xref: /linux-6.15/include/linux/dmaengine.h (revision 5d4a2e29)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
23 
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/dma-mapping.h>
27 
28 /**
29  * typedef dma_cookie_t - an opaque DMA cookie
30  *
31  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
32  */
33 typedef s32 dma_cookie_t;
34 #define DMA_MIN_COOKIE	1
35 #define DMA_MAX_COOKIE	INT_MAX
36 
37 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
38 
39 /**
40  * enum dma_status - DMA transaction status
41  * @DMA_SUCCESS: transaction completed successfully
42  * @DMA_IN_PROGRESS: transaction not yet processed
43  * @DMA_PAUSED: transaction is paused
44  * @DMA_ERROR: transaction failed
45  */
46 enum dma_status {
47 	DMA_SUCCESS,
48 	DMA_IN_PROGRESS,
49 	DMA_PAUSED,
50 	DMA_ERROR,
51 };
52 
53 /**
54  * enum dma_transaction_type - DMA transaction types/indexes
55  *
56  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
57  * automatically set as dma devices are registered.
58  */
59 enum dma_transaction_type {
60 	DMA_MEMCPY,
61 	DMA_XOR,
62 	DMA_PQ,
63 	DMA_XOR_VAL,
64 	DMA_PQ_VAL,
65 	DMA_MEMSET,
66 	DMA_INTERRUPT,
67 	DMA_PRIVATE,
68 	DMA_ASYNC_TX,
69 	DMA_SLAVE,
70 };
71 
72 /* last transaction type for creation of the capabilities mask */
73 #define DMA_TX_TYPE_END (DMA_SLAVE + 1)
74 
75 
76 /**
77  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
78  *  control completion, and communicate status.
79  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
80  *  this transaction
81  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
82  *  acknowledges receipt, i.e. has has a chance to establish any dependency
83  *  chains
84  * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
85  * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
86  * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
87  * 	(if not set, do the source dma-unmapping as page)
88  * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
89  * 	(if not set, do the destination dma-unmapping as page)
90  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
91  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
92  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
93  *  sources that were the result of a previous operation, in the case of a PQ
94  *  operation it continues the calculation with new sources
95  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
96  *  on the result of this operation
97  */
98 enum dma_ctrl_flags {
99 	DMA_PREP_INTERRUPT = (1 << 0),
100 	DMA_CTRL_ACK = (1 << 1),
101 	DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
102 	DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
103 	DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
104 	DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
105 	DMA_PREP_PQ_DISABLE_P = (1 << 6),
106 	DMA_PREP_PQ_DISABLE_Q = (1 << 7),
107 	DMA_PREP_CONTINUE = (1 << 8),
108 	DMA_PREP_FENCE = (1 << 9),
109 };
110 
111 /**
112  * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
113  * on a running channel.
114  * @DMA_TERMINATE_ALL: terminate all ongoing transfers
115  * @DMA_PAUSE: pause ongoing transfers
116  * @DMA_RESUME: resume paused transfer
117  */
118 enum dma_ctrl_cmd {
119 	DMA_TERMINATE_ALL,
120 	DMA_PAUSE,
121 	DMA_RESUME,
122 };
123 
124 /**
125  * enum sum_check_bits - bit position of pq_check_flags
126  */
127 enum sum_check_bits {
128 	SUM_CHECK_P = 0,
129 	SUM_CHECK_Q = 1,
130 };
131 
132 /**
133  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
134  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
135  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
136  */
137 enum sum_check_flags {
138 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
139 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
140 };
141 
142 
143 /**
144  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
145  * See linux/cpumask.h
146  */
147 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
148 
149 /**
150  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
151  * @memcpy_count: transaction counter
152  * @bytes_transferred: byte counter
153  */
154 
155 struct dma_chan_percpu {
156 	/* stats */
157 	unsigned long memcpy_count;
158 	unsigned long bytes_transferred;
159 };
160 
161 /**
162  * struct dma_chan - devices supply DMA channels, clients use them
163  * @device: ptr to the dma device who supplies this channel, always !%NULL
164  * @cookie: last cookie value returned to client
165  * @chan_id: channel ID for sysfs
166  * @dev: class device for sysfs
167  * @device_node: used to add this to the device chan list
