1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21 #ifndef DMAENGINE_H 22 #define DMAENGINE_H 23 24 #include <linux/device.h> 25 #include <linux/uio.h> 26 #include <linux/bug.h> 27 #include <linux/scatterlist.h> 28 #include <linux/bitmap.h> 29 #include <asm/page.h> 30 31 /** 32 * typedef dma_cookie_t - an opaque DMA cookie 33 * 34 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 35 */ 36 typedef s32 dma_cookie_t; 37 #define DMA_MIN_COOKIE 1 38 #define DMA_MAX_COOKIE INT_MAX 39 40 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 41 42 /** 43 * enum dma_status - DMA transaction status 44 * @DMA_SUCCESS: transaction completed successfully 45 * @DMA_IN_PROGRESS: transaction not yet processed 46 * @DMA_PAUSED: transaction is paused 47 * @DMA_ERROR: transaction failed 48 */ 49 enum dma_status { 50 DMA_SUCCESS, 51 DMA_IN_PROGRESS, 52 DMA_PAUSED, 53 DMA_ERROR, 54 }; 55 56 /** 57 * enum dma_transaction_type - DMA transaction types/indexes 58 * 59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 60 * automatically set as dma devices are registered. 61 */ 62 enum dma_transaction_type { 63 DMA_MEMCPY, 64 DMA_XOR, 65 DMA_PQ, 66 DMA_XOR_VAL, 67 DMA_PQ_VAL, 68 DMA_MEMSET, 69 DMA_INTERRUPT, 70 DMA_SG, 71 DMA_PRIVATE, 72 DMA_ASYNC_TX, 73 DMA_SLAVE, 74 DMA_CYCLIC, 75 DMA_INTERLEAVE, 76 /* last transaction type for creation of the capabilities mask */ 77 DMA_TX_TYPE_END, 78 }; 79 80 /** 81 * enum dma_transfer_direction - dma transfer mode and direction indicator 82 * @DMA_MEM_TO_MEM: Async/Memcpy mode 83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 86 */ 87 enum dma_transfer_direction { 88 DMA_MEM_TO_MEM, 89 DMA_MEM_TO_DEV, 90 DMA_DEV_TO_MEM, 91 DMA_DEV_TO_DEV, 92 DMA_TRANS_NONE, 93 }; 94 95 /** 96 * Interleaved Transfer Request 97 * ---------------------------- 98 * A chunk is collection of contiguous bytes to be transfered. 99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 100 * ICGs may or maynot change between chunks. 101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 102 * that when repeated an integral number of times, specifies the transfer. 103 * A transfer template is specification of a Frame, the number of times 104 * it is to be repeated and other per-transfer attributes. 105 * 106 * Practically, a client driver would have ready a template for each 107 * type of transfer it is going to need during its lifetime and 108 * set only 'src_start' and 'dst_start' before submitting the requests. 109 * 110 * 111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 113 * 114 * == Chunk size 115 * ... ICG 116 */ 117 118 /** 119 * struct data_chunk - Element of scatter-gather list that makes a frame. 120 * @size: Number of bytes to read from source. 121 * size_dst := fn(op, size_src), so doesn't mean much for destination. 122 * @icg: Number of bytes to jump after last src/dst address of this 123 * chunk and before first src/dst address for next chunk. 124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 126 */ 127 struct data_chunk { 128 size_t size; 129 size_t icg; 130 }; 131 132 /** 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 134 * and attributes. 135 * @src_start: Bus address of source for the first chunk. 136 * @dst_start: Bus address of destination for the first chunk. 137 * @dir: Specifies the type of Source and Destination. 138 * @src_inc: If the source address increments after reading from it. 139 * @dst_inc: If the destination address increments after writing to it. 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 141 * Otherwise, source is read contiguously (icg ignored). 142 * Ignored if src_inc is false. 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 144 * Otherwise, destination is filled contiguously (icg ignored). 145 * Ignored if dst_inc is false. 146 * @numf: Number of frames in this template. 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 148 * @sgl: Array of {chunk,icg} pairs that make up a frame. 149 */ 150 struct dma_interleaved_template { 151 dma_addr_t src_start; 152 dma_addr_t dst_start; 153 enum dma_transfer_direction dir; 154 bool src_inc; 155 bool dst_inc; 156 bool src_sgl; 157 bool dst_sgl; 158 size_t numf; 159 size_t frame_size; 160 struct data_chunk sgl[0]; 161 }; 162 163 /** 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 165 * control completion, and communicate status. 