xref: /linux-6.15/include/linux/dmaengine.h (revision cee2cfb7)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19 
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28 
29 /**
30  * typedef dma_cookie_t - an opaque DMA cookie
31  *
32  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33  */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE	1
36 
37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 	return cookie < 0 ? cookie : 0;
40 }
41 
42 /**
43  * enum dma_status - DMA transaction status
44  * @DMA_COMPLETE: transaction completed
45  * @DMA_IN_PROGRESS: transaction not yet processed
46  * @DMA_PAUSED: transaction is paused
47  * @DMA_ERROR: transaction failed
48  */
49 enum dma_status {
50 	DMA_COMPLETE,
51 	DMA_IN_PROGRESS,
52 	DMA_PAUSED,
53 	DMA_ERROR,
54 };
55 
56 /**
57  * enum dma_transaction_type - DMA transaction types/indexes
58  *
59  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
60  * automatically set as dma devices are registered.
61  */
62 enum dma_transaction_type {
63 	DMA_MEMCPY,
64 	DMA_XOR,
65 	DMA_PQ,
66 	DMA_XOR_VAL,
67 	DMA_PQ_VAL,
68 	DMA_MEMSET,
69 	DMA_MEMSET_SG,
70 	DMA_INTERRUPT,
71 	DMA_SG,
72 	DMA_PRIVATE,
73 	DMA_ASYNC_TX,
74 	DMA_SLAVE,
75 	DMA_CYCLIC,
76 	DMA_INTERLEAVE,
77 /* last transaction type for creation of the capabilities mask */
78 	DMA_TX_TYPE_END,
79 };
80 
81 /**
82  * enum dma_transfer_direction - dma transfer mode and direction indicator
83  * @DMA_MEM_TO_MEM: Async/Memcpy mode
84  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87  */
88 enum dma_transfer_direction {
89 	DMA_MEM_TO_MEM,
90 	DMA_MEM_TO_DEV,
91 	DMA_DEV_TO_MEM,
92 	DMA_DEV_TO_DEV,
93 	DMA_TRANS_NONE,
94 };
95 
96 /**
97  * Interleaved Transfer Request
98  * ----------------------------
99  * A chunk is collection of contiguous bytes to be transfered.
100  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101  * ICGs may or maynot change between chunks.
102  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103  *  that when repeated an integral number of times, specifies the transfer.
104  * A transfer template is specification of a Frame, the number of times
105  *  it is to be repeated and other per-transfer attributes.
106  *
107  * Practically, a client driver would have ready a template for each
108  *  type of transfer it is going to need during its lifetime and
109  *  set only 'src_start' and 'dst_start' before submitting the requests.
110  *
111  *
112  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
113  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114  *
115  *    ==  Chunk size
116  *    ... ICG
117  */
118 
119 /**
120  * struct data_chunk - Element of scatter-gather list that makes a frame.
121  * @size: Number of bytes to read from source.
122  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
123  * @icg: Number of bytes to jump after last src/dst address of this
124  *	 chunk and before first src/dst address for next chunk.
125  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
127  * @dst_icg: Number of bytes to jump after last dst address of this
128  *	 chunk and before the first dst address for next chunk.
129  *	 Ignored if dst_inc is true and dst_sgl is false.
130  * @src_icg: Number of bytes to jump after last src address of this
131  *	 chunk and before the first src address for next chunk.
132  *	 Ignored if src_inc is true and src_sgl is false.
133  */
134 struct data_chunk {
135 	size_t size;
136 	size_t icg;
137 	size_t dst_icg;
138 	size_t src_icg;
139 };
140 
141 /**
142  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
143  *	 and attributes.
144  * @src_start: Bus address of source for the first chunk.
145  * @dst_start: Bus address of destination for the first chunk.
146  * @dir: Specifies the type of Source and Destination.
147  * @src_inc: If the source address increments after reading from it.
148  * @dst_inc: If the destination address increments after writing to it.
149  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150  *		Otherwise, source is read contiguously (icg ignored).
151  *		Ignored if src_inc is false.
152  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153  *		Otherwise, destination is filled contiguously (icg ignored).
154  *		Ignored if dst_inc is false.
155  * @numf: Number of frames in this template.
156  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157  * @sgl: Array of {chunk,icg} pairs that make up a frame.
158  */
159 struct dma_interleaved_template {
160 	dma_addr_t src_start;
161 	dma_addr_t dst_start;
162 	enum dma_transfer_direction dir;
163 	bool src_inc;
164 	bool dst_inc;
165 	bool src_sgl;
166 	bool dst_sgl;
167 	size_t numf;
168 	size_t frame_size;
169 	struct data_chunk sgl[0];
170 };
171 
172 /**
173  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
174  *  control completion, and communicate status.