168  * @local: per-cpu pointer to a struct dma_chan_percpu
169  * @client-count: how many clients are using this channel
170  * @table_count: number of appearances in the mem-to-mem allocation table
171  * @private: private data for certain client-channel associations
172  */
173 struct dma_chan {
174 	struct dma_device *device;
175 	dma_cookie_t cookie;
176 
177 	/* sysfs */
178 	int chan_id;
179 	struct dma_chan_dev *dev;
180 
181 	struct list_head device_node;
182 	struct dma_chan_percpu __percpu *local;
183 	int client_count;
184 	int table_count;
185 	void *private;
186 };
187 
188 /**
189  * struct dma_chan_dev - relate sysfs device node to backing channel device
190  * @chan - driver channel device
191  * @device - sysfs device
192  * @dev_id - parent dma_device dev_id
193  * @idr_ref - reference count to gate release of dma_device dev_id
194  */
195 struct dma_chan_dev {
196 	struct dma_chan *chan;
197 	struct device device;
198 	int dev_id;
199 	atomic_t *idr_ref;
200 };
201 
202 static inline const char *dma_chan_name(struct dma_chan *chan)
203 {
204 	return dev_name(&chan->dev->device);
205 }
206 
207 void dma_chan_cleanup(struct kref *kref);
208 
209 /**
210  * typedef dma_filter_fn - callback filter for dma_request_channel
211  * @chan: channel to be reviewed
212  * @filter_param: opaque parameter passed through dma_request_channel
213  *
214  * When this optional parameter is specified in a call to dma_request_channel a
215  * suitable channel is passed to this routine for further dispositioning before
216  * being returned.  Where 'suitable' indicates a non-busy channel that
217  * satisfies the given capability mask.  It returns 'true' to indicate that the
218  * channel is suitable.
219  */
220 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
221 
222 typedef void (*dma_async_tx_callback)(void *dma_async_param);
223 /**
224  * struct dma_async_tx_descriptor - async transaction descriptor
225  * ---dma generic offload fields---
226  * @cookie: tracking cookie for this transaction, set to -EBUSY if
227  *	this tx is sitting on a dependency list
228  * @flags: flags to augment operation preparation, control completion, and
229  * 	communicate status
230  * @phys: physical address of the descriptor
231  * @chan: target channel for this operation
232  * @tx_submit: set the prepared descriptor(s) to be executed by the engine
233  * @callback: routine to call after this operation is complete
234  * @callback_param: general parameter to pass to the callback routine
235  * ---async_tx api specific fields---
236  * @next: at completion submit this descriptor
237  * @parent: pointer to the next level up in the dependency chain
238  * @lock: protect the parent and next pointers
239  */
240 struct dma_async_tx_descriptor {
241 	dma_cookie_t cookie;
242 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
243 	dma_addr_t phys;
244 	struct dma_chan *chan;
245 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
246 	dma_async_tx_callback callback;
247 	void *callback_param;
248 #ifndef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
249 	struct dma_async_tx_descriptor *next;
250 	struct dma_async_tx_descriptor *parent;
251 	spinlock_t lock;
252 #endif
253 };
254 
255 #ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
256 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
257 {
258 }
259 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
260 {
261 }
262 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
263 {
264 	BUG();
265 }
266 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
267 {
268 }
269 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
270 {
271 }
272 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
273 {
274 	return NULL;
275 }
276 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
277 {
278 	return NULL;
279 }
280 
281 #else
282 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
283 {
284 	spin_lock_bh(&txd->lock);
285 }
286 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
287 {
288 	spin_unlock_bh(&txd->lock);
289 }
290 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
291 {
292 	txd->next = next;
293 	next->parent = txd;
294 }
295 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
296 {
297 	txd->parent = NULL;
298 }
299 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
300 {
301 	txd->next = NULL;
302 }
303 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
304 {
305 	return txd->parent;
306 }
307 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
308 {
309 	return txd->next;
310 }
311 #endif
312 
313 /**
314  * struct dma_tx_state - filled in to report the status of
315  * a transfer.
