1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5 #ifndef LINUX_DMAENGINE_H 6 #define LINUX_DMAENGINE_H 7 8 #include <linux/device.h> 9 #include <linux/err.h> 10 #include <linux/uio.h> 11 #include <linux/bug.h> 12 #include <linux/scatterlist.h> 13 #include <linux/bitmap.h> 14 #include <linux/types.h> 15 #include <asm/page.h> 16 17 /** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22 typedef s32 dma_cookie_t; 23 #define DMA_MIN_COOKIE 1 24 25 static inline int dma_submit_error(dma_cookie_t cookie) 26 { 27 return cookie < 0 ? cookie : 0; 28 } 29 30 /** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37 enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42 DMA_OUT_OF_ORDER, 43 }; 44 45 /** 46 * enum dma_transaction_type - DMA transaction types/indexes 47 * 48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 49 * automatically set as dma devices are registered. 50 */ 51 enum dma_transaction_type { 52 DMA_MEMCPY, 53 DMA_XOR, 54 DMA_PQ, 55 DMA_XOR_VAL, 56 DMA_PQ_VAL, 57 DMA_MEMSET, 58 DMA_MEMSET_SG, 59 DMA_INTERRUPT, 60 DMA_PRIVATE, 61 DMA_ASYNC_TX, 62 DMA_SLAVE, 63 DMA_CYCLIC, 64 DMA_INTERLEAVE, 65 DMA_COMPLETION_NO_ORDER, 66 DMA_REPEAT, 67 DMA_LOAD_EOT, 68 /* last transaction type for creation of the capabilities mask */ 69 DMA_TX_TYPE_END, 70 }; 71 72 /** 73 * enum dma_transfer_direction - dma transfer mode and direction indicator 74 * @DMA_MEM_TO_MEM: Async/Memcpy mode 75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 78 */ 79 enum dma_transfer_direction { 80 DMA_MEM_TO_MEM, 81 DMA_MEM_TO_DEV, 82 DMA_DEV_TO_MEM, 83 DMA_DEV_TO_DEV, 84 DMA_TRANS_NONE, 85 }; 86 87 /** 88 * Interleaved Transfer Request 89 * ---------------------------- 90 * A chunk is collection of contiguous bytes to be transferred. 91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 92 * ICGs may or may not change between chunks. 93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 94 * that when repeated an integral number of times, specifies the transfer. 95 * A transfer template is specification of a Frame, the number of times 96 * it is to be repeated and other per-transfer attributes. 97 * 98 * Practically, a client driver would have ready a template for each 99 * type of transfer it is going to need during its lifetime and 100 * set only 'src_start' and 'dst_start' before submitting the requests. 101 * 102 * 103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 105 * 106 * == Chunk size 107 * ... ICG 108 */ 109 110 /** 111 * struct data_chunk - Element of scatter-gather list that makes a frame. 112 * @size: Number of bytes to read from source. 113 * size_dst := fn(op, size_src), so doesn't mean much for destination. 114 * @icg: Number of bytes to jump after last src/dst address of this 115 * chunk and before first src/dst address for next chunk. 116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 118 * @dst_icg: Number of bytes to jump after last dst address of this 119 * chunk and before the first dst address for next chunk. 120 * Ignored if dst_inc is true and dst_sgl is false. 121 * @src_icg: Number of bytes to jump after last src address of this 122 * chunk and before the first src address for next chunk. 123 * Ignored if src_inc is true and src_sgl is false. 124 */ 125 struct data_chunk { 126 size_t size; 127 size_t icg; 128 size_t dst_icg; 129 size_t src_icg; 130 }; 131 132 /** 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 134 * and attributes. 135 * @src_start: Bus address of source for the first chunk. 136 * @dst_start: Bus address of destination for the first chunk. 137 * @dir: Specifies the type of Source and Destination. 138 * @src_inc: If the source address increments after reading from it. 139 * @dst_inc: If the destination address increments after writing to it. 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 141 * Otherwise, source is read contiguously (icg ignored). 142 * Ignored if src_inc is false. 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 144 * Otherwise, destination is filled contiguously (icg ignored). 145 * Ignored if dst_inc is false. 146 * @numf: Number of frames in this template. 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 148 * @sgl: Array of {chunk,icg} pairs that make up a frame. 149 */ 150 struct dma_interleaved_template { 151 dma_addr_t src_start; 152 dma_addr_t dst_start; 153 enum dma_transfer_direction dir; 154 bool src_inc; 155 bool dst_inc; 156 bool src_sgl; 157 bool dst_sgl; 158 size_t numf; 159 size_t frame_size; 160 struct data_chunk sgl[]; 161 }; 162 163 /** 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 165 * control completion, and communicate status. 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 167 * this transaction 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 169 * acknowledges receipt, i.e. has a chance to establish any dependency 170 * chains 171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 174 * sources that were the result of a previous operation, in the case of a PQ 175 * operation it continues the calculation with new sources 176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 177 * on the result of this operation 178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 179 * cleared or freed 180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 181 * data and the descriptor should be in different format from normal 182 * data descriptors. 183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically 184 * repeated when it ends until a transaction is issued on the same channel 185 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to 186 * interleaved transactions and is ignored for all other transaction types. 187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any 188 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the 189 * repeated transaction ends. Not setting this flag when the previously queued 190 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction 191 * to never be processed and stay in the issued queue forever. The flag is 192 * ignored if the previous transaction is not a repeated transaction. 193 */ 194 enum dma_ctrl_flags { 195 DMA_PREP_INTERRUPT = (1 << 0), 196 DMA_CTRL_ACK = (1 << 1), 197 DMA_PREP_PQ_DISABLE_P = (1 << 2), 198 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 199 DMA_PREP_CONTINUE = (1 << 4), 200 DMA_PREP_FENCE = (1 << 5), 201 DMA_CTRL_REUSE = (1 << 6), 202 DMA_PREP_CMD = (1 << 7), 203 DMA_PREP_REPEAT = (1 << 8), 204 DMA_PREP_LOAD_EOT = (1 << 9), 205 }; 206 207 /** 208 * enum sum_check_bits - bit position of pq_check_flags 209 */ 210 enum sum_check_bits { 211 SUM_CHECK_P = 0, 212 SUM_CHECK_Q = 1, 213 }; 214 215 /** 216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 219 */ 220 enum sum_check_flags { 221 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 222 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 223 }; 224 225 226 /** 227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 228 * See linux/cpumask.h 229 */ 230 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 231 232 /** 233 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 234 * @memcpy_count: transaction counter 235 * @bytes_transferred: byte counter 236 */ 237 238 /** 239 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported 240 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the 241 * client driver and it is attached (via the dmaengine_desc_attach_metadata() 242 * helper) to the descriptor. 