175  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
176  *  this transaction
177  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
178  *  acknowledges receipt, i.e. has has a chance to establish any dependency
179  *  chains
180  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183  *  sources that were the result of a previous operation, in the case of a PQ
184  *  operation it continues the calculation with new sources
185  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186  *  on the result of this operation
187  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
188  *  cleared or freed
189  */
190 enum dma_ctrl_flags {
191 	DMA_PREP_INTERRUPT = (1 << 0),
192 	DMA_CTRL_ACK = (1 << 1),
193 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
194 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
195 	DMA_PREP_CONTINUE = (1 << 4),
196 	DMA_PREP_FENCE = (1 << 5),
197 	DMA_CTRL_REUSE = (1 << 6),
198 };
199 
200 /**
201  * enum sum_check_bits - bit position of pq_check_flags
202  */
203 enum sum_check_bits {
204 	SUM_CHECK_P = 0,
205 	SUM_CHECK_Q = 1,
206 };
207 
208 /**
209  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
212  */
213 enum sum_check_flags {
214 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
215 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
216 };
217 
218 
219 /**
220  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221  * See linux/cpumask.h
222  */
223 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
224 
225 /**
226  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
227  * @memcpy_count: transaction counter
228  * @bytes_transferred: byte counter
229  */
230 
231 struct dma_chan_percpu {
232 	/* stats */
233 	unsigned long memcpy_count;
234 	unsigned long bytes_transferred;
235 };
236 
237 /**
238  * struct dma_router - DMA router structure
239  * @dev: pointer to the DMA router device
240  * @route_free: function to be called when the route can be disconnected
241  */
242 struct dma_router {
243 	struct device *dev;
244 	void (*route_free)(struct device *dev, void *route_data);
245 };
246 
247 /**
248  * struct dma_chan - devices supply DMA channels, clients use them
249  * @device: ptr to the dma device who supplies this channel, always !%NULL
250  * @cookie: last cookie value returned to client
251  * @completed_cookie: last completed cookie for this channel
252  * @chan_id: channel ID for sysfs
253  * @dev: class device for sysfs
254  * @device_node: used to add this to the device chan list
255  * @local: per-cpu pointer to a struct dma_chan_percpu
256  * @client_count: how many clients are using this channel
257  * @table_count: number of appearances in the mem-to-mem allocation table
258  * @router: pointer to the DMA router structure
259  * @route_data: channel specific data for the router
260  * @private: private data for certain client-channel associations
261  */
262 struct dma_chan {
263 	struct dma_device *device;
264 	dma_cookie_t cookie;
265 	dma_cookie_t completed_cookie;
266 
267 	/* sysfs */
268 	int chan_id;
269 	struct dma_chan_dev *dev;
270 
271 	struct list_head device_node;
272 	struct dma_chan_percpu __percpu *local;
273 	int client_count;
274 	int table_count;
275 
276 	/* DMA router */
277 	struct dma_router *router;
278 	void *route_data;
279 
280 	void *private;
281 };
282 
283 /**
284  * struct dma_chan_dev - relate sysfs device node to backing channel device
285  * @chan: driver channel device
286  * @device: sysfs device
287  * @dev_id: parent dma_device dev_id
288  * @idr_ref: reference count to gate release of dma_device dev_id
289  */
290 struct dma_chan_dev {
291 	struct dma_chan *chan;
292 	struct device device;
293 	int dev_id;
294 	atomic_t *idr_ref;
295 };
296 
297 /**
298  * enum dma_slave_buswidth - defines bus width of the DMA slave
299  * device, source or target buses
300  */
301 enum dma_slave_buswidth {
302 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
303 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
304 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
305 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
306 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
308 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
309 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
310 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
311 };
312 
313 /**
314  * struct dma_slave_config - dma slave channel runtime config
315  * @direction: whether the data shall go in or out on this slave
316  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
317  * legal values. DEPRECATED, drivers should use the direction argument
318  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319  * the dir field in the dma_interleaved_template structure.
320  * @src_addr: this is the physical address where DMA slave data
321  * should be read (RX), if the source is memory this argument is
322  * ignored.
323  * @dst_addr: this is the physical address where DMA slave data
324  * should be written (TX), if the source is memory this argument
325  * is ignored.
326  * @src_addr_width: this is the width in bytes of the source (RX)
327  * register where DMA data shall be read. If the source
328  * is memory this may be ignored depending on architecture.
329  * Legal values: 1, 2, 4, 8.
330  * @dst_addr_width: same as src_addr_width but for destination
331  * target (TX) mutatis mutandis.
332  * @src_maxburst: the maximum number of words (note: words, as in
333  * units of the src_addr_width member, not bytes) that can be sent
334  * in one burst to the device. Typically something like half the
335  * FIFO depth on I/O peripherals so you don't overflow it. This
336  * may or may not be applicable on memory sources.
337  * @dst_maxburst: same as src_maxburst but for destination target
338  * mutatis mutandis.
339  * @src_port_window_size: The length of the register area in words the data need
340  * to be accessed on the device side. It is only used for devices which is using
341  * an area instead of a single register to receive the data. Typically the DMA
342  * loops in this area in order to transfer the data.
343  * @dst_port_window_size: same as src_port_window_size but for the destination
344  * port.
345  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
346  * with 'true' if peripheral should be flow controller. Direction will be
347  * selected at Runtime.
348  * @slave_id: Slave requester id. Only valid for slave channels. The dma
349  * slave peripheral will have unique id as dma requester which need to be
350  * pass as slave config.
351  *
352  * This struct is passed in as configuration data to a DMA engine
353  * in order to set up a certain channel for DMA transport at runtime.
354  * The DMA device/engine has to provide support for an additional
355  * callback in the dma_device structure, device_config and this struct
356  * will then be passed in as an argument to the function.