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 167 * this transaction 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 169 * acknowledges receipt, i.e. has has a chance to establish any dependency 170 * chains 171 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 172 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 173 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 174 * (if not set, do the source dma-unmapping as page) 175 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 176 * (if not set, do the destination dma-unmapping as page) 177 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 178 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 179 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 180 * sources that were the result of a previous operation, in the case of a PQ 181 * operation it continues the calculation with new sources 182 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 183 * on the result of this operation 184 */ 185 enum dma_ctrl_flags { 186 DMA_PREP_INTERRUPT = (1 << 0), 187 DMA_CTRL_ACK = (1 << 1), 188 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 189 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 190 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 191 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 192 DMA_PREP_PQ_DISABLE_P = (1 << 6), 193 DMA_PREP_PQ_DISABLE_Q = (1 << 7), 194 DMA_PREP_CONTINUE = (1 << 8), 195 DMA_PREP_FENCE = (1 << 9), 196 }; 197 198 /** 199 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 200 * on a running channel. 201 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 202 * @DMA_PAUSE: pause ongoing transfers 203 * @DMA_RESUME: resume paused transfer 204 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 205 * that need to runtime reconfigure the slave channels (as opposed to passing 206 * configuration data in statically from the platform). An additional 207 * argument of struct dma_slave_config must be passed in with this 208 * command. 209 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller 210 * into external start mode. 211 */ 212 enum dma_ctrl_cmd { 213 DMA_TERMINATE_ALL, 214 DMA_PAUSE, 215 DMA_RESUME, 216 DMA_SLAVE_CONFIG, 217 FSLDMA_EXTERNAL_START, 218 }; 219 220 /** 221 * enum sum_check_bits - bit position of pq_check_flags 222 */ 223 enum sum_check_bits { 224 SUM_CHECK_P = 0, 225 SUM_CHECK_Q = 1, 226 }; 227 228 /** 229 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 230 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 231 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 232 */ 233 enum sum_check_flags { 234 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 235 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 236 }; 237 238 239 /** 240 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 241 * See linux/cpumask.h 242 */ 243 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 244 245 /** 246 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 247 * @memcpy_count: transaction counter 248 * @bytes_transferred: byte counter 249 */ 250 251 struct dma_chan_percpu { 252 /* stats */ 253 unsigned long memcpy_count; 254 unsigned long bytes_transferred; 255 }; 256 257 /** 258 * struct dma_chan - devices supply DMA channels, clients use them 259 * @device: ptr to the dma device who supplies this channel, always !%NULL 260 * @cookie: last cookie value returned to client 261 * @chan_id: channel ID for sysfs 262 * @dev: class device for sysfs 263 * @device_node: used to add this to the device chan list 264 * @local: per-cpu pointer to a struct dma_chan_percpu 265 * @client-count: how many clients are using this channel 266 * @table_count: number of appearances in the mem-to-mem allocation table 267 * @private: private data for certain client-channel associations 268 */ 269 struct dma_chan { 270 struct dma_device *device; 271 dma_cookie_t cookie; 272 273 /* sysfs */ 274 int chan_id; 275 struct dma_chan_dev *dev; 276 277 struct list_head device_node; 278 struct dma_chan_percpu __percpu *local; 279 int client_count; 280 int table_count; 281 void *private; 282 }; 283 284 /** 285 * struct dma_chan_dev - relate sysfs device node to backing channel device 286 * @chan - driver channel device 287 * @device - sysfs device 288 * @dev_id - parent dma_device dev_id 289 * @idr_ref - reference count to gate release of dma_device dev_id 290 */ 291 struct dma_chan_dev { 292 struct dma_chan *chan; 293 struct device device; 294 int dev_id; 295 atomic_t *idr_ref; 296 }; 297 298 /** 299 * enum dma_slave_buswidth - defines bus with of the DMA slave 300 * device, source or target buses 301 */ 302 enum dma_slave_buswidth { 303 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 304 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 305 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 308 }; 309 310 /** 311 * struct dma_slave_config - dma slave channel runtime config 312 * @direction: whether the data shall go in or out on this slave 313 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are 314 * legal values, DMA_BIDIRECTIONAL is not acceptable since we 315 * need to differentiate source and target addresses. 