243 * 244 * Client drivers interested to use this mode can follow: 245 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 246 * 1. prepare the descriptor (dmaengine_prep_*) 247 * construct the metadata in the client's buffer 248 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 249 * descriptor 250 * 3. submit the transfer 251 * - DMA_DEV_TO_MEM: 252 * 1. prepare the descriptor (dmaengine_prep_*) 253 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 254 * descriptor 255 * 3. submit the transfer 256 * 4. when the transfer is completed, the metadata should be available in the 257 * attached buffer 258 * 259 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA 260 * driver. The client driver can ask for the pointer, maximum size and the 261 * currently used size of the metadata and can directly update or read it. 262 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is 263 * provided as helper functions. 264 * 265 * Note: the metadata area for the descriptor is no longer valid after the 266 * transfer has been completed (valid up to the point when the completion 267 * callback returns if used). 268 * 269 * Client drivers interested to use this mode can follow: 270 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 271 * 1. prepare the descriptor (dmaengine_prep_*) 272 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's 273 * metadata area 274 * 3. update the metadata at the pointer 275 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount 276 * of data the client has placed into the metadata buffer 277 * 5. submit the transfer 278 * - DMA_DEV_TO_MEM: 279 * 1. prepare the descriptor (dmaengine_prep_*) 280 * 2. submit the transfer 281 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the 282 * pointer to the engine's metadata area 283 * 4. Read out the metadata from the pointer 284 * 285 * Note: the two mode is not compatible and clients must use one mode for a 286 * descriptor. 287 */ 288 enum dma_desc_metadata_mode { 289 DESC_METADATA_NONE = 0, 290 DESC_METADATA_CLIENT = BIT(0), 291 DESC_METADATA_ENGINE = BIT(1), 292 }; 293 294 struct dma_chan_percpu { 295 /* stats */ 296 unsigned long memcpy_count; 297 unsigned long bytes_transferred; 298 }; 299 300 /** 301 * struct dma_router - DMA router structure 302 * @dev: pointer to the DMA router device 303 * @route_free: function to be called when the route can be disconnected 304 */ 305 struct dma_router { 306 struct device *dev; 307 void (*route_free)(struct device *dev, void *route_data); 308 }; 309 310 /** 311 * struct dma_chan - devices supply DMA channels, clients use them 312 * @device: ptr to the dma device who supplies this channel, always !%NULL 313 * @slave: ptr to the device using this channel 314 * @cookie: last cookie value returned to client 315 * @completed_cookie: last completed cookie for this channel 316 * @chan_id: channel ID for sysfs 317 * @dev: class device for sysfs 318 * @name: backlink name for sysfs 319 * @dbg_client_name: slave name for debugfs in format: 320 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" 321 * @device_node: used to add this to the device chan list 322 * @local: per-cpu pointer to a struct dma_chan_percpu 323 * @client_count: how many clients are using this channel 324 * @table_count: number of appearances in the mem-to-mem allocation table 325 * @router: pointer to the DMA router structure 326 * @route_data: channel specific data for the router 327 * @private: private data for certain client-channel associations 328 */ 329 struct dma_chan { 330 struct dma_device *device; 331 struct device *slave; 332 dma_cookie_t cookie; 333 dma_cookie_t completed_cookie; 334 335 /* sysfs */ 336 int chan_id; 337 struct dma_chan_dev *dev; 338 const char *name; 339 #ifdef CONFIG_DEBUG_FS 340 char *dbg_client_name; 341 #endif 342 343 struct list_head device_node; 344 struct dma_chan_percpu __percpu *local; 345 int client_count; 346 int table_count; 347 348 /* DMA router */ 349 struct dma_router *router; 350 void *route_data; 351 352 void *private; 353 }; 354 355 /** 356 * struct dma_chan_dev - relate sysfs device node to backing channel device 357 * @chan: driver channel device 358 * @device: sysfs device 359 * @dev_id: parent dma_device dev_id 360 */ 361 struct dma_chan_dev { 362 struct dma_chan *chan; 363 struct device device; 364 int dev_id; 365 }; 366 367 /** 368 * enum dma_slave_buswidth - defines bus width of the DMA slave 369 * device, source or target buses 370 */ 371 enum dma_slave_buswidth { 372 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 373 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 374 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 375 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 376 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 377 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 378 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 379 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 380 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 381 }; 382 383 /** 384 * struct dma_slave_config - dma slave channel runtime config 385 * @direction: whether the data shall go in or out on this slave 386 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 387 * legal values. DEPRECATED, drivers should use the direction argument 388 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 389 * the dir field in the dma_interleaved_template structure. 390 * @src_addr: this is the physical address where DMA slave data 391 * should be read (RX), if the source is memory this argument is 392 * ignored. 393 * @dst_addr: this is the physical address where DMA slave data 394 * should be written (TX), if the source is memory this argument 395 * is ignored. 396 * @src_addr_width: this is the width in bytes of the source (RX) 397 * register where DMA data shall be read. If the source 398 * is memory this may be ignored depending on architecture. 399 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64. 400 * @dst_addr_width: same as src_addr_width but for destination 401 * target (TX) mutatis mutandis. 402 * @src_maxburst: the maximum number of words (note: words, as in 403 * units of the src_addr_width member, not bytes) that can be sent 404 * in one burst to the device. Typically something like half the 405 * FIFO depth on I/O peripherals so you don't overflow it. This 406 * may or may not be applicable on memory sources. 407 * @dst_maxburst: same as src_maxburst but for destination target 408 * mutatis mutandis. 