 0);
686 }
687 
688 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
689 	dma_cookie_t cookie, struct dma_tx_state *state)
690 {
691 	return chan->device->device_tx_status(chan, cookie, state);
692 }
693 
694 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
695 {
696 	return desc->tx_submit(desc);
697 }
698 
699 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
700 {
701 	size_t mask;
702 
703 	if (!align)
704 		return true;
705 	mask = (1 << align) - 1;
706 	if (mask & (off1 | off2 | len))
707 		return false;
708 	return true;
709 }
710 
711 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
712 				       size_t off2, size_t len)
713 {
714 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
715 }
716 
717 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
718 				      size_t off2, size_t len)
719 {
720 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
721 }
722 
723 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
724 				     size_t off2, size_t len)
725 {
726 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
727 }
728 
729 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
730 				       size_t off2, size_t len)
731 {
732 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
733 }
734 
735 static inline void
736 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
737 {
738 	dma->max_pq = maxpq;
739 	if (has_pq_continue)
740 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
741 }
742 
743 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
744 {
745 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
746 }
747 
748 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
749 {
750 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
751 
752 	return (flags & mask) == mask;
753 }
754 
755 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
756 {
757 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
758 }
759 
760 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
761 {
762 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
763 }
764 
765 /* dma_maxpq - reduce maxpq in the face of continued operations
766  * @dma - dma device with PQ capability
767  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
768  *
769  * When an engine does not support native continuation we need 3 extra
770  * source slots to reuse P and Q with the following coefficients:
771  * 1/ {00} * P : remove P from Q', but use it as a source for P'
772  * 2/ {01} * Q : use Q to continue Q' calculation
773  * 3/ {00} * Q : subtract Q from P' to cancel (2)
774  *
775  * In the case where P is disabled we only need 1 extra source:
776  * 1/ {01} * Q : use Q to continue Q' calculation
777  */
778 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
779 {
780 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
781 		return dma_dev_to_maxpq(dma);
782 	else if (dmaf_p_disabled_continue(flags))
783 		return dma_dev_to_maxpq(dma) - 1;
784 	else if (dmaf_continue(flags))
785 		return dma_dev_to_maxpq(dma) - 3;
786 	BUG();
787 }
788 
789 /* --- public DMA engine API --- */
790 
791 #ifdef CONFIG_DMA_ENGINE
792 void dmaengine_get(void);
793 void dmaengine_put(void);
794 #else
795 static inline void dmaengine_get(void)
796 {
797 }
798 static inline void dmaengine_put(void)
799 {
800 }
801 #endif
802 
803 #ifdef CONFIG_NET_DMA
804 #define net_dmaengine_get()	dmaengine_get()
805 #define net_dmaengine_put()	dmaengine_put()
806 #else
807 static inline void net_dmaengine_get(void)
808 {
809 }
810 static inline void net_dmaengine_put(void)
811 {
812 }
813 #endif
814 
815 #ifdef CONFIG_ASYNC_TX_DMA
816 #define async_dmaengine_get()	dmaengine_get()
817 #define async_dmaengine_put()	dmaengine_put()
818 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
819 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
820 #else
821 #define async_dma_find_channel(type) dma_find_channel(type)
822 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
823 #else
824 static inline void async_dmaengine_get(void)
825 {
826 }
827 static inline void async_dmaengine_put(void)
828 {
829 }
830 static inline struct dma_chan *
831 async_dma_find_channel(enum dma_transaction_type type)
832 {
833 	return NULL;
834 }
835 #endif /* CONFIG_ASYNC_TX_DMA */
836 
837 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
838 	void *dest, void *src, size_t len);
839 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
840 	struct page *page, unsigned int offset, void *kdata, size_t len);
841 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
842 	struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
843 	unsigned int src_off, size_t len);
844 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
845 	struct dma_chan *chan);
846 
847 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
848 {
849 	tx->flags |= DMA_CTRL_ACK;
850 }
851 
852 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
853 {
854 	tx->flags &= ~DMA_CTRL_ACK;
855 }
856 
857 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
858 {
859 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
860 }
861 
862 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
863 static inline void
864 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
865 {
866 	set_bit(tx_type, dstp->bits);
867 }
868 
869 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
870 static inline void
871 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
872 {
873 	clear_bit(tx_type, dstp->bits);
874 }
875 
876 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
877 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
878 {
879 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
880 }
881 
882 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
883 static inline int
884 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
885 {
886 	return test_bit(tx_type, srcp->bits);
887 }
888 
889 #define for_each_dma_cap_mask(cap, mask) \
890 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
891 
892 /**
893  * dma_async_issue_pending - flush pending transactions to HW
894  * @chan: target DMA channel
895  *
896  * This allows drivers to push copies to HW in batches,
897  * reducing MMIO writes where possible.