316 * @src_addr: this is the physical address where DMA slave data 317 * should be read (RX), if the source is memory this argument is 318 * ignored. 319 * @dst_addr: this is the physical address where DMA slave data 320 * should be written (TX), if the source is memory this argument 321 * is ignored. 322 * @src_addr_width: this is the width in bytes of the source (RX) 323 * register where DMA data shall be read. If the source 324 * is memory this may be ignored depending on architecture. 325 * Legal values: 1, 2, 4, 8. 326 * @dst_addr_width: same as src_addr_width but for destination 327 * target (TX) mutatis mutandis. 328 * @src_maxburst: the maximum number of words (note: words, as in 329 * units of the src_addr_width member, not bytes) that can be sent 330 * in one burst to the device. Typically something like half the 331 * FIFO depth on I/O peripherals so you don't overflow it. This 332 * may or may not be applicable on memory sources. 333 * @dst_maxburst: same as src_maxburst but for destination target 334 * mutatis mutandis. 335 * 336 * This struct is passed in as configuration data to a DMA engine 337 * in order to set up a certain channel for DMA transport at runtime. 338 * The DMA device/engine has to provide support for an additional 339 * command in the channel config interface, DMA_SLAVE_CONFIG 340 * and this struct will then be passed in as an argument to the 341 * DMA engine device_control() function. 342 * 343 * The rationale for adding configuration information to this struct 344 * is as follows: if it is likely that most DMA slave controllers in 345 * the world will support the configuration option, then make it 346 * generic. If not: if it is fixed so that it be sent in static from 347 * the platform data, then prefer to do that. Else, if it is neither 348 * fixed at runtime, nor generic enough (such as bus mastership on 349 * some CPU family and whatnot) then create a custom slave config 350 * struct and pass that, then make this config a member of that 351 * struct, if applicable. 352 */ 353 struct dma_slave_config { 354 enum dma_transfer_direction direction; 355 dma_addr_t src_addr; 356 dma_addr_t dst_addr; 357 enum dma_slave_buswidth src_addr_width; 358 enum dma_slave_buswidth dst_addr_width; 359 u32 src_maxburst; 360 u32 dst_maxburst; 361 }; 362 363 static inline const char *dma_chan_name(struct dma_chan *chan) 364 { 365 return dev_name(&chan->dev->device); 366 } 367 368 void dma_chan_cleanup(struct kref *kref); 369 370 /** 371 * typedef dma_filter_fn - callback filter for dma_request_channel 372 * @chan: channel to be reviewed 373 * @filter_param: opaque parameter passed through dma_request_channel 374 * 375 * When this optional parameter is specified in a call to dma_request_channel a 376 * suitable channel is passed to this routine for further dispositioning before 377 * being returned. Where 'suitable' indicates a non-busy channel that 378 * satisfies the given capability mask. It returns 'true' to indicate that the 379 * channel is suitable. 380 */ 381 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 382 383 typedef void (*dma_async_tx_callback)(void *dma_async_param); 384 /** 385 * struct dma_async_tx_descriptor - async transaction descriptor 386 * ---dma generic offload fields--- 387 * @cookie: tracking cookie for this transaction, set to -EBUSY if 388 * this tx is sitting on a dependency list 389 * @flags: flags to augment operation preparation, control completion, and 390 * communicate status 391 * @phys: physical address of the descriptor 392 * @chan: target channel for this operation 393 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 394 * @callback: routine to call after this operation is complete 395 * @callback_param: general parameter to pass to the callback routine 396 * ---async_tx api specific fields--- 397 * @next: at completion submit this descriptor 398 * @parent: pointer to the next level up in the dependency chain 399 * @lock: protect the parent and next pointers 400 */ 401 struct dma_async_tx_descriptor { 402 dma_cookie_t cookie; 403 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 404 dma_addr_t phys; 405 struct dma_chan *chan; 406 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 407 