357  *
358  * The rationale for adding configuration information to this struct is as
359  * follows: if it is likely that more than one DMA slave controllers in
360  * the world will support the configuration option, then make it generic.
361  * If not: if it is fixed so that it be sent in static from the platform
362  * data, then prefer to do that.
363  */
364 struct dma_slave_config {
365 	enum dma_transfer_direction direction;
366 	phys_addr_t src_addr;
367 	phys_addr_t dst_addr;
368 	enum dma_slave_buswidth src_addr_width;
369 	enum dma_slave_buswidth dst_addr_width;
370 	u32 src_maxburst;
371 	u32 dst_maxburst;
372 	u32 src_port_window_size;
373 	u32 dst_port_window_size;
374 	bool device_fc;
375 	unsigned int slave_id;
376 };
377 
378 /**
379  * enum dma_residue_granularity - Granularity of the reported transfer residue
380  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
381  *  DMA channel is only able to tell whether a descriptor has been completed or
382  *  not, which means residue reporting is not supported by this channel. The
383  *  residue field of the dma_tx_state field will always be 0.
384  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
385  *  completed segment of the transfer (For cyclic transfers this is after each
386  *  period). This is typically implemented by having the hardware generate an
387  *  interrupt after each transferred segment and then the drivers updates the
388  *  outstanding residue by the size of the segment. Another possibility is if
389  *  the hardware supports scatter-gather and the segment descriptor has a field
390  *  which gets set after the segment has been completed. The driver then counts
391  *  the number of segments without the flag set to compute the residue.
392  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
393  *  burst. This is typically only supported if the hardware has a progress
394  *  register of some sort (E.g. a register with the current read/write address
395  *  or a register with the amount of bursts/beats/bytes that have been
396  *  transferred or still need to be transferred).
397  */
398 enum dma_residue_granularity {
399 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
400 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
401 	DMA_RESIDUE_GRANULARITY_BURST = 2,
402 };
403 
404 /* struct dma_slave_caps - expose capabilities of a slave channel only
405  *
406  * @src_addr_widths: bit mask of src addr widths the channel supports
407  * @dst_addr_widths: bit mask of dstn addr widths the channel supports
408  * @directions: bit mask of slave direction the channel supported
409  * 	since the enum dma_transfer_direction is not defined as bits for each
410  * 	type of direction, the dma controller should fill (1 << <TYPE>) and same
411  * 	should be checked by controller as well
412  * @max_burst: max burst capability per-transfer
413  * @cmd_pause: true, if pause and thereby resume is supported
414  * @cmd_terminate: true, if terminate cmd is supported
415  * @residue_granularity: granularity of the reported transfer residue
416  * @descriptor_reuse: if a descriptor can be reused by client and
417  * resubmitted multiple times
418  */
419 struct dma_slave_caps {
420 	u32 src_addr_widths;
421 	u32 dst_addr_widths;
422 	u32 directions;
423 	u32 max_burst;
424 	bool cmd_pause;
425 	bool cmd_terminate;
426 	enum dma_residue_granularity residue_granularity;
427 	bool descriptor_reuse;
428 };
429 
430 static inline const char *dma_chan_name(struct dma_chan *chan)
431 {
432 	return dev_name(&chan->dev->device);
433 }
434 
435 void dma_chan_cleanup(struct kref *kref);
436 
437 /**
438  * typedef dma_filter_fn - callback filter for dma_request_channel
439  * @chan: channel to be reviewed
440  * @filter_param: opaque parameter passed through dma_request_channel
441  *
442  * When this optional parameter is specified in a call to dma_request_channel a
443  * suitable channel is passed to this routine for further dispositioning before
444  * being returned.  Where 'suitable' indicates a non-busy channel that
445  * satisfies the given capability mask.  It returns 'true' to indicate that the
446  * channel is suitable.