316  * @last: last completed DMA cookie
317  * @used: last issued DMA cookie (i.e. the one in progress)
318  * @residue: the remaining number of bytes left to transmit
319  *	on the selected transfer for states DMA_IN_PROGRESS and
320  *	DMA_PAUSED if this is implemented in the driver, else 0
321  */
322 struct dma_tx_state {
323 	dma_cookie_t last;
324 	dma_cookie_t used;
325 	u32 residue;
326 };
327 
328 /**
329  * struct dma_device - info on the entity supplying DMA services
330  * @chancnt: how many DMA channels are supported
331  * @privatecnt: how many DMA channels are requested by dma_request_channel
332  * @channels: the list of struct dma_chan
333  * @global_node: list_head for global dma_device_list
334  * @cap_mask: one or more dma_capability flags
335  * @max_xor: maximum number of xor sources, 0 if no capability
336  * @max_pq: maximum number of PQ sources and PQ-continue capability
337  * @copy_align: alignment shift for memcpy operations
338  * @xor_align: alignment shift for xor operations
339  * @pq_align: alignment shift for pq operations
340  * @fill_align: alignment shift for memset operations
341  * @dev_id: unique device ID
342  * @dev: struct device reference for dma mapping api
343  * @device_alloc_chan_resources: allocate resources and return the
344  *	number of allocated descriptors
345  * @device_free_chan_resources: release DMA channel's resources
346  * @device_prep_dma_memcpy: prepares a memcpy operation
347  * @device_prep_dma_xor: prepares a xor operation
348  * @device_prep_dma_xor_val: prepares a xor validation operation
349  * @device_prep_dma_pq: prepares a pq operation
350  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
351  * @device_prep_dma_memset: prepares a memset operation
352  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
353  * @device_prep_slave_sg: prepares a slave dma operation
354  * @device_control: manipulate all pending operations on a channel, returns
355  *	zero or error code
356  * @device_tx_status: poll for transaction completion, the optional
357  *	txstate parameter can be supplied with a pointer to get a
358  *	struct with auxilary transfer status information, otherwise the call
359  *	will just return a simple status code
360  * @device_issue_pending: push pending transactions to hardware
361  */
362 struct dma_device {
363 
364 	unsigned int chancnt;
365 	unsigned int privatecnt;
366 	struct list_head channels;
367 	struct list_head global_node;
368 	dma_cap_mask_t  cap_mask;
369 	unsigned short max_xor;
370 	unsigned short max_pq;
371 	u8 copy_align;
372 	u8 xor_align;
373 	u8 pq_align;
374 	u8 fill_align;
375 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
376 
377 	int dev_id;
378 	struct device *dev;
379 
380 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
381 	void (*device_free_chan_resources)(struct dma_chan *chan);
382 
383 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
384 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
385 		size_t len, unsigned long flags);
386 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
387 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
388 		unsigned int src_cnt, size_t len, unsigned long flags);
389 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
390 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
391 		size_t len, enum sum_check_flags *result, unsigned long flags);
392 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
393 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
394 		unsigned int src_cnt, const unsigned char *scf,
395 		size_t len, unsigned long flags);
396 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
397 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
398 		unsigned int src_cnt, const unsigned char *scf, size_t len,
399 		enum sum_check_flags *pqres, unsigned long flags);
400 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
401 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
402 		unsigned long flags);
403 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
404 		struct dma_chan *chan, unsigned long flags);
405 
406 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
407 		struct dma_chan *chan, struct scatterlist *sgl,
408 		unsigned int sg_len, enum dma_data_direction direction,
409 		unsigned long flags);
410 	int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
411 		unsigned long arg);
412 
413 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
414 					    dma_cookie_t cookie,
415 					    struct dma_tx_state *txstate);
416 	void (*device_issue_pending)(struct dma_chan *chan);
417 };
418 
419 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
420 {
421 	size_t mask;
422 
423 	if (!align)
424 		return true;
425 	mask = (1 << align) - 1;
426 	if (mask & (off1 | off2 | len))
427 		return false;
428 	return true;
429 }
430 
431 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
432 				       size_t off2, size_t len)
433 {
434 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
435 }
436 
437 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
438 				      size_t off2, size_t len)
439 {
440 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
441 }
442 
443 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
444 				     size_t off2, size_t len)
445 {
446 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
447 }
448 
449 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
450 				       size_t off2, size_t len)
451 {
452 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