dma_async_tx_callback callback; 408 void *callback_param; 409 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 410 struct dma_async_tx_descriptor *next; 411 struct dma_async_tx_descriptor *parent; 412 spinlock_t lock; 413 #endif 414 }; 415 416 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 417 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 418 { 419 } 420 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 421 { 422 } 423 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 424 { 425 BUG(); 426 } 427 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 428 { 429 } 430 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 431 { 432 } 433 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 434 { 435 return NULL; 436 } 437 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 438 { 439 return NULL; 440 } 441 442 #else 443 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 444 { 445 spin_lock_bh(&txd->lock); 446 } 447 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 448 { 449 spin_unlock_bh(&txd->lock); 450 } 451 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 452 { 453 txd->next = next; 454 next->parent = txd; 455 } 456 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 457 { 458 txd->parent = NULL; 459 } 460 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 461 { 462 txd->next = NULL; 463 } 464 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 465 { 466 return txd->parent; 467 } 468 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 469 { 470 return txd->next; 471 } 472 #endif 473 474 /** 475 * struct dma_tx_state - filled in to report the status of 476 * a transfer. 477 * @last: last completed DMA cookie 478 * @used: last issued DMA cookie (i.e. the one in progress) 479 * @residue: the remaining number of bytes left to transmit 480 * on the selected transfer for states DMA_IN_PROGRESS and 481 * DMA_PAUSED if this is implemented in the driver, else 0 482 */ 483 struct dma_tx_state { 484 dma_cookie_t last; 485 dma_cookie_t used; 486 u32 residue; 487 }; 488 489 /** 490 * struct dma_device - info on the entity supplying DMA services 491 * @chancnt: how many DMA channels are supported 492 * @privatecnt: how many DMA channels are requested by dma_request_channel 493 * @channels: the list of struct dma_chan 494 * @global_node: list_head for global dma_device_list 495 * @cap_mask: one or more dma_capability flags 496 * @max_xor: maximum number of xor sources, 0 if no capability 497 * @max_pq: maximum number of PQ sources and PQ-continue capability 498 * @copy_align: alignment shift for memcpy operations 499 * @xor_align: alignment shift for xor operations 500 * @pq_align: alignment shift for pq operations 501 * @fill_align: alignment shift for memset operations 502 * @dev_id: unique device ID 503 * @dev: struct device reference for dma mapping api 504 * @device_alloc_chan_resources: allocate resources and return the 505 * number of allocated descriptors 506 * @device_free_chan_resources: release DMA channel's resources 507 * @device_prep_dma_memcpy: prepares a memcpy operation 508 * @device_prep_dma_xor: prepares a xor operation 509 * @device_prep_dma_xor_val: prepares a xor validation operation 510 * @device_prep_dma_pq: prepares a pq operation 511 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 512 * @device_prep_dma_memset: prepares a memset operation 513 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 514 * @device_prep_slave_sg: prepares a slave dma operation 515 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 516 * The function takes a buffer of size buf_len. The callback function will 517 * be called after period_len bytes have been transferred. 518 * @device_prep_interleaved_dma: Transfer expression in a generic way. 519 * @device_control: manipulate all pending operations on a channel, returns 520 * zero or error code 521 * @device_tx_status: poll for transaction completion, the optional 522 * txstate parameter can be supplied with a pointer to get a 523 * struct with auxiliary transfer status information, otherwise the call 524 * will just return a simple status code 525 * @device_issue_pending: push pending transactions to hardware 526 */ 527 struct dma_device { 528 529 unsigned int chancnt; 530 unsigned int privatecnt; 531 struct list_head channels; 532 struct list_head global_node; 533 dma_cap_mask_t cap_mask; 534 unsigned short max_xor; 535 unsigned short max_pq; 536 u8 copy_align; 537 u8 xor_align; 538 u8 pq_align; 539 u8 fill_align; 540 #define DMA_HAS_PQ_CONTINUE (1 << 15) 541 542 int dev_id; 543 struct device *dev; 544 545 