447  */
448 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
449 
450 typedef void (*dma_async_tx_callback)(void *dma_async_param);
451 
452 enum dmaengine_tx_result {
453 	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
454 	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
455 	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
456 	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
457 };
458 
459 struct dmaengine_result {
460 	enum dmaengine_tx_result result;
461 	u32 residue;
462 };
463 
464 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
465 				const struct dmaengine_result *result);
466 
467 struct dmaengine_unmap_data {
468 	u8 map_cnt;
469 	u8 to_cnt;
470 	u8 from_cnt;
471 	u8 bidi_cnt;
472 	struct device *dev;
473 	struct kref kref;
474 	size_t len;
475 	dma_addr_t addr[0];
476 };
477 
478 /**
479  * struct dma_async_tx_descriptor - async transaction descriptor
480  * ---dma generic offload fields---
481  * @cookie: tracking cookie for this transaction, set to -EBUSY if
482  *	this tx is sitting on a dependency list
483  * @flags: flags to augment operation preparation, control completion, and
484  * 	communicate status
485  * @phys: physical address of the descriptor
486  * @chan: target channel for this operation
487  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
488  * descriptor pending. To be pushed on .issue_pending() call
489  * @callback: routine to call after this operation is complete
490  * @callback_param: general parameter to pass to the callback routine
491  * ---async_tx api specific fields---
492  * @next: at completion submit this descriptor
493  * @parent: pointer to the next level up in the dependency chain
494  * @lock: protect the parent and next pointers
495  */
496 struct dma_async_tx_descriptor {
497 	dma_cookie_t cookie;
498 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
499 	dma_addr_t phys;
500 	struct dma_chan *chan;
501 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
502 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
503 	dma_async_tx_callback callback;
504 	dma_async_tx_callback_result callback_result;
505 	void *callback_param;
506 	struct dmaengine_unmap_data *unmap;
507 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
508 	struct dma_async_tx_descriptor *next;
509 	struct dma_async_tx_descriptor *parent;
510 	spinlock_t lock;
511 #endif
512 };
513 
514 #ifdef CONFIG_DMA_ENGINE
515 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
516 				 struct dmaengine_unmap_data *unmap)
517 {
518 	kref_get(&unmap->kref);
519 	tx->unmap = unmap;
520 }
521 
522 struct dmaengine_unmap_data *
523 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
524 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
525 #else
526 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
527 				 struct dmaengine_unmap_data *unmap)
528 {
529 }
530 static inline struct dmaengine_unmap_data *
531 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
532 {
533 	return NULL;
534 }
535 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
536 {
537 }
538 #endif
539 
540 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
541 {
542 	if (tx->unmap) {
543 		dmaengine_unmap_put(tx->unmap);
544 		tx->unmap = NULL;
545 	}
546 }
547 
548 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
549 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
550 {
551 }
552 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
553 {
554 }
555 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
556 {
557 	BUG();
558 }
559 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
560 {
561 }
562 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
563 {
564 }
565 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
566 {
567 	return NULL;
568 }
569 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
570 {
571 	return NULL;
572 }
573 
574 #else
575 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
576 {
577 	spin_lock_bh(&txd->lock);
578 }
579 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
580 {
581 	spin_unlock_bh(&txd->lock);
582 }
583 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
584 {
585 	txd->next = next;
586 	next->parent = txd;
587 }
588 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
589 {
590 	txd->parent = NULL;
591 }
592 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
593 {
594 	txd->next = NULL;
595 }
596 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
597 {
598 	return txd->parent;
599 }
600 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
601 {
602 	return txd->next;
603 }
604 #endif
605 
606 /**
607  * struct dma_tx_state - filled in to report the status of
608  * a transfer.
609  * @last: last completed DMA cookie
610  * @used: last issued DMA cookie (i.e. the one in progress)
611  * @residue: the remaining number of bytes left to transmit
612  *	on the selected transfer for states DMA_IN_PROGRESS and
613  *	DMA_PAUSED if this is implemented in the driver, else 0
614  */
615 struct dma_tx_state {
616 	dma_cookie_t last;
617 	dma_cookie_t used;
618 	u32 residue;
619 };
620 
621 /**
622  * enum dmaengine_alignment - defines alignment of the DMA async tx
623  * buffers
624  */
625 enum dmaengine_alignment {
626 	DMAENGINE_ALIGN_1_BYTE = 0,
627 	DMAENGINE_ALIGN_2_BYTES = 1,
628 	DMAENGINE_ALIGN_4_BYTES = 2,
629 	DMAENGINE_ALIGN_8_BYTES = 3,
630 	DMAENGINE_ALIGN_16_BYTES = 4,
631 	DMAENGINE_ALIGN_32_BYTES = 5,
632 	DMAENGINE_ALIGN_64_BYTES = 6,
633 };
634 
635 /**
636  * struct dma_slave_map - associates slave device and it's slave channel with
637  * parameter to be used by a filter function
638  * @devname: name of the device
639  * @slave: slave channel name
640  * @param: opaque parameter to pass to struct dma_filter.fn
641  */
642 struct dma_slave_map {
643 	const char *devname;
644 	const char *slave;
645 	void *param;
646 };
647 
648 /**
649  * struct dma_filter - information for slave device/channel to filter_fn/param
650  * mapping
651  * @fn: filter function callback
652  * @mapcnt: number of slave device/channel in the map
653  * @map: array of channel to filter mapping data
654  */
655 struct dma_filter {
656 	dma_filter_fn fn;
657 	int mapcnt;
658 	const struct dma_slave_map *map;
659 };
660 
661 /**
662  * struct dma_device - info on the entity supplying DMA services
663  * @chancnt: how many DMA channels are supported
664  * @privatecnt: how many DMA channels are requested by dma_request_channel
665  * @channels: the list of struct dma_chan
666  * @global_node: list_head for global dma_device_list
667  * @filter: information for device/slave to filter function/param mapping
668  * @cap_mask: one or more dma_capability flags
669  * @max_xor: maximum number of xor sources, 0 if no capability
670  * @max_pq: maximum number of PQ sources and PQ-continue capability
671  * @copy_align: alignment shift for memcpy operations
672  * @xor_align: alignment shift for xor operations
673  * @pq_align: alignment shift for pq operations
674  * @fill_align: alignment shift for memset operations
675  * @dev_id: unique device ID
676  * @dev: struct device reference for dma mapping api
677  * @src_addr_widths: bit mask of src addr widths the device supports
678  * @dst_addr_widths: bit mask of dst addr widths the device supports
679  * @directions: bit mask of slave direction the device supports since
680  * 	the enum dma_transfer_direction is not defined as bits for
681  * 	each type of direction, the dma controller should fill (1 <<
682  * 	<TYPE>) and same should be checked by controller as well
683  * @max_burst: max burst capability per-transfer
684  * @residue_granularity: granularity of the transfer residue reported
685  *	by tx_status
686  * @device_alloc_chan_resources: allocate resources and return the
687  *	number of allocated descriptors
688  * @device_free_chan_resources: release DMA channel's resources
689  * @device_prep_dma_memcpy: prepares a memcpy operation
690  * @device_prep_dma_xor: prepares a xor operation
691  * @device_prep_dma_xor_val: prepares a xor validation operation
692  * @device_prep_dma_pq: prepares a pq operation
693  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
694  * @device_prep_dma_memset: prepares a memset operation
695  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
696  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
697  * @device_prep_slave_sg: prepares a slave dma operation
698  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
699  *	The function takes a buffer of size buf_len. The callback function will
700  *	be called after period_len bytes have been transferred.
