1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21 #ifndef LINUX_DMAENGINE_H 22 #define LINUX_DMAENGINE_H 23 24 #include <linux/device.h> 25 #include <linux/err.h> 26 #include <linux/uio.h> 27 #include <linux/bug.h> 28 #include <linux/scatterlist.h> 29 #include <linux/bitmap.h> 30 #include <linux/types.h> 31 #include <asm/page.h> 32 33 /** 34 * typedef dma_cookie_t - an opaque DMA cookie 35 * 36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 37 */ 38 typedef s32 dma_cookie_t; 39 #define DMA_MIN_COOKIE 1 40 #define DMA_MAX_COOKIE INT_MAX 41 42 static inline int dma_submit_error(dma_cookie_t cookie) 43 { 44 return cookie < 0 ? cookie : 0; 45 } 46 47 /** 48 * enum dma_status - DMA transaction status 49 * @DMA_COMPLETE: transaction completed 50 * @DMA_IN_PROGRESS: transaction not yet processed 51 * @DMA_PAUSED: transaction is paused 52 * @DMA_ERROR: transaction failed 53 */ 54 enum dma_status { 55 DMA_COMPLETE, 56 DMA_IN_PROGRESS, 57 DMA_PAUSED, 58 DMA_ERROR, 59 }; 60 61 /** 62 * enum dma_transaction_type - DMA transaction types/indexes 63 * 64 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 65 * automatically set as dma devices are registered. 66 */ 67 enum dma_transaction_type { 68 DMA_MEMCPY, 69 DMA_XOR, 70 DMA_PQ, 71 DMA_XOR_VAL, 72 DMA_PQ_VAL, 73 DMA_INTERRUPT, 74 DMA_SG, 75 DMA_PRIVATE, 76 DMA_ASYNC_TX, 77 DMA_SLAVE, 78 DMA_CYCLIC, 79 DMA_INTERLEAVE, 80 /* last transaction type for creation of the capabilities mask */ 81 DMA_TX_TYPE_END, 82 }; 83 84 /** 85 * enum dma_transfer_direction - dma transfer mode and direction indicator 86 * @DMA_MEM_TO_MEM: Async/Memcpy mode 87 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 88 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 89 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 90 */ 91 enum dma_transfer_direction { 92 DMA_MEM_TO_MEM, 93 DMA_MEM_TO_DEV, 94 DMA_DEV_TO_MEM, 95 DMA_DEV_TO_DEV, 96 DMA_TRANS_NONE, 97 }; 98 99 /** 100 * Interleaved Transfer Request 101 * ---------------------------- 102 * A chunk is collection of contiguous bytes to be transfered. 103 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 104 * ICGs may or maynot change between chunks. 105 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 106 * that when repeated an integral number of times, specifies the transfer. 107 * A transfer template is specification of a Frame, the number of times 108 * it is to be repeated and other per-transfer attributes. 109 * 110 * Practically, a client driver would have ready a template for each 111 * type of transfer it is going to need during its lifetime and 112 * set only 'src_start' and 'dst_start' before submitting the requests. 113 * 114 * 115 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 116 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 117 * 118 * == Chunk size 119 * ... ICG 120 */ 121 122 /** 123 * struct data_chunk - Element of scatter-gather list that makes a frame. 124 * @size: Number of bytes to read from source. 125 * size_dst := fn(op, size_src), so doesn't mean much for destination. 126 * @icg: Number of bytes to jump after last src/dst address of this 127 * chunk and before first src/dst address for next chunk. 128 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 129 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 130 */ 131 struct data_chunk { 132 size_t size; 133 size_t icg; 134 }; 135 136 /** 137 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 138 * and attributes. 139 * @src_start: Bus address of source for the first chunk. 140 * @dst_start: Bus address of destination for the first chunk. 141 * @dir: Specifies the type of Source and Destination. 142 * @src_inc: If the source address increments after reading from it. 143 * @dst_inc: If the destination address increments after writing to it. 144 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 145 * Otherwise, source is read contiguously (icg ignored). 146 * Ignored if src_inc is false. 147 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 148 * Otherwise, destination is filled contiguously (icg ignored). 149 * Ignored if dst_inc is false. 150 * @numf: Number of frames in this template. 151 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 152 * @sgl: Array of {chunk,icg} pairs that make up a frame. 153 */ 154 struct dma_interleaved_template { 155 dma_addr_t src_start; 156 dma_addr_t dst_start; 157 enum dma_transfer_direction dir; 158 bool src_inc; 159 bool dst_inc; 160 bool src_sgl; 161 bool dst_sgl; 162 size_t numf; 163 size_t frame_size; 164 struct data_chunk sgl[0]; 165 }; 166 167 /** 168 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 169 * control completion, and communicate status. 