int (*device_alloc_chan_resources)(struct dma_chan *chan); 546 void (*device_free_chan_resources)(struct dma_chan *chan); 547 548 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 549 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 550 size_t len, unsigned long flags); 551 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 552 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 553 unsigned int src_cnt, size_t len, unsigned long flags); 554 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 555 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 556 size_t len, enum sum_check_flags *result, unsigned long flags); 557 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 558 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 559 unsigned int src_cnt, const unsigned char *scf, 560 size_t len, unsigned long flags); 561 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 562 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 563 unsigned int src_cnt, const unsigned char *scf, size_t len, 564 enum sum_check_flags *pqres, unsigned long flags); 565 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 566 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 567 unsigned long flags); 568 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 569 struct dma_chan *chan, unsigned long flags); 570 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 571 struct dma_chan *chan, 572 struct scatterlist *dst_sg, unsigned int dst_nents, 573 struct scatterlist *src_sg, unsigned int src_nents, 574 unsigned long flags); 575 576 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 577 struct dma_chan *chan, struct scatterlist *sgl, 578 unsigned int sg_len, enum dma_transfer_direction direction, 579 unsigned long flags); 580 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 581 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 582 size_t period_len, enum dma_transfer_direction direction); 583 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 584 struct dma_chan *chan, struct dma_interleaved_template *xt, 585 unsigned long flags); 586 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 587 unsigned long arg); 588 589 enum dma_status (*device_tx_status)(struct dma_chan *chan, 590 dma_cookie_t cookie, 591 struct dma_tx_state *txstate); 592 void (*device_issue_pending)(struct dma_chan *chan); 593 }; 594 595 static inline int dmaengine_device_control(struct dma_chan *chan, 596 enum dma_ctrl_cmd cmd, 597 unsigned long arg) 598 { 599 return chan->device->device_control(chan, cmd, arg); 600 } 601 602 static inline int dmaengine_slave_config(struct dma_chan *chan, 603 struct dma_slave_config *config) 604 { 605 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 606 (unsigned long)config); 607 } 608 609 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 610 struct dma_chan *chan, void *buf, size_t len, 611 enum dma_transfer_direction dir, unsigned long flags) 612 { 613 struct scatterlist sg; 614 sg_init_one(&sg, buf, len); 615 616 return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags); 617 } 618 619 static inline int dmaengine_terminate_all(struct dma_chan *chan) 620 { 621 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 622 } 623 624 static inline int dmaengine_pause(struct dma_chan *chan) 625 { 626 return dmaengine_device_control(chan, DMA_PAUSE, 0); 627 } 628 629 static inline int dmaengine_resume(struct dma_chan *chan) 630 { 631 return dmaengine_device_control(chan, DMA_RESUME, 0); 632 } 633 634 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 635 { 636 return desc->tx_submit(desc); 637 } 638 639 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 640 { 641 size_t mask; 642 643 if (!align) 644 return true; 645 mask = (1 << align) - 1; 646 if (mask & (off1 | off2 | len)) 647 return false; 648 return true; 649 } 650 651 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 652 size_t off2, size_t len) 653 { 654 return dmaengine_check_align(dev->copy_align, off1, off2, len); 655 } 656 657 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 658 size_t off2, size_t len) 659 { 660 return dmaengine_check_align(dev->xor_align, off1, off2, len); 661 } 662 663 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 664 size_t off2, size_t len) 665 { 666 return dmaengine_check_align(dev->pq_align, off1, off2, len); 667 } 668 669 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 670 size_t off2, size_t len) 671 { 672 return dmaengine_check_align(dev->fill_align, off1, off2, len); 673 } 674 675 static inline void 676 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 