453 }
454 
455 static inline void
456 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
457 {
458 	dma->max_pq = maxpq;
459 	if (has_pq_continue)
460 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
461 }
462 
463 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
464 {
465 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
466 }
467 
468 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
469 {
470 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
471 
472 	return (flags & mask) == mask;
473 }
474 
475 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
476 {
477 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
478 }
479 
480 static unsigned short dma_dev_to_maxpq(struct dma_device *dma)
481 {
482 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
483 }
484 
485 /* dma_maxpq - reduce maxpq in the face of continued operations
486  * @dma - dma device with PQ capability
487  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
488  *
489  * When an engine does not support native continuation we need 3 extra
490  * source slots to reuse P and Q with the following coefficients:
491  * 1/ {00} * P : remove P from Q', but use it as a source for P'
492  * 2/ {01} * Q : use Q to continue Q' calculation
493  * 3/ {00} * Q : subtract Q from P' to cancel (2)
494  *
495  * In the case where P is disabled we only need 1 extra source:
496  * 1/ {01} * Q : use Q to continue Q' calculation
497  */
498 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
499 {
500 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
501 		return dma_dev_to_maxpq(dma);
502 	else if (dmaf_p_disabled_continue(flags))
503 		return dma_dev_to_maxpq(dma) - 1;
504 	else if (dmaf_continue(flags))
505 		return dma_dev_to_maxpq(dma) - 3;
506 	BUG();
507 }
508 
509 /* --- public DMA engine API --- */
510 
511 #ifdef CONFIG_DMA_ENGINE
512 void dmaengine_get(void);
513 void dmaengine_put(void);
514 #else
515 static inline void dmaengine_get(void)
516 {
517 }
518 static inline void dmaengine_put(void)
519 {
520 }
521 #endif
522 
523 #ifdef CONFIG_NET_DMA
524 #define net_dmaengine_get()	dmaengine_get()
525 #define net_dmaengine_put()	dmaengine_put()
526 #else
527 static inline void net_dmaengine_get(void)
528 {
529 }
530 static inline void net_dmaengine_put(void)
531 {
532 }
533 #endif
534 
535 #ifdef CONFIG_ASYNC_TX_DMA
536 #define async_dmaengine_get()	dmaengine_get()
537 #define async_dmaengine_put()	dmaengine_put()
538 #ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
539 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
540 #else
541 #define async_dma_find_channel(type) dma_find_channel(type)
542 #endif /* CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH */
543 #else
544 static inline void async_dmaengine_get(void)
545 {
546 }
547 static inline void async_dmaengine_put(void)
548 {
549 }
550 static inline struct dma_chan *
551 async_dma_find_channel(enum dma_transaction_type type)
552 {
553 	return NULL;
554 }
555 #endif /* CONFIG_ASYNC_TX_DMA */
556 
557 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
558 	void *dest, void *src, size_t len);
559 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
560 	struct page *page, unsigned int offset, void *kdata, size_t len);
561 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
562 	struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
563 	unsigned int src_off, size_t len);
564 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
565 	struct dma_chan *chan);
566 
567 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
568 {
569 	tx->flags |= DMA_CTRL_ACK;
570 }
571 
572 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
573 {
574 	tx->flags &= ~DMA_CTRL_ACK;
575 }
576 
577 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
578 {
579 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
580 }
581 
582 #define first_dma_cap(mask) __first_dma_cap(&(mask))
583 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
584 {
585 	return min_t(int, DMA_TX_TYPE_END,
586 		find_first_bit(srcp->bits, DMA_TX_TYPE_END));
587 }
588 
589 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
590 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
591 {
592 	return min_t(int, DMA_TX_TYPE_END,
593 		find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
594 }
595 
596 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
597 static inline void
598 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
599 {
600 	set_bit(tx_type, dstp->bits);
601 }
602 
603 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
604 static inline void
605 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
606 {
607 	clear_bit(tx_type, dstp->bits);
608 }
609 
610 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
611 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
612 {
613 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
614 }
615 
616 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
617 static inline int
618 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
619 {
620 	return test_bit(tx_type, srcp->bits);
621 }
622 
623 #define for_each_dma_cap_mask(cap, mask) \
624 	for ((cap) = first_dma_cap(mask);	\
625 		(cap) < DMA_TX_TYPE_END;	\
626 		(cap) = next_dma_cap((cap), (mask)))
627 
628 /**
629  * dma_async_issue_pending - flush pending transactions to HW
630  * @chan: target DMA channel
631  *
632  * This allows drivers to push copies to HW in batches,
633  * reducing MMIO writes where possible.