170 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 171 * this transaction 172 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 173 * acknowledges receipt, i.e. has has a chance to establish any dependency 174 * chains 175 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 176 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 177 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 178 * sources that were the result of a previous operation, in the case of a PQ 179 * operation it continues the calculation with new sources 180 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 181 * on the result of this operation 182 */ 183 enum dma_ctrl_flags { 184 DMA_PREP_INTERRUPT = (1 << 0), 185 DMA_CTRL_ACK = (1 << 1), 186 DMA_PREP_PQ_DISABLE_P = (1 << 2), 187 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 188 DMA_PREP_CONTINUE = (1 << 4), 189 DMA_PREP_FENCE = (1 << 5), 190 }; 191 192 /** 193 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 194 * on a running channel. 195 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 196 * @DMA_PAUSE: pause ongoing transfers 197 * @DMA_RESUME: resume paused transfer 198 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 199 * that need to runtime reconfigure the slave channels (as opposed to passing 200 * configuration data in statically from the platform). An additional 201 * argument of struct dma_slave_config must be passed in with this 202 * command. 203 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller 204 * into external start mode. 205 */ 206 enum dma_ctrl_cmd { 207 DMA_TERMINATE_ALL, 208 DMA_PAUSE, 209 DMA_RESUME, 210 DMA_SLAVE_CONFIG, 211 FSLDMA_EXTERNAL_START, 212 }; 213 214 /** 215 * enum sum_check_bits - bit position of pq_check_flags 216 */ 217 enum sum_check_bits { 218 SUM_CHECK_P = 0, 219 SUM_CHECK_Q = 1, 220 }; 221 222 /** 223 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 224 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 225 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 226 */ 227 enum sum_check_flags { 228 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 229 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 230 }; 231 232 233 /** 234 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 235 * See linux/cpumask.h 236 */ 237 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 238 239 /** 240 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 241 * @memcpy_count: transaction counter 242 * @bytes_transferred: byte counter 243 */ 244 245 struct dma_chan_percpu { 246 /* stats */ 247 unsigned long memcpy_count; 248 unsigned long bytes_transferred; 249 }; 250 251 /** 252 * struct dma_chan - devices supply DMA channels, clients use them 253 * @device: ptr to the dma device who supplies this channel, always !%NULL 254 * @cookie: last cookie value returned to client 255 * @completed_cookie: last completed cookie for this channel 256 * @chan_id: channel ID for sysfs 257 * @dev: class device for sysfs 258 * @device_node: used to add this to the device chan list 259 * @local: per-cpu pointer to a struct dma_chan_percpu 260 * @client_count: how many clients are using this channel 261 * @table_count: number of appearances in the mem-to-mem allocation table 262 * @private: private data for certain client-channel associations 263 */ 264 struct dma_chan { 265 struct dma_device *device; 266 dma_cookie_t cookie; 267 dma_cookie_t completed_cookie; 268 269 /* sysfs */ 270 int chan_id; 271 struct dma_chan_dev *dev; 272 273 struct list_head device_node; 274 struct dma_chan_percpu __percpu *local; 275 int client_count; 276 int table_count; 277 void *private; 278 }; 279 280 /** 281 * struct dma_chan_dev - relate sysfs device node to backing channel device 282 * @chan: driver channel device 283 * @device: sysfs device 284 * @dev_id: parent dma_device dev_id 285 * @idr_ref: reference count to gate release of dma_device dev_id 286 */ 287 struct dma_chan_dev { 288 struct dma_chan *chan; 289 struct device device; 290 int dev_id; 291 atomic_t *idr_ref; 292 }; 293 294 /** 295 * enum dma_slave_buswidth - defines bus with of the DMA slave 296 * device, source or target buses 297 */ 298 enum dma_slave_buswidth { 299 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 300 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 301 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 302 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 303 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 304 }; 305 306 /** 307 * struct dma_slave_config - dma slave channel runtime config 308 * @direction: whether the data shall go in or out on this slave 309 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 310 * legal values. 311 * @src_addr: this is the physical address where DMA slave data 312 * should be read (RX), if the source is memory this argument is 313 * ignored. 314 * @dst_addr: this is the physical address where DMA slave data 315 * should be written (TX), if the source is memory this argument 316 * is ignored. 