677 { 678 dma->max_pq = maxpq; 679 if (has_pq_continue) 680 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 681 } 682 683 static inline bool dmaf_continue(enum dma_ctrl_flags flags) 684 { 685 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 686 } 687 688 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 689 { 690 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 691 692 return (flags & mask) == mask; 693 } 694 695 static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 696 { 697 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 698 } 699 700 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 701 { 702 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 703 } 704 705 /* dma_maxpq - reduce maxpq in the face of continued operations 706 * @dma - dma device with PQ capability 707 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 708 * 709 * When an engine does not support native continuation we need 3 extra 710 * source slots to reuse P and Q with the following coefficients: 711 * 1/ {00} * P : remove P from Q', but use it as a source for P' 712 * 2/ {01} * Q : use Q to continue Q' calculation 713 * 3/ {00} * Q : subtract Q from P' to cancel (2) 714 * 715 * In the case where P is disabled we only need 1 extra source: 716 * 1/ {01} * Q : use Q to continue Q' calculation 717 */ 718 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 719 { 720 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 721 return dma_dev_to_maxpq(dma); 722 else if (dmaf_p_disabled_continue(flags)) 723 return dma_dev_to_maxpq(dma) - 1; 724 else if (dmaf_continue(flags)) 725 return dma_dev_to_maxpq(dma) - 3; 726 BUG(); 727 } 728 729 /* --- public DMA engine API --- */ 730 731 #ifdef CONFIG_DMA_ENGINE 732 void dmaengine_get(void); 733 void dmaengine_put(void); 734 #else 735 static inline void dmaengine_get(void) 736 { 737 } 738 static inline void dmaengine_put(void) 739 { 740 } 741 #endif 742 743 #ifdef CONFIG_NET_DMA 744 #define net_dmaengine_get() dmaengine_get() 745 #define net_dmaengine_put() dmaengine_put() 746 #else 747 static inline void net_dmaengine_get(void) 748 { 749 } 750 static inline void net_dmaengine_put(void) 751 { 752 } 753 #endif 754 755 #ifdef CONFIG_ASYNC_TX_DMA 756 #define async_dmaengine_get() dmaengine_get() 757 #define async_dmaengine_put() dmaengine_put() 758 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 759 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 760 #else 761 #define async_dma_find_channel(type) dma_find_channel(type) 762 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 763 #else 764 static inline void async_dmaengine_get(void) 765 { 766 } 767 static inline void async_dmaengine_put(void) 768 { 769 } 770 static inline struct dma_chan * 771 async_dma_find_channel(enum dma_transaction_type type) 772 { 773 return NULL; 774 } 775 #endif /* CONFIG_ASYNC_TX_DMA */ 776 777 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 778 void *dest, void *src, size_t len); 779 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 780 struct page *page, unsigned int offset, void *kdata, size_t len); 781 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 782 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 783 unsigned int src_off, size_t len); 784 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 785 struct dma_chan *chan); 786 787 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 788 { 789 tx->flags |= DMA_CTRL_ACK; 790 } 791 792 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 793 { 794 tx->flags &= ~DMA_CTRL_ACK; 795 } 796 797 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 798 { 799 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 800 } 801 802 #define first_dma_cap(mask) __first_dma_cap(&(mask)) 803 static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 804 { 805 return min_t(int, DMA_TX_TYPE_END, 806 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 807 } 808 809 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 810 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 811 { 812 return min_t(int, DMA_TX_TYPE_END, 813 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 814 } 815 816 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 817 static inline void 818 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 819 { 820 set_bit(tx_type, dstp->bits); 821 } 822 823 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 824 static inline void 825 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 826 { 827 clear_bit(tx_type, dstp->bits); 828 } 829 830 #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 