409 * @src_port_window_size: The length of the register area in words the data need 410 * to be accessed on the device side. It is only used for devices which is using 411 * an area instead of a single register to receive the data. Typically the DMA 412 * loops in this area in order to transfer the data. 413 * @dst_port_window_size: same as src_port_window_size but for the destination 414 * port. 415 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 416 * with 'true' if peripheral should be flow controller. Direction will be 417 * selected at Runtime. 418 * @slave_id: Slave requester id. Only valid for slave channels. The dma 419 * slave peripheral will have unique id as dma requester which need to be 420 * pass as slave config. 421 * @peripheral_config: peripheral configuration for programming peripheral 422 * for dmaengine transfer 423 * @peripheral_size: peripheral configuration buffer size 424 * 425 * This struct is passed in as configuration data to a DMA engine 426 * in order to set up a certain channel for DMA transport at runtime. 427 * The DMA device/engine has to provide support for an additional 428 * callback in the dma_device structure, device_config and this struct 429 * will then be passed in as an argument to the function. 430 * 431 * The rationale for adding configuration information to this struct is as 432 * follows: if it is likely that more than one DMA slave controllers in 433 * the world will support the configuration option, then make it generic. 434 * If not: if it is fixed so that it be sent in static from the platform 435 * data, then prefer to do that. 436 */ 437 struct dma_slave_config { 438 enum dma_transfer_direction direction; 439 phys_addr_t src_addr; 440 phys_addr_t dst_addr; 441 enum dma_slave_buswidth src_addr_width; 442 enum dma_slave_buswidth dst_addr_width; 443 u32 src_maxburst; 444 u32 dst_maxburst; 445 u32 src_port_window_size; 446 u32 dst_port_window_size; 447 bool device_fc; 448 unsigned int slave_id; 449 void *peripheral_config; 450 size_t peripheral_size; 451 }; 452 453 /** 454 * enum dma_residue_granularity - Granularity of the reported transfer residue 455 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 456 * DMA channel is only able to tell whether a descriptor has been completed or 457 * not, which means residue reporting is not supported by this channel. The 458 * residue field of the dma_tx_state field will always be 0. 459 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 460 * completed segment of the transfer (For cyclic transfers this is after each 461 * period). This is typically implemented by having the hardware generate an 462 * interrupt after each transferred segment and then the drivers updates the 463 * outstanding residue by the size of the segment. Another possibility is if 464 * the hardware supports scatter-gather and the segment descriptor has a field 465 * which gets set after the segment has been completed. The driver then counts 466 * the number of segments without the flag set to compute the residue. 467 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 468 * burst. This is typically only supported if the hardware has a progress 469 * register of some sort (E.g. a register with the current read/write address 470 * or a register with the amount of bursts/beats/bytes that have been 471 * transferred or still need to be transferred). 472 */ 473 enum dma_residue_granularity { 474 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 475 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 476 DMA_RESIDUE_GRANULARITY_BURST = 2, 477 }; 478 479 /** 480 * struct dma_slave_caps - expose capabilities of a slave channel only 481 * @src_addr_widths: bit mask of src addr widths the channel supports. 482 * Width is specified in bytes, e.g. for a channel supporting 483 * a width of 4 the mask should have BIT(4) set. 484 * @dst_addr_widths: bit mask of dst addr widths the channel supports 485 * @directions: bit mask of slave directions the channel supports. 486 * Since the enum dma_transfer_direction is not defined as bit flag for 487 * each type, the dma controller should set BIT(<TYPE>) and same 488 * should be checked by controller as well 489 * @min_burst: min burst capability per-transfer 490 * @max_burst: max burst capability per-transfer 491 * @max_sg_burst: max number of SG list entries executed in a single burst 492 * DMA tansaction with no software intervention for reinitialization. 493 * Zero value means unlimited number of entries. 494 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 495 * for resume later) 496 * @cmd_resume: true, if resume is supported 497 * @cmd_terminate: true, if terminate cmd is supported 498 * @residue_granularity: granularity of the reported transfer residue 499 * @descriptor_reuse: if a descriptor can be reused by client and 500 * resubmitted multiple times 501 */ 502 struct dma_slave_caps { 503 u32 src_addr_widths; 504 u32 dst_addr_widths; 505 u32 directions; 506 u32 min_burst; 507 u32 max_burst; 508 u32 max_sg_burst; 509 bool cmd_pause; 510 bool cmd_resume; 511 bool cmd_terminate; 512 enum dma_residue_granularity residue_granularity; 513 bool descriptor_reuse; 514 }; 515 516 static inline const char *dma_chan_name(struct dma_chan *chan) 517 { 518 return dev_name(&chan->dev->device); 519 } 520 521 void dma_chan_cleanup(struct kref *kref); 522 523 /** 524 * typedef dma_filter_fn - callback filter for dma_request_channel 525 * @chan: channel to be reviewed 526 * @filter_param: opaque parameter passed through dma_request_channel 527 * 528 * When this optional parameter is specified in a call to dma_request_channel a 529 * suitable channel is passed to this routine for further dispositioning before 530 * being returned. Where 'suitable' indicates a non-busy channel that 531 * satisfies the given capability mask. It returns 'true' to indicate that the 532 * channel is suitable. 533 */ 534 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 535 536 typedef void (*dma_async_tx_callback)(void *dma_async_param); 537 538 enum dmaengine_tx_result { 539 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 540 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 541 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 542 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 543 }; 544 545 struct dmaengine_result { 546 enum dmaengine_tx_result result; 547 u32 residue; 548 }; 549 550 typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 551 const struct dmaengine_result *result); 552 553 struct dmaengine_unmap_data { 554 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 555 u16 map_cnt; 556 #else 557 u8 map_cnt; 558 #endif 559 u8 to_cnt; 560 u8 from_cnt; 561 u8 bidi_cnt; 562 struct device *dev; 563 struct kref kref; 564 size_t len; 565 dma_addr_t addr[]; 566 }; 567 568 struct dma_async_tx_descriptor; 569 570 struct dma_descriptor_metadata_ops { 571 int (*attach)(struct dma_async_tx_descriptor *desc, void *data, 572 size_t len); 573 574 void *(*get_ptr)(struct dma_async_tx_descriptor *desc, 575 size_t *payload_len, size_t *max_len); 576 int (*set_len)(struct dma_async_tx_descriptor *desc, 577 size_t payload_len); 578 }; 579 580 /** 581 * struct dma_async_tx_descriptor - async transaction descriptor 582 * ---dma generic offload fields--- 583 * @cookie: tracking cookie for this transaction, set to -EBUSY if 584 * this tx is sitting on a dependency list 585 * @flags: flags to augment operation preparation, control completion, and 586 * communicate status 587 * @phys: physical address of the descriptor 588 * @chan: target channel for this operation 589 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 590 * descriptor pending. To be pushed on .issue_pending() call 591 * @callback: routine to call after this operation is complete 592 * @callback_param: general parameter to pass to the callback routine 593 * @desc_metadata_mode: core managed metadata mode to protect mixed use of 594 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise 595 * DESC_METADATA_NONE 596 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the 597 * DMA driver if metadata mode is supported with the descriptor 598 * ---async_tx api specific fields--- 599 * @next: at completion submit this descriptor 600 * @parent: pointer to the next level up in the dependency chain 601 * @lock: protect the parent and next pointers 602 */ 603 struct dma_async_tx_descriptor { 604 dma_cookie_t cookie; 605 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 606 dma_addr_t phys; 607 struct dma_chan *chan; 608 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 609 int (*desc_free)(struct dma_async_tx_descriptor *tx); 610 dma_async_tx_callback callback; 611 dma_async_tx_callback_result callback_result; 612 void *callback_param; 613 struct dmaengine_unmap_data *unmap; 614 enum dma_desc_metadata_mode desc_metadata_mode; 615 struct dma_descriptor_metadata_ops *metadata_ops; 616 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 617 struct dma_async_tx_descriptor *next; 618 struct dma_async_tx_descriptor *parent; 619 spinlock_t lock; 620 #endif 621 }; 622 623 #ifdef CONFIG_DMA_ENGINE 624 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 625 struct dmaengine_unmap_data *unmap) 626 { 627 kref_get(&unmap->kref); 628 tx->unmap = unmap; 629 } 630 631 struct dmaengine_unmap_data * 632 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 633 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 634 #else 635 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 636 struct dmaengine_unmap_data *unmap) 637 { 638 } 639 static inline struct dmaengine_unmap_data * 640 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 641 { 642 return NULL; 643 } 644 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 645 { 646 } 647 #endif 648 649 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 650 { 651 if (!tx->unmap) 652 return; 653 654 dmaengine_unmap_put(tx->unmap); 655 tx->unmap = NULL; 656 } 657 658 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 659 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 660 { 661 } 662 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 663 { 664 } 665 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 666 { 667 BUG(); 668 } 669 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 670 { 671 } 672 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 673 { 674 } 675 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 676 { 677 return NULL; 678 } 679 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 680 { 681 return NULL; 682 } 683 684 #else 685 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 686 { 687 spin_lock_bh(&txd->lock); 688 } 689 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 690 { 691 spin_unlock_bh(&txd->lock); 692 } 693 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 694 { 695 txd->next = next; 696 next->parent = txd; 697 } 698 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 699 { 700 txd->parent = NULL; 701 } 702 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 703 { 704 txd->next = NULL; 705 } 706 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 707 { 708 return txd->parent; 709 } 710 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 711 { 712 return txd->next; 713 } 714 #endif 715 716 /** 717 * struct dma_tx_state - filled in to report the status of 718 * a transfer. 719 * @last: last completed DMA cookie 720 * @used: last issued DMA cookie (i.e. the one in progress) 721 * @residue: the remaining number of bytes left to transmit 722 * on the selected transfer for states DMA_IN_PROGRESS and 723 * DMA_PAUSED if this is implemented in the driver, else 0 724 * @in_flight_bytes: amount of data in bytes cached by the DMA. 725 */ 726 struct dma_tx_state { 727 dma_cookie_t last; 728 dma_cookie_t used; 729 u32 residue; 730 u32 in_flight_bytes; 731 }; 732 733 /** 734 * enum dmaengine_alignment - defines alignment of the DMA async tx 735 * buffers 736 */ 737 enum dmaengine_alignment { 738 DMAENGINE_ALIGN_1_BYTE = 0, 739 DMAENGINE_ALIGN_2_BYTES = 1, 740 DMAENGINE_ALIGN_4_BYTES = 2, 741 DMAENGINE_ALIGN_8_BYTES = 3, 742 DMAENGINE_ALIGN_16_BYTES = 4, 743 DMAENGINE_ALIGN_32_BYTES = 5, 744 DMAENGINE_ALIGN_64_BYTES = 6, 745 }; 746 747 /** 748 * struct dma_slave_map - associates slave device and it's slave channel with 749 * parameter to be used by a filter function 750 * @devname: name of the device 751 * @slave: slave channel name 752 * @param: opaque parameter to pass to struct dma_filter.fn 753 */ 754 struct dma_slave_map { 755 const char *devname; 756 const char *slave; 757 void *param; 758 }; 759 760 /** 761 * struct dma_filter - information for slave device/channel to filter_fn/param 762 * mapping 763 * @fn: filter function callback 764 * @mapcnt: number of slave device/channel in the map 765 * @map: array of channel to filter mapping data 766 */ 767 struct dma_filter { 768 dma_filter_fn fn; 769 int mapcnt; 770 const struct dma_slave_map *map; 771 }; 772 773 /** 774 * struct dma_device - info on the entity supplying DMA services 775 * @chancnt: how many DMA channels are supported 776 * @privatecnt: how many DMA channels are requested by dma_request_channel 777 * @channels: the list of struct dma_chan 778 * @global_node: list_head for global dma_device_list 779 * @filter: information for device/slave to filter function/param mapping 780 * @cap_mask: one or more dma_capability flags 781 * @desc_metadata_modes: supported metadata modes by the DMA device 782 * @max_xor: maximum number of xor sources, 0 if no capability 783 * @max_pq: maximum number of PQ sources and PQ-continue capability 784 * @copy_align: alignment shift for memcpy operations 785 * @xor_align: alignment shift for xor operations 786 * @pq_align: alignment shift for pq operations 787 * @fill_align: alignment shift for memset operations 788 * @dev_id: unique device ID 789 * @dev: struct device reference for dma mapping api 790 * @owner: owner module (automatically set based on the provided dev) 791 * @src_addr_widths: bit mask of src addr widths the device supports 792 * Width is specified in bytes, e.g. for a device supporting 793 * a width of 4 the mask should have BIT(4) set. 794 * @dst_addr_widths: bit mask of dst addr widths the device supports 795 * @directions: bit mask of slave directions the device supports. 