317 * @src_addr_width: this is the width in bytes of the source (RX) 318 * register where DMA data shall be read. If the source 319 * is memory this may be ignored depending on architecture. 320 * Legal values: 1, 2, 4, 8. 321 * @dst_addr_width: same as src_addr_width but for destination 322 * target (TX) mutatis mutandis. 323 * @src_maxburst: the maximum number of words (note: words, as in 324 * units of the src_addr_width member, not bytes) that can be sent 325 * in one burst to the device. Typically something like half the 326 * FIFO depth on I/O peripherals so you don't overflow it. This 327 * may or may not be applicable on memory sources. 328 * @dst_maxburst: same as src_maxburst but for destination target 329 * mutatis mutandis. 330 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 331 * with 'true' if peripheral should be flow controller. Direction will be 332 * selected at Runtime. 333 * @slave_id: Slave requester id. Only valid for slave channels. The dma 334 * slave peripheral will have unique id as dma requester which need to be 335 * pass as slave config. 336 * 337 * This struct is passed in as configuration data to a DMA engine 338 * in order to set up a certain channel for DMA transport at runtime. 339 * The DMA device/engine has to provide support for an additional 340 * command in the channel config interface, DMA_SLAVE_CONFIG 341 * and this struct will then be passed in as an argument to the 342 * DMA engine device_control() function. 343 * 344 * The rationale for adding configuration information to this struct 345 * is as follows: if it is likely that most DMA slave controllers in 346 * the world will support the configuration option, then make it 347 * generic. If not: if it is fixed so that it be sent in static from 348 * the platform data, then prefer to do that. Else, if it is neither 349 * fixed at runtime, nor generic enough (such as bus mastership on 350 * some CPU family and whatnot) then create a custom slave config 351 * struct and pass that, then make this config a member of that 352 * struct, if applicable. 353 */ 354 struct dma_slave_config { 355 enum dma_transfer_direction direction; 356 dma_addr_t src_addr; 357 dma_addr_t dst_addr; 358 enum dma_slave_buswidth src_addr_width; 359 enum dma_slave_buswidth dst_addr_width; 360 u32 src_maxburst; 361 u32 dst_maxburst; 362 bool device_fc; 363 unsigned int slave_id; 364 }; 365 366 /** 367 * enum dma_residue_granularity - Granularity of the reported transfer residue 368 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 369 * DMA channel is only able to tell whether a descriptor has been completed or 370 * not, which means residue reporting is not supported by this channel. The 371 * residue field of the dma_tx_state field will always be 0. 372 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 373 * completed segment of the transfer (For cyclic transfers this is after each 374 * period). This is typically implemented by having the hardware generate an 375 * interrupt after each transferred segment and then the drivers updates the 376 * outstanding residue by the size of the segment. Another possibility is if 377 * the hardware supports scatter-gather and the segment descriptor has a field 378 * which gets set after the segment has been completed. The driver then counts 379 * the number of segments without the flag set to compute the residue. 380 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 381 * burst. This is typically only supported if the hardware has a progress 382 * register of some sort (E.g. a register with the current read/write address 383 * or a register with the amount of bursts/beats/bytes that have been 384 * transferred or still need to be transferred). 385 */ 386 enum dma_residue_granularity { 387 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 388 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 389 DMA_RESIDUE_GRANULARITY_BURST = 2, 390 }; 391 392 /* struct dma_slave_caps - expose capabilities of a slave channel only 393 * 394 * @src_addr_widths: bit mask of src addr widths the channel supports 395 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports 396 * @directions: bit mask of slave direction the channel supported 397 * since the enum dma_transfer_direction is not defined as bits for each 398 * type of direction, the dma controller should fill (1 << <TYPE>) and same 399 * should be checked by controller as well 400 * @cmd_pause: true, if pause and thereby resume is supported 401 * @cmd_terminate: true, if terminate cmd is supported 402 * @residue_granularity: granularity of the reported transfer residue 403 */ 404 struct dma_slave_caps { 405 u32 src_addr_widths; 406 u32 dstn_addr_widths; 407 u32 directions; 408 bool cmd_pause; 409 bool cmd_terminate; 410 