701  * @device_prep_interleaved_dma: Transfer expression in a generic way.
702  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
703  * @device_config: Pushes a new configuration to a channel, return 0 or an error
704  *	code
705  * @device_pause: Pauses any transfer happening on a channel. Returns
706  *	0 or an error code
707  * @device_resume: Resumes any transfer on a channel previously
708  *	paused. Returns 0 or an error code
709  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
710  *	or an error code
711  * @device_synchronize: Synchronizes the termination of a transfers to the
712  *  current context.
713  * @device_tx_status: poll for transaction completion, the optional
714  *	txstate parameter can be supplied with a pointer to get a
715  *	struct with auxiliary transfer status information, otherwise the call
716  *	will just return a simple status code
717  * @device_issue_pending: push pending transactions to hardware
718  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
719  */
720 struct dma_device {
721 
722 	unsigned int chancnt;
723 	unsigned int privatecnt;
724 	struct list_head channels;
725 	struct list_head global_node;
726 	struct dma_filter filter;
727 	dma_cap_mask_t  cap_mask;
728 	unsigned short max_xor;
729 	unsigned short max_pq;
730 	enum dmaengine_alignment copy_align;
731 	enum dmaengine_alignment xor_align;
732 	enum dmaengine_alignment pq_align;
733 	enum dmaengine_alignment fill_align;
734 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
735 
736 	int dev_id;
737 	struct device *dev;
738 
739 	u32 src_addr_widths;
740 	u32 dst_addr_widths;
741 	u32 directions;
742 	u32 max_burst;
743 	bool descriptor_reuse;
744 	enum dma_residue_granularity residue_granularity;
745 
746 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
747 	void (*device_free_chan_resources)(struct dma_chan *chan);
748 
749 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
750 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
751 		size_t len, unsigned long flags);
752 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
753 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
754 		unsigned int src_cnt, size_t len, unsigned long flags);
755 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
756 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
757 		size_t len, enum sum_check_flags *result, unsigned long flags);
758 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
759 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
760 		unsigned int src_cnt, const unsigned char *scf,
761 		size_t len, unsigned long flags);
762 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
763 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
764 		unsigned int src_cnt, const unsigned char *scf, size_t len,
765 		enum sum_check_flags *pqres, unsigned long flags);
766 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
767 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
768 		unsigned long flags);
769 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
770 		struct dma_chan *chan, struct scatterlist *sg,
771 		unsigned int nents, int value, unsigned long flags);
772 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
773 		struct dma_chan *chan, unsigned long flags);
774 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
775 		struct dma_chan *chan,
776 		struct scatterlist *dst_sg, unsigned int dst_nents,
777 		struct scatterlist *src_sg, unsigned int src_nents,
778 		unsigned long flags);
779 
780 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
781 		struct dma_chan *chan, struct scatterlist *sgl,
782 		unsigned int sg_len, enum dma_transfer_direction direction,
783 		unsigned long flags, void *context);
784 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
785 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
786 		size_t period_len, enum dma_transfer_direction direction,
787 		unsigned long flags);
788 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
789 		struct dma_chan *chan, struct dma_interleaved_template *xt,
790 		unsigned long flags);
791 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
792 		struct dma_chan *chan, dma_addr_t dst, u64 data,
793 		unsigned long flags);
794 
795 	int (*device_config)(struct dma_chan *chan,
796 			     struct dma_slave_config *config);
797 	int (*device_pause)(struct dma_chan *chan);
798 	int (*device_resume)(struct dma_chan *chan);
799 	int (*device_terminate_all)(struct dma_chan *chan);
800 	void (*device_synchronize)(struct dma_chan *chan);
801 
802 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
803 					    dma_cookie_t cookie,
804 					    struct dma_tx_state *txstate);
805 	void (*device_issue_pending)(struct dma_chan *chan);
806 };
807 
808 static inline int dmaengine_slave_config(struct dma_chan *chan,
809 					  struct dma_slave_config *config)
810 {
811 	if (chan->device->device_config)
812 		return chan->device->device_config(chan, config);
813 
814 	return -ENOSYS;
815 }
816 
817 static inline bool is_slave_direction(enum dma_transfer_direction direction)
818 {
819 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
820 }
821 
822 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
823 	struct dma_chan *chan, dma_addr_t buf, size_t len,
824 	enum dma_transfer_direction dir, unsigned long flags)
825 {
826 	struct scatterlist sg;
827 	sg_init_table(&sg, 1);
828 	sg_dma_address(&sg) = buf;
829 	sg_dma_len(&sg) = len;
830 
831 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
832 		return NULL;
833 
834 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
835 						  dir, flags, NULL);
836 }
837 
838 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
839 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
840 	enum dma_transfer_direction dir, unsigned long flags)