796 * Since the enum dma_transfer_direction is not defined as bit flag for 797 * each type, the dma controller should set BIT(<TYPE>) and same 798 * should be checked by controller as well 799 * @min_burst: min burst capability per-transfer 800 * @max_burst: max burst capability per-transfer 801 * @max_sg_burst: max number of SG list entries executed in a single burst 802 * DMA tansaction with no software intervention for reinitialization. 803 * Zero value means unlimited number of entries. 804 * @residue_granularity: granularity of the transfer residue reported 805 * by tx_status 806 * @device_alloc_chan_resources: allocate resources and return the 807 * number of allocated descriptors 808 * @device_router_config: optional callback for DMA router configuration 809 * @device_free_chan_resources: release DMA channel's resources 810 * @device_prep_dma_memcpy: prepares a memcpy operation 811 * @device_prep_dma_xor: prepares a xor operation 812 * @device_prep_dma_xor_val: prepares a xor validation operation 813 * @device_prep_dma_pq: prepares a pq operation 814 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 815 * @device_prep_dma_memset: prepares a memset operation 816 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 817 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 818 * @device_prep_slave_sg: prepares a slave dma operation 819 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 820 * The function takes a buffer of size buf_len. The callback function will 821 * be called after period_len bytes have been transferred. 822 * @device_prep_interleaved_dma: Transfer expression in a generic way. 823 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 824 * @device_caps: May be used to override the generic DMA slave capabilities 825 * with per-channel specific ones 826 * @device_config: Pushes a new configuration to a channel, return 0 or an error 827 * code 828 * @device_pause: Pauses any transfer happening on a channel. Returns 829 * 0 or an error code 830 * @device_resume: Resumes any transfer on a channel previously 831 * paused. Returns 0 or an error code 832 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 833 * or an error code 834 * @device_synchronize: Synchronizes the termination of a transfers to the 835 * current context. 836 * @device_tx_status: poll for transaction completion, the optional 837 * txstate parameter can be supplied with a pointer to get a 838 * struct with auxiliary transfer status information, otherwise the call 839 * will just return a simple status code 840 * @device_issue_pending: push pending transactions to hardware 841 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 842 * @device_release: called sometime atfer dma_async_device_unregister() is 843 * called and there are no further references to this structure. This 844 * must be implemented to free resources however many existing drivers 845 * do not and are therefore not safe to unbind while in use. 846 * @dbg_summary_show: optional routine to show contents in debugfs; default code 847 * will be used when this is omitted, but custom code can show extra, 848 * controller specific information. 849 */ 850 struct dma_device { 851 struct kref ref; 852 unsigned int chancnt; 853 unsigned int privatecnt; 854 struct list_head channels; 855 struct list_head global_node; 856 struct dma_filter filter; 857 dma_cap_mask_t cap_mask; 858 enum dma_desc_metadata_mode desc_metadata_modes; 859 unsigned short max_xor; 860 unsigned short max_pq; 861 enum dmaengine_alignment copy_align; 862 enum dmaengine_alignment xor_align; 863 enum dmaengine_alignment pq_align; 864 enum dmaengine_alignment fill_align; 865 #define DMA_HAS_PQ_CONTINUE (1 << 15) 866 867 int dev_id; 868 struct device *dev; 869 struct module *owner; 870 struct ida chan_ida; 871 struct mutex chan_mutex; /* to protect chan_ida */ 872 873 u32 src_addr_widths; 874 u32 dst_addr_widths; 875 u32 directions; 876 u32 min_burst; 877 u32 max_burst; 878 u32 max_sg_burst; 879 bool descriptor_reuse; 880 enum dma_residue_granularity residue_granularity; 881 882 int (*device_alloc_chan_resources)(struct dma_chan *chan); 883 int (*device_router_config)(struct dma_chan *chan); 884 void (*device_free_chan_resources)(struct dma_chan *chan); 885 886 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 887 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 888 size_t len, unsigned long flags); 889 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 890 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 891 unsigned int src_cnt, size_t len, unsigned long flags); 892 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 893 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 894 size_t len, enum sum_check_flags *result, unsigned long flags); 895 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 896 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 897 unsigned int src_cnt, const unsigned char *scf, 898 size_t len, unsigned long flags); 899 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 900 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 901 unsigned int src_cnt, const unsigned char *scf, size_t len, 902 enum sum_check_flags *pqres, unsigned long flags); 903 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 904 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 905 unsigned long flags); 906 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 907 struct dma_chan *chan, struct scatterlist *sg, 908 unsigned int nents, int value, unsigned long flags); 909 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 910 struct dma_chan *chan, unsigned long flags); 911 912 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 913 struct dma_chan *chan, struct scatterlist *sgl, 914 unsigned int sg_len, enum dma_transfer_direction direction, 915 unsigned long flags, void *context); 916 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 917 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 918 size_t period_len, enum dma_transfer_direction direction, 919 unsigned long flags); 920 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 921 struct dma_chan *chan, struct dma_interleaved_template *xt, 922 unsigned long flags); 923 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 924 struct dma_chan *chan, dma_addr_t dst, u64 data, 925 unsigned long flags); 926 927 void (*device_caps)(struct dma_chan *chan, 928 struct dma_slave_caps *caps); 929 int (*device_config)(struct dma_chan *chan, 930 struct dma_slave_config *config); 931 int (*device_pause)(struct dma_chan *chan); 932 int (*device_resume)(struct dma_chan *chan); 933 int (*device_terminate_all)(struct dma_chan *chan); 934 void (*device_synchronize)(struct dma_chan *chan); 935 936 enum dma_status (*device_tx_status)(struct dma_chan *chan, 937 dma_cookie_t cookie, 938 struct dma_tx_state *txstate); 939 void (*device_issue_pending)(struct dma_chan *chan); 940 void (*device_release)(struct dma_device *dev); 941 /* debugfs support */ 942 #ifdef CONFIG_DEBUG_FS 943 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); 944 struct dentry *dbg_dev_root; 945 #endif 946 }; 947 948 static inline int dmaengine_slave_config(struct dma_chan *chan, 949 struct dma_slave_config *config) 950 { 951 if (chan->device->device_config) 952 return chan->device->device_config(chan, config); 953 954 return -ENOSYS; 955 } 956 957 static inline bool is_slave_direction(enum dma_transfer_direction direction) 958 { 959 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 960 } 961 962 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 963 struct dma_chan *chan, dma_addr_t buf, size_t len, 964 enum dma_transfer_direction dir, unsigned long flags) 965 { 966 struct scatterlist sg; 967 sg_init_table(&sg, 1); 968 sg_dma_address(&sg) = buf; 969 sg_dma_len(&sg) = len; 970 971 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 972 return NULL; 973 974 return chan->device->device_prep_slave_sg(chan, &sg, 1, 975 dir, flags, NULL); 976 } 977 978 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 979 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 980 enum dma_transfer_direction dir, unsigned long flags) 981 { 982 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 983 return NULL; 984 985 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 986 dir, flags, NULL); 987 } 988 989 #ifdef CONFIG_RAPIDIO_DMA_ENGINE 990 struct rio_dma_ext; 991 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 992 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 993 enum dma_transfer_direction dir, unsigned long flags, 994 struct rio_dma_ext *rio_ext) 995 { 996 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 997 return NULL; 998 999 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 1000 dir, flags, rio_ext); 1001 } 1002 #endif 1003 1004 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 1005 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1006 size_t period_len, enum dma_transfer_direction dir, 1007 unsigned long flags) 1008 { 1009 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 1010 return NULL; 1011 1012 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 1013 period_len, dir, flags); 1014 } 1015 1016 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 1017 struct dma_chan *chan, struct dma_interleaved_template *xt, 1018 unsigned long flags) 1019 { 1020 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 1021 return NULL; 1022 if (flags & DMA_PREP_REPEAT && 1023 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) 1024 return NULL; 1025 1026 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 1027 } 1028 1029 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 1030 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 1031 unsigned long flags) 1032 { 1033 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 1034 return NULL; 1035 1036 return chan->device->device_prep_dma_memset(chan, dest, value, 1037 len, flags); 1038 } 1039 1040 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 1041 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1042 size_t len, unsigned long flags) 1043 { 1044 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 1045 return NULL; 1046 1047 return chan->device->device_prep_dma_memcpy(chan, dest, src, 1048 len, flags); 1049 } 1050 1051 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, 1052 enum dma_desc_metadata_mode mode) 1053 { 1054 if (!chan) 1055 return false; 1056 1057 return !!(chan->device->desc_metadata_modes & mode); 1058 } 1059 1060 #ifdef CONFIG_DMA_ENGINE 1061 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1062 void *data, size_t len); 1063 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1064 size_t *payload_len, size_t *max_len); 1065 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1066 size_t payload_len); 1067 #else /* CONFIG_DMA_ENGINE */ 1068 static inline int dmaengine_desc_attach_metadata( 1069 struct dma_async_tx_descriptor *desc, void *data, size_t len) 1070 { 1071 return -EINVAL; 1072 } 1073 static inline void *dmaengine_desc_get_metadata_ptr( 1074 struct dma_async_tx_descriptor *desc, size_t *payload_len, 1075 size_t *max_len) 1076 { 1077 return NULL; 1078 } 1079 static inline int dmaengine_desc_set_metadata_len( 1080 struct dma_async_tx_descriptor *desc, size_t payload_len) 1081 { 1082 return -EINVAL; 1083 } 1084 #endif /* CONFIG_DMA_ENGINE */ 1085 1086 /** 1087 * dmaengine_terminate_all() - Terminate all active DMA transfers 1088 * @chan: The channel for which to terminate the transfers 1089 * 1090 * This function is DEPRECATED use either dmaengine_terminate_sync() or 1091 * dmaengine_terminate_async() instead. 1092 */ 1093 static inline int dmaengine_terminate_all(struct dma_chan *chan) 1094 { 1095 if (chan->device->device_terminate_all) 1096 return chan->device->device_terminate_all(chan); 1097 1098 return -ENOSYS; 1099 } 1100 1101 /** 1102 * dmaengine_terminate_async() - Terminate all active DMA transfers 1103 * @chan: The channel for which to terminate the transfers 1104 * 1105 * Calling this function will terminate all active and pending descriptors 1106 * that have previously been submitted to the channel. It is not guaranteed 1107 * though that the transfer for the active descriptor has stopped when the 1108 * function returns. Furthermore it is possible the complete callback of a 1109 * submitted transfer is still running when this function returns. 1110 * 1111 * dmaengine_synchronize() needs to be called before it is safe to free 1112 * any memory that is accessed by previously submitted descriptors or before 1113 * freeing any resources accessed from within the completion callback of any 1114 * previously submitted descriptors. 1115 * 1116 * This function can be called from atomic context as well as from within a 1117 * complete callback of a descriptor submitted on the same channel. 1118 * 1119 * If none of the two conditions above apply consider using 1120 * dmaengine_terminate_sync() instead. 1121 */ 1122 static inline int dmaengine_terminate_async(struct dma_chan *chan) 1123 { 1124 if (chan->device->device_terminate_all) 1125 return chan->device->device_terminate_all(chan); 1126 1127 return -EINVAL; 1128 } 1129 1130 /** 1131 * dmaengine_synchronize() - Synchronize DMA channel termination 1132 * @chan: The channel to synchronize 1133 * 1134 * Synchronizes to the DMA channel termination to the current context. When this 1135 * function returns it is guaranteed that all transfers for previously issued 1136 * descriptors have stopped and it is safe to free the memory associated 1137 * with them. Furthermore it is guaranteed that all complete callback functions 1138 * for a previously submitted descriptor have finished running and it is safe to 1139 * free resources accessed from within the complete callbacks. 1140 * 1141 * The behavior of this function is undefined if dma_async_issue_pending() has 1142 * been called between dmaengine_terminate_async() and this function. 