enum dma_residue_granularity residue_granularity; 411 }; 412 413 static inline const char *dma_chan_name(struct dma_chan *chan) 414 { 415 return dev_name(&chan->dev->device); 416 } 417 418 void dma_chan_cleanup(struct kref *kref); 419 420 /** 421 * typedef dma_filter_fn - callback filter for dma_request_channel 422 * @chan: channel to be reviewed 423 * @filter_param: opaque parameter passed through dma_request_channel 424 * 425 * When this optional parameter is specified in a call to dma_request_channel a 426 * suitable channel is passed to this routine for further dispositioning before 427 * being returned. Where 'suitable' indicates a non-busy channel that 428 * satisfies the given capability mask. It returns 'true' to indicate that the 429 * channel is suitable. 430 */ 431 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 432 433 typedef void (*dma_async_tx_callback)(void *dma_async_param); 434 435 struct dmaengine_unmap_data { 436 u8 to_cnt; 437 u8 from_cnt; 438 u8 bidi_cnt; 439 struct device *dev; 440 struct kref kref; 441 size_t len; 442 dma_addr_t addr[0]; 443 }; 444 445 /** 446 * struct dma_async_tx_descriptor - async transaction descriptor 447 * ---dma generic offload fields--- 448 * @cookie: tracking cookie for this transaction, set to -EBUSY if 449 * this tx is sitting on a dependency list 450 * @flags: flags to augment operation preparation, control completion, and 451 * communicate status 452 * @phys: physical address of the descriptor 453 * @chan: target channel for this operation 454 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 455 * @callback: routine to call after this operation is complete 456 * @callback_param: general parameter to pass to the callback routine 457 * ---async_tx api specific fields--- 458 * @next: at completion submit this descriptor 459 * @parent: pointer to the next level up in the dependency chain 460 * @lock: protect the parent and next pointers 461 */ 462 struct dma_async_tx_descriptor { 463 dma_cookie_t cookie; 464 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 465 dma_addr_t phys; 466 struct dma_chan *chan; 467 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 468 dma_async_tx_callback callback; 469 void *callback_param; 470 struct dmaengine_unmap_data *unmap; 471 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 472 struct dma_async_tx_descriptor *next; 473 struct dma_async_tx_descriptor *parent; 474 spinlock_t lock; 475 #endif 476 }; 477 478 #ifdef CONFIG_DMA_ENGINE 479 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 480 struct dmaengine_unmap_data *unmap) 481 { 482 kref_get(&unmap->kref); 483 tx->unmap = unmap; 484 } 485 486 struct dmaengine_unmap_data * 487 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 488 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 489 #else 490 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 491 struct dmaengine_unmap_data *unmap) 492 { 493 } 494 static inline struct dmaengine_unmap_data * 495 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 496 { 497 return NULL; 498 } 499 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 500 { 501 } 502 #endif 503 504 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 505 { 506 if (tx->unmap) { 507 dmaengine_unmap_put(tx->unmap); 508 tx->unmap = NULL; 509 } 510 } 511 512 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 513 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 514 { 515 } 516 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 517 { 518 } 519 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 520 { 521 BUG(); 522 } 523 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 524 { 525 } 526 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 527 { 528 } 529 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 530 { 531 return NULL; 532 } 533 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 534 { 535 return NULL; 536 } 537 538 #else 539 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 540 { 541 spin_lock_bh(&txd->lock); 542 } 543 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 544 { 545 spin_unlock_bh(&txd->lock); 546 } 547 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 548 { 549 txd->next = next; 550 next->parent = txd; 551 } 552 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 553 { 554 txd->parent = NULL; 555 } 556 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 557 { 558 txd->next = NULL; 559 } 560 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 561 { 562 return txd->parent; 563 } 564 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 565 { 566 return txd->next; 567 } 568 #endif 569 570 /** 571 * struct dma_tx_state - filled in to report the status of 572 * a transfer. 