841 {
842 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
843 		return NULL;
844 
845 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
846 						  dir, flags, NULL);
847 }
848 
849 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
850 struct rio_dma_ext;
851 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
852 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
853 	enum dma_transfer_direction dir, unsigned long flags,
854 	struct rio_dma_ext *rio_ext)
855 {
856 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
857 		return NULL;
858 
859 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
860 						  dir, flags, rio_ext);
861 }
862 #endif
863 
864 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
865 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
866 		size_t period_len, enum dma_transfer_direction dir,
867 		unsigned long flags)
868 {
869 	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
870 		return NULL;
871 
872 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
873 						period_len, dir, flags);
874 }
875 
876 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
877 		struct dma_chan *chan, struct dma_interleaved_template *xt,
878 		unsigned long flags)
879 {
880 	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
881 		return NULL;
882 
883 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
884 }
885 
886 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
887 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
888 		unsigned long flags)
889 {
890 	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
891 		return NULL;
892 
893 	return chan->device->device_prep_dma_memset(chan, dest, value,
894 						    len, flags);
895 }
896 
897 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
898 		struct dma_chan *chan,
899 		struct scatterlist *dst_sg, unsigned int dst_nents,
900 		struct scatterlist *src_sg, unsigned int src_nents,
901 		unsigned long flags)
902 {
903 	if (!chan || !chan->device || !chan->device->device_prep_dma_sg)
904 		return NULL;
905 
906 	return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
907 			src_sg, src_nents, flags);
908 }
909 
910 /**
911  * dmaengine_terminate_all() - Terminate all active DMA transfers
912  * @chan: The channel for which to terminate the transfers
913  *
914  * This function is DEPRECATED use either dmaengine_terminate_sync() or
915  * dmaengine_terminate_async() instead.
916  */
917 static inline int dmaengine_terminate_all(struct dma_chan *chan)
918 {
919 	if (chan->device->device_terminate_all)
920 		return chan->device->device_terminate_all(chan);
921 
922 	return -ENOSYS;
923 }
924 
925 /**
926  * dmaengine_terminate_async() - Terminate all active DMA transfers
927  * @chan: The channel for which to terminate the transfers
928  *
929  * Calling this function will terminate all active and pending descriptors
930  * that have previously been submitted to the channel. It is not guaranteed
931  * though that the transfer for the active descriptor has stopped when the
932  * function returns. Furthermore it is possible the complete callback of a
933  * submitted transfer is still running when this function returns.
934  *
935  * dmaengine_synchronize() needs to be called before it is safe to free
936  * any memory that is accessed by previously submitted descriptors or before
937  * freeing any resources accessed from within the completion callback of any
938  * perviously submitted descriptors.
939  *
940  * This function can be called from atomic context as well as from within a
941  * complete callback of a descriptor submitted on the same channel.
942  *
943  * If none of the two conditions above apply consider using
944  * dmaengine_terminate_sync() instead.
945  */
946 static inline int dmaengine_terminate_async(struct dma_chan *chan)
947 {
948 	if (chan->device->device_terminate_all)
949 		return chan->device->device_terminate_all(chan);
950 
951 	return -EINVAL;
952 }
953 
954 /**
955  * dmaengine_synchronize() - Synchronize DMA channel termination
956  * @chan: The channel to synchronize
957  *
958  * Synchronizes to the DMA channel termination to the current context. When this
959  * function returns it is guaranteed that all transfers for previously issued
960  * descriptors have stopped and and it is safe to free the memory assoicated
961  * with them. Furthermore it is guaranteed that all complete callback functions
962  * for a previously submitted descriptor have finished running and it is safe to
963  * free resources accessed from within the complete callbacks.
964  *
965  * The behavior of this function is undefined if dma_async_issue_pending() has
966  * been called between dmaengine_terminate_async() and this function.
967  *
968  * This function must only be called from non-atomic context and must not be
969  * called from within a complete callback of a descriptor submitted on the same
970  * channel.
971  */
972 static inline void dmaengine_synchronize(struct dma_chan *chan)
973 {
974 	might_sleep();
975 
976 	if (chan->device->device_synchronize)
977 		chan->device->device_synchronize(chan);
978 }
979 
980 /**
981  * dmaengine_terminate_sync() - Terminate all active DMA transfers
982  * @chan: The channel for which to terminate the transfers
983  *
984  * Calling this function will terminate all active and pending transfers
985  * that have previously been submitted to the channel. It is similar to
986  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
987  * stopped and that all complete callbacks have finished running when the
988  * function returns.
989  *
990  * This function must only be called from non-atomic context and must not be
991  * called from within a complete callback of a descriptor submitted on the same
992  * channel.