634  */
635 static inline void dma_async_issue_pending(struct dma_chan *chan)
636 {
637 	chan->device->device_issue_pending(chan);
638 }
639 
640 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
641 
642 /**
643  * dma_async_is_tx_complete - poll for transaction completion
644  * @chan: DMA channel
645  * @cookie: transaction identifier to check status of
646  * @last: returns last completed cookie, can be NULL
647  * @used: returns last issued cookie, can be NULL
648  *
649  * If @last and @used are passed in, upon return they reflect the driver
650  * internal state and can be used with dma_async_is_complete() to check
651  * the status of multiple cookies without re-checking hardware state.
652  */
653 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
654 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
655 {
656 	struct dma_tx_state state;
657 	enum dma_status status;
658 
659 	status = chan->device->device_tx_status(chan, cookie, &state);
660 	if (last)
661 		*last = state.last;
662 	if (used)
663 		*used = state.used;
664 	return status;
665 }
666 
667 #define dma_async_memcpy_complete(chan, cookie, last, used)\
668 	dma_async_is_tx_complete(chan, cookie, last, used)
669 
670 /**
671  * dma_async_is_complete - test a cookie against chan state
672  * @cookie: transaction identifier to test status of
673  * @last_complete: last know completed transaction
674  * @last_used: last cookie value handed out
675  *
676  * dma_async_is_complete() is used in dma_async_memcpy_complete()
677  * the test logic is separated for lightweight testing of multiple cookies
678  */
679 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
680 			dma_cookie_t last_complete, dma_cookie_t last_used)
681 {
682 	if (last_complete <= last_used) {
683 		if ((cookie <= last_complete) || (cookie > last_used))
684 			return DMA_SUCCESS;
685 	} else {
686 		if ((cookie <= last_complete) && (cookie > last_used))
687 			return DMA_SUCCESS;
688 	}
689 	return DMA_IN_PROGRESS;
690 }
691 
692 static inline void
693 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
694 {
695 	if (st) {
696 		st->last = last;
697 		st->used = used;
698 		st->residue = residue;
699 	}
700 }
701 
702 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
703 #ifdef CONFIG_DMA_ENGINE
704 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
705 void dma_issue_pending_all(void);
706 #else
707 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
708 {
709 	return DMA_SUCCESS;
710 }
711 static inline void dma_issue_pending_all(void)
712 {
713 	do { } while (0);
714 }
715 #endif
716 
717 /* --- DMA device --- */
718 
719 int dma_async_device_register(struct dma_device *device);
720 void dma_async_device_unregister(struct dma_device *device);
721 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
722 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
723 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
724 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
725 void dma_release_channel(struct dma_chan *chan);
726 
727 /* --- Helper iov-locking functions --- */
728 
729 struct dma_page_list {
730 	char __user *base_address;
731 	int nr_pages;
732 	struct page **pages;
733 };
734 
735 struct dma_pinned_list {
736 	int nr_iovecs;
737 	struct dma_page_list page_list[0];
738 };
739 
740 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
741 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
742 
743 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
744 	struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
745 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
746 	struct dma_pinned_list *pinned_list, struct page *page,
747 	unsigned int offset, size_t len);
748 
749 #endif /* DMAENGINE_H */
750