573 * @last: last completed DMA cookie 574 * @used: last issued DMA cookie (i.e. the one in progress) 575 * @residue: the remaining number of bytes left to transmit 576 * on the selected transfer for states DMA_IN_PROGRESS and 577 * DMA_PAUSED if this is implemented in the driver, else 0 578 */ 579 struct dma_tx_state { 580 dma_cookie_t last; 581 dma_cookie_t used; 582 u32 residue; 583 }; 584 585 /** 586 * struct dma_device - info on the entity supplying DMA services 587 * @chancnt: how many DMA channels are supported 588 * @privatecnt: how many DMA channels are requested by dma_request_channel 589 * @channels: the list of struct dma_chan 590 * @global_node: list_head for global dma_device_list 591 * @cap_mask: one or more dma_capability flags 592 * @max_xor: maximum number of xor sources, 0 if no capability 593 * @max_pq: maximum number of PQ sources and PQ-continue capability 594 * @copy_align: alignment shift for memcpy operations 595 * @xor_align: alignment shift for xor operations 596 * @pq_align: alignment shift for pq operations 597 * @fill_align: alignment shift for memset operations 598 * @dev_id: unique device ID 599 * @dev: struct device reference for dma mapping api 600 * @device_alloc_chan_resources: allocate resources and return the 601 * number of allocated descriptors 602 * @device_free_chan_resources: release DMA channel's resources 603 * @device_prep_dma_memcpy: prepares a memcpy operation 604 * @device_prep_dma_xor: prepares a xor operation 605 * @device_prep_dma_xor_val: prepares a xor validation operation 606 * @device_prep_dma_pq: prepares a pq operation 607 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 608 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 609 * @device_prep_slave_sg: prepares a slave dma operation 610 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 611 * The function takes a buffer of size buf_len. The callback function will 612 * be called after period_len bytes have been transferred. 613 * @device_prep_interleaved_dma: Transfer expression in a generic way. 614 * @device_control: manipulate all pending operations on a channel, returns 615 * zero or error code 616 * @device_tx_status: poll for transaction completion, the optional 617 * txstate parameter can be supplied with a pointer to get a 618 * struct with auxiliary transfer status information, otherwise the call 619 * will just return a simple status code 620 * @device_issue_pending: push pending transactions to hardware 621 * @device_slave_caps: return the slave channel capabilities 622 */ 623 struct dma_device { 624 625 unsigned int chancnt; 626 unsigned int privatecnt; 627 struct list_head channels; 628 struct list_head global_node; 629 dma_cap_mask_t cap_mask; 630 unsigned short max_xor; 631 unsigned short max_pq; 632 u8 copy_align; 633 u8 xor_align; 634 u8 pq_align; 635 u8 fill_align; 636 #define DMA_HAS_PQ_CONTINUE (1 << 15) 637 638 int dev_id; 639 struct device *dev; 640 641 int (*device_alloc_chan_resources)(struct dma_chan *chan); 642 void (*device_free_chan_resources)(struct dma_chan *chan); 643 644 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 645 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 646 size_t len, unsigned long flags); 647 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 648 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 649 unsigned int src_cnt, size_t len, unsigned long flags); 650 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 651 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 652 size_t len, enum sum_check_flags *result, unsigned long flags); 653 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 654 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 655 unsigned int src_cnt, const unsigned char *scf, 656 size_t len, unsigned long flags); 657 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 658 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 659 unsigned int src_cnt, const unsigned char *scf, size_t len, 660 enum sum_check_flags *pqres, unsigned long flags); 661 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 662 struct dma_chan *chan, unsigned long flags); 663 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 664 struct dma_chan *chan, 665 struct scatterlist *dst_sg, unsigned int dst_nents, 666 struct scatterlist *src_sg, unsigned int src_nents, 667 unsigned long flags); 668 669 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 670 struct dma_chan *chan, struct scatterlist *sgl, 671 unsigned int sg_len, enum dma_transfer_direction direction, 672 unsigned long flags, void *context); 673 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 674 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 675 size_t period_len, enum dma_transfer_direction direction, 676 unsigned long flags, void *context); 677 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 678 struct dma_chan *chan, struct dma_interleaved_template *xt, 679 unsigned long flags); 