993  */
994 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
995 {
996 	int ret;
997 
998 	ret = dmaengine_terminate_async(chan);
999 	if (ret)
1000 		return ret;
1001 
1002 	dmaengine_synchronize(chan);
1003 
1004 	return 0;
1005 }
1006 
1007 static inline int dmaengine_pause(struct dma_chan *chan)
1008 {
1009 	if (chan->device->device_pause)
1010 		return chan->device->device_pause(chan);
1011 
1012 	return -ENOSYS;
1013 }
1014 
1015 static inline int dmaengine_resume(struct dma_chan *chan)
1016 {
1017 	if (chan->device->device_resume)
1018 		return chan->device->device_resume(chan);
1019 
1020 	return -ENOSYS;
1021 }
1022 
1023 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1024 	dma_cookie_t cookie, struct dma_tx_state *state)
1025 {
1026 	return chan->device->device_tx_status(chan, cookie, state);
1027 }
1028 
1029 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1030 {
1031 	return desc->tx_submit(desc);
1032 }
1033 
1034 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1035 					 size_t off1, size_t off2, size_t len)
1036 {
1037 	size_t mask;
1038 
1039 	if (!align)
1040 		return true;
1041 	mask = (1 << align) - 1;
1042 	if (mask & (off1 | off2 | len))
1043 		return false;
1044 	return true;
1045 }
1046 
1047 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1048 				       size_t off2, size_t len)
1049 {
1050 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1051 }
1052 
1053 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1054 				      size_t off2, size_t len)
1055 {
1056 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1057 }
1058 
1059 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1060 				     size_t off2, size_t len)
1061 {
1062 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1063 }
1064 
1065 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1066 				       size_t off2, size_t len)
1067 {
1068 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1069 }
1070 
1071 static inline void
1072 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1073 {
1074 	dma->max_pq = maxpq;
1075 	if (has_pq_continue)
1076 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1077 }
1078 
1079 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1080 {
1081 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1082 }
1083 
1084 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1085 {
1086 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1087 
1088 	return (flags & mask) == mask;
1089 }
1090 
1091 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1092 {
1093 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1094 }
1095 
1096 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1097 {
1098 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1099 }
1100 
1101 /* dma_maxpq - reduce maxpq in the face of continued operations
1102  * @dma - dma device with PQ capability
1103  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1104  *
1105  * When an engine does not support native continuation we need 3 extra
1106  * source slots to reuse P and Q with the following coefficients:
1107  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1108  * 2/ {01} * Q : use Q to continue Q' calculation
1109  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1110  *
1111  * In the case where P is disabled we only need 1 extra source:
1112  * 1/ {01} * Q : use Q to continue Q' calculation
1113  */
1114 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1115 {
1116 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1117 		return dma_dev_to_maxpq(dma);
1118 	else if (dmaf_p_disabled_continue(flags))
1119 		return dma_dev_to_maxpq(dma) - 1;
1120 	else if (dmaf_continue(flags))
1121 		return dma_dev_to_maxpq(dma) - 3;
1122 	BUG();
1123 }
1124 
1125 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1126 				      size_t dir_icg)
1127 {
1128 	if (inc) {
1129 		if (dir_icg)
1130 			return dir_icg;
1131 		else if (sgl)
1132 			return icg;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1139 					   struct data_chunk *chunk)
1140 {
1141 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1142 				 chunk->icg, chunk->dst_icg);
1143 }
1144 
1145 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1146 					   struct data_chunk *chunk)
1147 {
1148 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1149 				 chunk->icg, chunk->src_icg);
1150 }
1151 
1152 /* --- public DMA engine API --- */
1153 
1154 #ifdef CONFIG_DMA_ENGINE
1155 void dmaengine_get(void);
1156 void dmaengine_put(void);
1157 #else
1158 static inline void dmaengine_get(void)
1159 {
1160 }
1161 static inline void dmaengine_put(void)
1162 {
1163 }
1164 #endif
1165 
1166 #ifdef CONFIG_ASYNC_TX_DMA
1167 #define async_dmaengine_get()	dmaengine_get()
1168 #define async_dmaengine_put()	dmaengine_put()
1169 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1170 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1171 #else
1172 #define async_dma_find_channel(type) dma_find_channel(type)
1173 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1174 #else
1175 static inline void async_dmaengine_get(void)
1176 {
1177 }
1178 static inline void async_dmaengine_put(void)
1179 {
1180 }
1181 static inline struct dma_chan *
1182 async_dma_find_channel(enum dma_transaction_type type)
1183 {
1184 	return NULL;
1185 }
1186 #endif /* CONFIG_ASYNC_TX_DMA */
1187 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1188 				  struct dma_chan *chan);
1189 
1190 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1191 {
1192 	tx->flags |= DMA_CTRL_ACK;
1193 }
1194 
1195 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1196 {
1197 	tx->flags &= ~DMA_CTRL_ACK;
1198 }
1199 
1200 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1201 {
1202 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1203 }
1204 
1205 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1206 static inline void
1207 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1208 {
1209 	set_bit(tx_type, dstp->bits);
1210 }
1211 
1212 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1213 static inline void
1214 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1215 {
1216 	clear_bit(tx_type, dstp->bits);
1217 }
1218 
1219 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1220 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1221 {
1222 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1223 }
1224 
1225 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1226 static inline int
1227 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1228 {
1229 	return test_bit(tx_type, srcp->bits);
1230 }
1231 
1232 #define for_each_dma_cap_mask(cap, mask) \
1233 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1234 
1235 /**
1236  * dma_async_issue_pending - flush pending transactions to HW
1237  * @chan: target DMA channel
1238  *
1239  * This allows drivers to push copies to HW in batches,
1240  * reducing MMIO writes where possible.