898  */
899 static inline void dma_async_issue_pending(struct dma_chan *chan)
900 {
901 	chan->device->device_issue_pending(chan);
902 }
903 
904 /**
905  * dma_async_is_tx_complete - poll for transaction completion
906  * @chan: DMA channel
907  * @cookie: transaction identifier to check status of
908  * @last: returns last completed cookie, can be NULL
909  * @used: returns last issued cookie, can be NULL
910  *
911  * If @last and @used are passed in, upon return they reflect the driver
912  * internal state and can be used with dma_async_is_complete() to check
913  * the status of multiple cookies without re-checking hardware state.
914  */
915 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
916 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
917 {
918 	struct dma_tx_state state;
919 	enum dma_status status;
920 
921 	status = chan->device->device_tx_status(chan, cookie, &state);
922 	if (last)
923 		*last = state.last;
924 	if (used)
925 		*used = state.used;
926 	return status;
927 }
928 
929 /**
930  * dma_async_is_complete - test a cookie against chan state
931  * @cookie: transaction identifier to test status of
932  * @last_complete: last know completed transaction
933  * @last_used: last cookie value handed out
934  *
935  * dma_async_is_complete() is used in dma_async_is_tx_complete()
936  * the test logic is separated for lightweight testing of multiple cookies
937  */
938 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
939 			dma_cookie_t last_complete, dma_cookie_t last_used)
940 {
941 	if (last_complete <= last_used) {
942 		if ((cookie <= last_complete) || (cookie > last_used))
943 			return DMA_SUCCESS;
944 	} else {
945 		if ((cookie <= last_complete) && (cookie > last_used))
946 			return DMA_SUCCESS;
947 	}
948 	return DMA_IN_PROGRESS;
949 }
950 
951 static inline void
952 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
953 {
954 	if (st) {
955 		st->last = last;
956 		st->used = used;
957 		st->residue = residue;
958 	}
959 }
960 
961 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
962 #ifdef CONFIG_DMA_ENGINE
963 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
964 void dma_issue_pending_all(void);
965 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
966 					dma_filter_fn fn, void *fn_param);
967 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
968 void dma_release_channel(struct dma_chan *chan);
969 #else
970 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
971 {
972 	return DMA_SUCCESS;
973 }
974 static inline void dma_issue_pending_all(void)
975 {
976 }
977 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
978 					      dma_filter_fn fn, void *fn_param)
979 {
980 	return NULL;
981 }
982 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
983 							 const char *name)
984 {
985 	return NULL;
986 }
987 static inline void dma_release_channel(struct dma_chan *chan)
988 {
989 }
990 #endif
991 
992 /* --- DMA device --- */
993 
994 int dma_async_device_register(struct dma_device *device);
995 void dma_async_device_unregister(struct dma_device *device);
996 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
997 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
998 struct dma_chan *net_dma_find_channel(void);
999 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1000 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1001 	__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1002 
1003 static inline struct dma_chan
1004 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1005 				  dma_filter_fn fn, void *fn_param,
1006 				  struct device *dev, char *name)
1007 {
1008 	struct dma_chan *chan;
1009 
1010 	chan = dma_request_slave_channel(dev, name);
1011 	if (chan)
1012 		return chan;
1013 
1014 	return __dma_request_channel(mask, fn, fn_param);
1015 }
1016 
1017 /* --- Helper iov-locking functions --- */
1018 
1019 struct dma_page_list {
1020 	char __user *base_address;
1021 	int nr_pages;
1022 	struct page **pages;
1023 };
1024 
1025 struct dma_pinned_list {
1026 	int nr_iovecs;
1027 	struct dma_page_list page_list[0];
1028 };
1029 
1030 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1031 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1032 
1033 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1034 	struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1035 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1036 	struct dma_pinned_list *pinned_list, struct page *page,
1037 	unsigned int offset, size_t len);
1038 
1039 #endif /* DMAENGINE_H */
1040