680 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 681 unsigned long arg); 682 683 enum dma_status (*device_tx_status)(struct dma_chan *chan, 684 dma_cookie_t cookie, 685 struct dma_tx_state *txstate); 686 void (*device_issue_pending)(struct dma_chan *chan); 687 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps); 688 }; 689 690 static inline int dmaengine_device_control(struct dma_chan *chan, 691 enum dma_ctrl_cmd cmd, 692 unsigned long arg) 693 { 694 if (chan->device->device_control) 695 return chan->device->device_control(chan, cmd, arg); 696 697 return -ENOSYS; 698 } 699 700 static inline int dmaengine_slave_config(struct dma_chan *chan, 701 struct dma_slave_config *config) 702 { 703 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 704 (unsigned long)config); 705 } 706 707 static inline bool is_slave_direction(enum dma_transfer_direction direction) 708 { 709 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 710 } 711 712 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 713 struct dma_chan *chan, dma_addr_t buf, size_t len, 714 enum dma_transfer_direction dir, unsigned long flags) 715 { 716 struct scatterlist sg; 717 sg_init_table(&sg, 1); 718 sg_dma_address(&sg) = buf; 719 sg_dma_len(&sg) = len; 720 721 return chan->device->device_prep_slave_sg(chan, &sg, 1, 722 dir, flags, NULL); 723 } 724 725 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 726 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 727 enum dma_transfer_direction dir, unsigned long flags) 728 { 729 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 730 dir, flags, NULL); 731 } 732 733 #ifdef CONFIG_RAPIDIO_DMA_ENGINE 734 struct rio_dma_ext; 735 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 736 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 737 enum dma_transfer_direction dir, unsigned long flags, 738 struct rio_dma_ext *rio_ext) 739 { 740 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 741 dir, flags, rio_ext); 742 } 743 #endif 744 745 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 746 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 747 size_t period_len, enum dma_transfer_direction dir, 748 unsigned long flags) 749 { 750 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 751 period_len, dir, flags, NULL); 752 } 753 754 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 755 struct dma_chan *chan, struct dma_interleaved_template *xt, 756 unsigned long flags) 757 { 758 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 759 } 760 761 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 762 { 763 if (!chan || !caps) 764 return -EINVAL; 765 766 /* check if the channel supports slave transactions */ 767 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits)) 768 return -ENXIO; 769 770 if (chan->device->device_slave_caps) 771 return chan->device->device_slave_caps(chan, caps); 772 773 return -ENXIO; 774 } 775 776 static inline int dmaengine_terminate_all(struct dma_chan *chan) 777 { 778 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 779 } 780 781 static inline int dmaengine_pause(struct dma_chan *chan) 782 { 783 return dmaengine_device_control(chan, DMA_PAUSE, 0); 784 } 785 786 static inline int dmaengine_resume(struct dma_chan *chan) 787 { 788 return dmaengine_device_control(chan, DMA_RESUME, 0); 789 } 790 791 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 792 dma_cookie_t cookie, struct dma_tx_state *state) 793 { 794 return chan->device->device_tx_status(chan, cookie, state); 795 } 796 797 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 798 { 799 return desc->tx_submit(desc); 800 } 801 802 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 803 { 804 size_t mask; 805 806 if (!align) 807 return true; 808 mask = (1 << align) - 1; 809 if (mask & (off1 | off2 | len)) 810 return false; 811 return true; 812 } 813 814 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 815 size_t off2, size_t len) 816 { 817 return dmaengine_check_align(dev->copy_align, off1, off2, len); 818 } 819 820 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 821 size_t off2, size_t len) 822 { 823 return dmaengine_check_align(dev->xor_align, off1, off2, len); 824 } 825 826 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 827 size_t off2, size_t len) 828 { 829 return dmaengine_check_align(dev->pq_align, off1, off2, len); 830 } 831 832 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 833 size_t off2, size_t len) 834 { 835 return dmaengine_check_align(dev->fill_align, off1, off2, len); 836 } 837 838 static inline void 839 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 840 { 841 dma->max_pq = maxpq; 842 if (has_pq_continue) 843 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 844 } 845 846 static inline bool dmaf_continue(enum dma_ctrl_flags flags) 847 { 848 