1143 * 1144 * This function must only be called from non-atomic context and must not be 1145 * called from within a complete callback of a descriptor submitted on the same 1146 * channel. 1147 */ 1148 static inline void dmaengine_synchronize(struct dma_chan *chan) 1149 { 1150 might_sleep(); 1151 1152 if (chan->device->device_synchronize) 1153 chan->device->device_synchronize(chan); 1154 } 1155 1156 /** 1157 * dmaengine_terminate_sync() - Terminate all active DMA transfers 1158 * @chan: The channel for which to terminate the transfers 1159 * 1160 * Calling this function will terminate all active and pending transfers 1161 * that have previously been submitted to the channel. It is similar to 1162 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 1163 * stopped and that all complete callbacks have finished running when the 1164 * function returns. 1165 * 1166 * This function must only be called from non-atomic context and must not be 1167 * called from within a complete callback of a descriptor submitted on the same 1168 * channel. 1169 */ 1170 static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1171 { 1172 int ret; 1173 1174 ret = dmaengine_terminate_async(chan); 1175 if (ret) 1176 return ret; 1177 1178 dmaengine_synchronize(chan); 1179 1180 return 0; 1181 } 1182 1183 static inline int dmaengine_pause(struct dma_chan *chan) 1184 { 1185 if (chan->device->device_pause) 1186 return chan->device->device_pause(chan); 1187 1188 return -ENOSYS; 1189 } 1190 1191 static inline int dmaengine_resume(struct dma_chan *chan) 1192 { 1193 if (chan->device->device_resume) 1194 return chan->device->device_resume(chan); 1195 1196 return -ENOSYS; 1197 } 1198 1199 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1200 dma_cookie_t cookie, struct dma_tx_state *state) 1201 { 1202 return chan->device->device_tx_status(chan, cookie, state); 1203 } 1204 1205 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1206 { 1207 return desc->tx_submit(desc); 1208 } 1209 1210 static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1211 size_t off1, size_t off2, size_t len) 1212 { 1213 return !(((1 << align) - 1) & (off1 | off2 | len)); 1214 } 1215 1216 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1217 size_t off2, size_t len) 1218 { 1219 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1220 } 1221 1222 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1223 size_t off2, size_t len) 1224 { 1225 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1226 } 1227 1228 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1229 size_t off2, size_t len) 1230 { 1231 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1232 } 1233 1234 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1235 size_t off2, size_t len) 1236 { 1237 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1238 } 1239 1240 static inline void 1241 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1242 { 1243 dma->max_pq = maxpq; 1244 if (has_pq_continue) 1245 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1246 } 1247 1248 static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1249 { 1250 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1251 } 1252 1253 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1254 { 1255 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1256 1257 return (flags & mask) == mask; 1258 } 1259 1260 static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1261 { 1262 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1263 } 1264 1265 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1266 { 1267 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1268 } 1269 1270 /* dma_maxpq - reduce maxpq in the face of continued operations 1271 * @dma - dma device with PQ capability 1272 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1273 * 1274 * When an engine does not support native continuation we need 3 extra 1275 * source slots to reuse P and Q with the following coefficients: 1276 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1277 * 2/ {01} * Q : use Q to continue Q' calculation 1278 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1279 * 1280 * In the case where P is disabled we only need 1 extra source: 1281 * 1/ {01} * Q : use Q to continue Q' calculation 1282 */ 1283 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1284 { 1285 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1286 return dma_dev_to_maxpq(dma); 1287 if (dmaf_p_disabled_continue(flags)) 1288 return dma_dev_to_maxpq(dma) - 1; 1289 if (dmaf_continue(flags)) 1290 return dma_dev_to_maxpq(dma) - 3; 1291 BUG(); 1292 } 1293 1294 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1295 size_t dir_icg) 1296 { 1297 if (inc) { 1298 if (dir_icg) 1299 return dir_icg; 1300 if (sgl) 1301 return icg; 1302 } 1303 1304 return 0; 1305 } 1306 1307 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1308 struct data_chunk *chunk) 1309 { 1310 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1311 chunk->icg, chunk->dst_icg); 1312 } 1313 1314 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1315 struct data_chunk *chunk) 1316 { 1317 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1318 chunk->icg, chunk->src_icg); 1319 } 1320 1321 /* --- public DMA engine API --- */ 1322 1323 #ifdef CONFIG_DMA_ENGINE 1324 void dmaengine_get(void); 1325 void dmaengine_put(void); 1326 #else 1327 static inline void dmaengine_get(void) 1328 { 1329 } 1330 static inline void dmaengine_put(void) 1331 { 1332 } 1333 #endif 1334 1335 #ifdef CONFIG_ASYNC_TX_DMA 1336 #define async_dmaengine_get() dmaengine_get() 1337 #define async_dmaengine_put() dmaengine_put() 1338 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1339 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1340 #else 1341 #define async_dma_find_channel(type) dma_find_channel(type) 1342 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1343 #else 1344 static inline void async_dmaengine_get(void) 1345 { 1346 } 1347 static inline void async_dmaengine_put(void) 1348 { 1349 } 1350 static inline struct dma_chan * 1351 async_dma_find_channel(enum dma_transaction_type type) 1352 { 1353 return NULL; 1354 } 1355 #endif /* CONFIG_ASYNC_TX_DMA */ 1356 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1357 struct dma_chan *chan); 1358 1359 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1360 { 1361 tx->flags |= DMA_CTRL_ACK; 1362 } 1363 1364 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1365 { 1366 tx->flags &= ~DMA_CTRL_ACK; 1367 } 1368 1369 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1370 { 1371 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1372 } 1373 1374 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1375 static inline void 1376 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1377 { 1378 set_bit(tx_type, dstp->bits); 1379 } 1380 1381 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1382 static inline void 1383 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1384 { 1385 clear_bit(tx_type, dstp->bits); 1386 } 1387 1388 #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1389 static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1390 { 1391 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1392 } 1393 1394 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1395 static inline int 1396 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1397 { 1398 return test_bit(tx_type, srcp->bits); 1399 } 1400 1401 #define for_each_dma_cap_mask(cap, mask) \ 1402 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1403 1404 /** 1405 * dma_async_issue_pending - flush pending transactions to HW 1406 * @chan: target DMA channel 1407 * 1408 * This allows drivers to push copies to HW in batches, 1409 * reducing MMIO writes where possible. 