831 static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 832 { 833 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 834 } 835 836 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 837 static inline int 838 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 839 { 840 return test_bit(tx_type, srcp->bits); 841 } 842 843 #define for_each_dma_cap_mask(cap, mask) \ 844 for ((cap) = first_dma_cap(mask); \ 845 (cap) < DMA_TX_TYPE_END; \ 846 (cap) = next_dma_cap((cap), (mask))) 847 848 /** 849 * dma_async_issue_pending - flush pending transactions to HW 850 * @chan: target DMA channel 851 * 852 * This allows drivers to push copies to HW in batches, 853 * reducing MMIO writes where possible. 854 */ 855 static inline void dma_async_issue_pending(struct dma_chan *chan) 856 { 857 chan->device->device_issue_pending(chan); 858 } 859 860 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 861 862 /** 863 * dma_async_is_tx_complete - poll for transaction completion 864 * @chan: DMA channel 865 * @cookie: transaction identifier to check status of 866 * @last: returns last completed cookie, can be NULL 867 * @used: returns last issued cookie, can be NULL 868 * 869 * If @last and @used are passed in, upon return they reflect the driver 870 * internal state and can be used with dma_async_is_complete() to check 871 * the status of multiple cookies without re-checking hardware state. 872 */ 873 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 874 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 875 { 876 struct dma_tx_state state; 877 enum dma_status status; 878 879 status = chan->device->device_tx_status(chan, cookie, &state); 880 if (last) 881 *last = state.last; 882 if (used) 883 *used = state.used; 884 return status; 885 } 886 887 #define dma_async_memcpy_complete(chan, cookie, last, used)\ 888 dma_async_is_tx_complete(chan, cookie, last, used) 889 890 /** 891 * dma_async_is_complete - test a cookie against chan state 892 * @cookie: transaction identifier to test status of 893 * @last_complete: last know completed transaction 894 * @last_used: last cookie value handed out 895 * 896 * dma_async_is_complete() is used in dma_async_memcpy_complete() 897 * the test logic is separated for lightweight testing of multiple cookies 898 */ 899 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 900 dma_cookie_t last_complete, dma_cookie_t last_used) 901 { 902 if (last_complete <= last_used) { 903 if ((cookie <= last_complete) || (cookie > last_used)) 904 return DMA_SUCCESS; 905 } else { 906 if ((cookie <= last_complete) && (cookie > last_used)) 907 return DMA_SUCCESS; 908 } 909 return DMA_IN_PROGRESS; 910 } 911 912 static inline void 913 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 914 { 915 if (st) { 916 st->last = last; 917 st->used = used; 918 st->residue = residue; 919 } 920 } 921 922 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 923 #ifdef CONFIG_DMA_ENGINE 924 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 925 void dma_issue_pending_all(void); 926 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 927 void dma_release_channel(struct dma_chan *chan); 928 #else 929 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 930 { 931 return DMA_SUCCESS; 932 } 933 static inline void dma_issue_pending_all(void) 934 { 935 } 936 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, 937 dma_filter_fn fn, void *fn_param) 938 { 939 return NULL; 940 } 941 static inline void dma_release_channel(struct dma_chan *chan) 942 { 943 } 944 #endif 945 946 /* --- DMA device --- */ 947 948 int dma_async_device_register(struct dma_device *device); 949 void dma_async_device_unregister(struct dma_device *device); 950 void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 951 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 952 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 953 954 /* --- Helper iov-locking functions --- */ 955 956 struct dma_page_list { 957 char __user *base_address; 958 int nr_pages; 959 struct page **pages; 960 }; 961 962 struct dma_pinned_list { 963 int nr_iovecs; 964 struct dma_page_list page_list[0]; 965 }; 966 967 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 968 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 969 970 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 971 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 972 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 973 struct dma_pinned_list *pinned_list, struct page *page, 974 unsigned int offset, size_t len); 975 976 #endif /* DMAENGINE_H */ 977