1241  */
1242 static inline void dma_async_issue_pending(struct dma_chan *chan)
1243 {
1244 	chan->device->device_issue_pending(chan);
1245 }
1246 
1247 /**
1248  * dma_async_is_tx_complete - poll for transaction completion
1249  * @chan: DMA channel
1250  * @cookie: transaction identifier to check status of
1251  * @last: returns last completed cookie, can be NULL
1252  * @used: returns last issued cookie, can be NULL
1253  *
1254  * If @last and @used are passed in, upon return they reflect the driver
1255  * internal state and can be used with dma_async_is_complete() to check
1256  * the status of multiple cookies without re-checking hardware state.
1257  */
1258 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1259 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1260 {
1261 	struct dma_tx_state state;
1262 	enum dma_status status;
1263 
1264 	status = chan->device->device_tx_status(chan, cookie, &state);
1265 	if (last)
1266 		*last = state.last;
1267 	if (used)
1268 		*used = state.used;
1269 	return status;
1270 }
1271 
1272 /**
1273  * dma_async_is_complete - test a cookie against chan state
1274  * @cookie: transaction identifier to test status of
1275  * @last_complete: last know completed transaction
1276  * @last_used: last cookie value handed out
1277  *
1278  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1279  * the test logic is separated for lightweight testing of multiple cookies
1280  */
1281 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1282 			dma_cookie_t last_complete, dma_cookie_t last_used)
1283 {
1284 	if (last_complete <= last_used) {
1285 		if ((cookie <= last_complete) || (cookie > last_used))
1286 			return DMA_COMPLETE;
1287 	} else {
1288 		if ((cookie <= last_complete) && (cookie > last_used))
1289 			return DMA_COMPLETE;
1290 	}
1291 	return DMA_IN_PROGRESS;
1292 }
1293 
1294 static inline void
1295 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1296 {
1297 	if (st) {
1298 		st->last = last;
1299 		st->used = used;
1300 		st->residue = residue;
1301 	}
1302 }
1303 
1304 #ifdef CONFIG_DMA_ENGINE
1305 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1306 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1307 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1308 void dma_issue_pending_all(void);
1309 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1310 					dma_filter_fn fn, void *fn_param);
1311 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1312 
1313 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1314 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1315 
1316 void dma_release_channel(struct dma_chan *chan);
1317 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1318 #else
1319 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1320 {
1321 	return NULL;
1322 }
1323 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1324 {
1325 	return DMA_COMPLETE;
1326 }
1327 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1328 {
1329 	return DMA_COMPLETE;
1330 }
1331 static inline void dma_issue_pending_all(void)
1332 {
1333 }
1334 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1335 					      dma_filter_fn fn, void *fn_param)
1336 {
1337 	return NULL;
1338 }
1339 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1340 							 const char *name)
1341 {
1342 	return NULL;
1343 }
1344 static inline struct dma_chan *dma_request_chan(struct device *dev,
1345 						const char *name)
1346 {
1347 	return ERR_PTR(-ENODEV);
1348 }
1349 static inline struct dma_chan *dma_request_chan_by_mask(
1350 						const dma_cap_mask_t *mask)
1351 {
1352 	return ERR_PTR(-ENODEV);
1353 }
1354 static inline void dma_release_channel(struct dma_chan *chan)
1355 {
1356 }
1357 static inline int dma_get_slave_caps(struct dma_chan *chan,
1358 				     struct dma_slave_caps *caps)
1359 {
1360 	return -ENXIO;
1361 }
1362 #endif
1363 
1364 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1365 
1366 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1367 {
1368 	struct dma_slave_caps caps;
1369 
1370 	dma_get_slave_caps(tx->chan, &caps);
1371 
1372 	if (caps.descriptor_reuse) {
1373 		tx->flags |= DMA_CTRL_REUSE;
1374 		return 0;
1375 	} else {
1376 		return -EPERM;
1377 	}
1378 }
1379 
1380 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1381 {
1382 	tx->flags &= ~DMA_CTRL_REUSE;
1383 }
1384 
1385 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1386 {
1387 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1388 }
1389 
1390 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1391 {
1392 	/* this is supported for reusable desc, so check that */
1393 	if (dmaengine_desc_test_reuse(desc))
1394 		return desc->desc_free(desc);
1395 	else
1396 		return -EPERM;
1397 }
1398 
1399 /* --- DMA device --- */
1400 
1401 int dma_async_device_register(struct dma_device *device);
1402 void dma_async_device_unregister(struct dma_device *device);
1403 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1404 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1405 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1406 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1407 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1408 	__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1409 
1410 static inline struct dma_chan
1411 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1412 				  dma_filter_fn fn, void *fn_param,
1413 				  struct device *dev, const char *name)
1414 {
1415 	struct dma_chan *chan;
1416 
1417 	chan = dma_request_slave_channel(dev, name);
1418 	if (chan)
1419 		return chan;
1420 
1421 	if (!fn || !fn_param)
1422 		return NULL;
1423 
1424 	return __dma_request_channel(mask, fn, fn_param);
1425 }
1426 #endif /* DMAENGINE_H */
1427