1410 */ 1411 static inline void dma_async_issue_pending(struct dma_chan *chan) 1412 { 1413 chan->device->device_issue_pending(chan); 1414 } 1415 1416 /** 1417 * dma_async_is_tx_complete - poll for transaction completion 1418 * @chan: DMA channel 1419 * @cookie: transaction identifier to check status of 1420 * @last: returns last completed cookie, can be NULL 1421 * @used: returns last issued cookie, can be NULL 1422 * 1423 * If @last and @used are passed in, upon return they reflect the driver 1424 * internal state and can be used with dma_async_is_complete() to check 1425 * the status of multiple cookies without re-checking hardware state. 1426 */ 1427 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1428 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1429 { 1430 struct dma_tx_state state; 1431 enum dma_status status; 1432 1433 status = chan->device->device_tx_status(chan, cookie, &state); 1434 if (last) 1435 *last = state.last; 1436 if (used) 1437 *used = state.used; 1438 return status; 1439 } 1440 1441 /** 1442 * dma_async_is_complete - test a cookie against chan state 1443 * @cookie: transaction identifier to test status of 1444 * @last_complete: last know completed transaction 1445 * @last_used: last cookie value handed out 1446 * 1447 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1448 * the test logic is separated for lightweight testing of multiple cookies 1449 */ 1450 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1451 dma_cookie_t last_complete, dma_cookie_t last_used) 1452 { 1453 if (last_complete <= last_used) { 1454 if ((cookie <= last_complete) || (cookie > last_used)) 1455 return DMA_COMPLETE; 1456 } else { 1457 if ((cookie <= last_complete) && (cookie > last_used)) 1458 return DMA_COMPLETE; 1459 } 1460 return DMA_IN_PROGRESS; 1461 } 1462 1463 static inline void 1464 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1465 { 1466 if (!st) 1467 return; 1468 1469 st->last = last; 1470 st->used = used; 1471 st->residue = residue; 1472 } 1473 1474 #ifdef CONFIG_DMA_ENGINE 1475 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1476 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1477 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1478 void dma_issue_pending_all(void); 1479 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1480 dma_filter_fn fn, void *fn_param, 1481 struct device_node *np); 1482 1483 struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1484 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1485 1486 void dma_release_channel(struct dma_chan *chan); 1487 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1488 #else 1489 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1490 { 1491 return NULL; 1492 } 1493 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1494 { 1495 return DMA_COMPLETE; 1496 } 1497 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1498 { 1499 return DMA_COMPLETE; 1500 } 1501 static inline void dma_issue_pending_all(void) 1502 { 1503 } 1504 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1505 dma_filter_fn fn, 1506 void *fn_param, 1507 struct device_node *np) 1508 { 1509 return NULL; 1510 } 1511 static inline struct dma_chan *dma_request_chan(struct device *dev, 1512 const char *name) 1513 { 1514 return ERR_PTR(-ENODEV); 1515 } 1516 static inline struct dma_chan *dma_request_chan_by_mask( 1517 const dma_cap_mask_t *mask) 1518 { 1519 return ERR_PTR(-ENODEV); 1520 } 1521 static inline void dma_release_channel(struct dma_chan *chan) 1522 { 1523 } 1524 static inline int dma_get_slave_caps(struct dma_chan *chan, 1525 struct dma_slave_caps *caps) 1526 { 1527 return -ENXIO; 1528 } 1529 #endif 1530 1531 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1532 { 1533 struct dma_slave_caps caps; 1534 int ret; 1535 1536 ret = dma_get_slave_caps(tx->chan, &caps); 1537 if (ret) 1538 return ret; 1539 1540 if (!caps.descriptor_reuse) 1541 return -EPERM; 1542 1543 tx->flags |= DMA_CTRL_REUSE; 1544 return 0; 1545 } 1546 1547 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1548 { 1549 tx->flags &= ~DMA_CTRL_REUSE; 1550 } 1551 1552 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1553 { 1554 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1555 } 1556 1557 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1558 { 1559 /* this is supported for reusable desc, so check that */ 1560 if (!dmaengine_desc_test_reuse(desc)) 1561 return -EPERM; 1562 1563 return desc->desc_free(desc); 1564 } 1565 1566 /* --- DMA device --- */ 1567 1568 int dma_async_device_register(struct dma_device *device); 1569 int dmaenginem_async_device_register(struct dma_device *device); 1570 void dma_async_device_unregister(struct dma_device *device); 1571 int dma_async_device_channel_register(struct dma_device *device, 1572 struct dma_chan *chan); 1573 void dma_async_device_channel_unregister(struct dma_device *device, 1574 struct dma_chan *chan); 1575 void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1576 #define dma_request_channel(mask, x, y) \ 1577 __dma_request_channel(&(mask), x, y, NULL) 1578 1579 /* Deprecated, please use dma_request_chan() directly */ 1580 static inline struct dma_chan * __deprecated 1581 dma_request_slave_channel(struct device *dev, const char *name) 1582 { 1583 struct dma_chan *ch = dma_request_chan(dev, name); 1584 1585 return IS_ERR(ch) ? NULL : ch; 1586 } 1587 1588 static inline struct dma_chan 1589 *dma_request_slave_channel_compat(const dma_cap_mask_t mask, 1590 dma_filter_fn fn, void *fn_param, 1591 struct device *dev, const char *name) 1592 { 1593 struct dma_chan *chan; 1594 1595 chan = dma_request_slave_channel(dev, name); 1596 if (chan) 1597 return chan; 1598 1599 if (!fn || !fn_param) 1600 return NULL; 1601 1602 return __dma_request_channel(&mask, fn, fn_param, NULL); 1603 } 1604 1605 static inline char * 1606 dmaengine_get_direction_text(enum dma_transfer_direction dir) 1607 { 1608 switch (dir) { 1609 case DMA_DEV_TO_MEM: 1610 return "DEV_TO_MEM"; 1611 case DMA_MEM_TO_DEV: 1612 return "MEM_TO_DEV"; 1613 case DMA_MEM_TO_MEM: 1614 return "MEM_TO_MEM"; 1615 case DMA_DEV_TO_DEV: 1616 return "DEV_TO_DEV"; 1617 default: 1618 return "invalid"; 1619 } 1620 } 1621 #endif /* DMAENGINE_H */ 1622