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 849 } 850 851 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 852 { 853 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 854 855 return (flags & mask) == mask; 856 } 857 858 static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 859 { 860 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 861 } 862 863 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 864 { 865 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 866 } 867 868 /* dma_maxpq - reduce maxpq in the face of continued operations 869 * @dma - dma device with PQ capability 870 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 871 * 872 * When an engine does not support native continuation we need 3 extra 873 * source slots to reuse P and Q with the following coefficients: 874 * 1/ {00} * P : remove P from Q', but use it as a source for P' 875 * 2/ {01} * Q : use Q to continue Q' calculation 876 * 3/ {00} * Q : subtract Q from P' to cancel (2) 877 * 878 * In the case where P is disabled we only need 1 extra source: 879 * 1/ {01} * Q : use Q to continue Q' calculation 880 */ 881 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 882 { 883 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 884 return dma_dev_to_maxpq(dma); 885 else if (dmaf_p_disabled_continue(flags)) 886 return dma_dev_to_maxpq(dma) - 1; 887 else if (dmaf_continue(flags)) 888 return dma_dev_to_maxpq(dma) - 3; 889 BUG(); 890 } 891 892 /* --- public DMA engine API --- */ 893 894 #ifdef CONFIG_DMA_ENGINE 895 void dmaengine_get(void); 896 void dmaengine_put(void); 897 #else 898 static inline void dmaengine_get(void) 899 { 900 } 901 static inline void dmaengine_put(void) 902 { 903 } 904 #endif 905 906 #ifdef CONFIG_NET_DMA 907 #define net_dmaengine_get() dmaengine_get() 908 #define net_dmaengine_put() dmaengine_put() 909 #else 910 static inline void net_dmaengine_get(void) 911 { 912 } 913 static inline void net_dmaengine_put(void) 914 { 915 } 916 #endif 917 918 #ifdef CONFIG_ASYNC_TX_DMA 919 #define async_dmaengine_get() dmaengine_get() 920 #define async_dmaengine_put() dmaengine_put() 921 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 922 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 923 #else 924 #define async_dma_find_channel(type) dma_find_channel(type) 925 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 926 #else 927 static inline void async_dmaengine_get(void) 928 { 929 } 930 static inline void async_dmaengine_put(void) 931 { 932 } 933 static inline struct dma_chan * 934 async_dma_find_channel(enum dma_transaction_type type) 935 { 936 return NULL; 937 } 938 #endif /* CONFIG_ASYNC_TX_DMA */ 939 940 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 941 void *dest, void *src, size_t len); 942 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 943 struct page *page, unsigned int offset, void *kdata, size_t len); 944 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 945 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 946 unsigned int src_off, size_t len); 947 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 948 struct dma_chan *chan); 949 950 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 951 { 952 tx->flags |= DMA_CTRL_ACK; 953 } 954 955 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 956 { 957 tx->flags &= ~DMA_CTRL_ACK; 958 } 959 960 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 961 { 962 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 963 } 964 965 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 966 static inline void 967 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 968 { 969 set_bit(tx_type, dstp->bits); 970 } 971 972 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 973 static inline void 974 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 975 { 976 clear_bit(tx_type, dstp->bits); 977 } 978 979 #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 980 static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 981 { 982 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 983 } 984 985 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 986 static inline int 987 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 988 { 989 return test_bit(tx_type, srcp->bits); 990 } 991 992 #define for_each_dma_cap_mask(cap, mask) \ 993 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 994 995 /** 996 * dma_async_issue_pending - flush pending transactions to HW 997 * @chan: target DMA channel 998 * 999 * This allows drivers to push copies to HW in batches, 1000 * reducing MMIO writes where possible. 1001 */ 1002 static inline void dma_async_issue_pending(struct dma_chan *chan) 1003 { 1004 chan->device->device_issue_pending(chan); 1005 } 1006 1007 /** 1008 * dma_async_is_tx_complete - poll for transaction completion 1009 * @chan: DMA channel 1010 * @cookie: transaction identifier to check status of 1011 * @last: returns last completed cookie, can be NULL 1012 * @used: returns last issued cookie, can be NULL 1013 * 1014 * If @last and @used are passed in, upon return they reflect the driver 1015 * internal state and can be used with dma_async_is_complete() to check 1016 * the status of multiple cookies without re-checking hardware state. 1017 */ 1018 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1019 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1020 { 1021 struct dma_tx_state state; 1022 enum dma_status status; 1023 1024 status = chan->device->device_tx_status(chan, cookie, &state); 1025 if (last) 1026 *last = state.last; 1027 if (used) 1028 *used = state.used; 1029 return status; 1030 } 1031 1032 /** 1033 * dma_async_is_complete - test a cookie against chan state 1034 * @cookie: transaction identifier to test status of 1035 * @last_complete: last know completed transaction 1036 * @last_used: last cookie value handed out 1037 * 1038 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1039 * the test logic is separated for lightweight testing of multiple cookies 1040 */ 1041 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1042 dma_cookie_t last_complete, dma_cookie_t last_used) 1043 { 1044 if (last_complete <= last_used) { 1045 if ((cookie <= last_complete) || (cookie > last_used)) 1046 return DMA_COMPLETE; 1047 } else { 1048 if ((cookie <= last_complete) && (cookie > last_used)) 1049 return DMA_COMPLETE; 1050 } 1051 return DMA_IN_PROGRESS; 1052 } 1053 1054 static inline void 1055 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1056 { 1057 if (st) { 1058 st->last = last; 1059 st->used = used; 1060 st->residue = residue; 1061 } 1062 } 1063 1064 #ifdef CONFIG_DMA_ENGINE 1065 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1066 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1067 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1068 void dma_issue_pending_all(void); 1069 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1070 dma_filter_fn fn, void *fn_param); 1071 struct dma_chan *dma_request_slave_channel_reason(struct device *dev, 1072 const char *name); 1073 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1074 void dma_release_channel(struct dma_chan *chan); 1075 #else 1076 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1077 { 1078 return NULL; 1079 } 1080 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1081 { 1082 return DMA_COMPLETE; 1083 } 1084 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1085 { 1086 return DMA_COMPLETE; 1087 } 1088 static inline void dma_issue_pending_all(void) 1089 { 1090 } 1091 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1092 dma_filter_fn fn, void *fn_param) 1093 { 1094 return NULL; 1095 } 1096 static inline struct dma_chan *dma_request_slave_channel_reason( 1097 struct device *dev, const char *name) 1098 { 1099 return ERR_PTR(-ENODEV); 1100 } 1101 static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1102 const char *name) 1103 { 1104 return NULL; 1105 } 1106 static inline void dma_release_channel(struct dma_chan *chan) 1107 { 1108 } 1109 #endif 1110 1111 /* --- DMA device --- */ 1112 1113 int dma_async_device_register(struct dma_device *device); 1114 void dma_async_device_unregister(struct dma_device *device); 1115 void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1116 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); 1117 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); 1118 struct dma_chan *net_dma_find_channel(void); 1119 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1120 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1121 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1122 1123 static inline struct dma_chan 1124 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1125 dma_filter_fn fn, void *fn_param, 1126 struct device *dev, char *name) 1127 { 1128 struct dma_chan *chan; 1129 1130 chan = dma_request_slave_channel(dev, name); 1131 if (chan) 1132 return chan; 1133 1134 return __dma_request_channel(mask, fn, fn_param); 1135 } 1136 1137 /* --- Helper iov-locking functions --- */ 1138 1139 struct dma_page_list { 1140 char __user *base_address; 1141 int nr_pages; 1142 struct page **pages; 1143 }; 1144 1145 struct dma_pinned_list { 1146 int nr_iovecs; 1147 struct dma_page_list page_list[0]; 1148 }; 1149 1150 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 1151 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 1152 1153 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 1154 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 1155 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 1156 struct dma_pinned_list *pinned_list, struct page *page, 1157 unsigned int offset, size_t len); 1158 1159 #endif /* DMAENGINE_H */ 1160