xref: /linux-6.15/include/linux/dmaengine.h (revision 3b6d694e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7 
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16 
17 /**
18  * typedef dma_cookie_t - an opaque DMA cookie
19  *
20  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21  */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE	1
24 
25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 	return cookie < 0 ? cookie : 0;
28 }
29 
30 /**
31  * enum dma_status - DMA transaction status
32  * @DMA_COMPLETE: transaction completed
33  * @DMA_IN_PROGRESS: transaction not yet processed
34  * @DMA_PAUSED: transaction is paused
35  * @DMA_ERROR: transaction failed
36  */
37 enum dma_status {
38 	DMA_COMPLETE,
39 	DMA_IN_PROGRESS,
40 	DMA_PAUSED,
41 	DMA_ERROR,
42 	DMA_OUT_OF_ORDER,
43 };
44 
45 /**
46  * enum dma_transaction_type - DMA transaction types/indexes
47  *
48  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
49  * automatically set as dma devices are registered.
50  */
51 enum dma_transaction_type {
52 	DMA_MEMCPY,
53 	DMA_XOR,
54 	DMA_PQ,
55 	DMA_XOR_VAL,
56 	DMA_PQ_VAL,
57 	DMA_MEMSET,
58 	DMA_MEMSET_SG,
59 	DMA_INTERRUPT,
60 	DMA_PRIVATE,
61 	DMA_ASYNC_TX,
62 	DMA_SLAVE,
63 	DMA_CYCLIC,
64 	DMA_INTERLEAVE,
65 	DMA_COMPLETION_NO_ORDER,
66 /* last transaction type for creation of the capabilities mask */
67 	DMA_TX_TYPE_END,
68 };
69 
70 /**
71  * enum dma_transfer_direction - dma transfer mode and direction indicator
72  * @DMA_MEM_TO_MEM: Async/Memcpy mode
73  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
74  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
75  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
76  */
77 enum dma_transfer_direction {
78 	DMA_MEM_TO_MEM,
79 	DMA_MEM_TO_DEV,
80 	DMA_DEV_TO_MEM,
81 	DMA_DEV_TO_DEV,
82 	DMA_TRANS_NONE,
83 };
84 
85 /**
86  * Interleaved Transfer Request
87  * ----------------------------
88  * A chunk is collection of contiguous bytes to be transferred.
89  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
90  * ICGs may or may not change between chunks.
91  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
92  *  that when repeated an integral number of times, specifies the transfer.
93  * A transfer template is specification of a Frame, the number of times
94  *  it is to be repeated and other per-transfer attributes.
95  *
96  * Practically, a client driver would have ready a template for each
97  *  type of transfer it is going to need during its lifetime and
98  *  set only 'src_start' and 'dst_start' before submitting the requests.
99  *
100  *
101  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
102  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
103  *
104  *    ==  Chunk size
105  *    ... ICG
106  */
107 
108 /**
109  * struct data_chunk - Element of scatter-gather list that makes a frame.
110  * @size: Number of bytes to read from source.
111  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
112  * @icg: Number of bytes to jump after last src/dst address of this
113  *	 chunk and before first src/dst address for next chunk.
114  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
115  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
116  * @dst_icg: Number of bytes to jump after last dst address of this
117  *	 chunk and before the first dst address for next chunk.
118  *	 Ignored if dst_inc is true and dst_sgl is false.
119  * @src_icg: Number of bytes to jump after last src address of this
120  *	 chunk and before the first src address for next chunk.
121  *	 Ignored if src_inc is true and src_sgl is false.
122  */
123 struct data_chunk {
124 	size_t size;
125 	size_t icg;
126 	size_t dst_icg;
127 	size_t src_icg;
128 };
129 
130 /**
131  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
132  *	 and attributes.
133  * @src_start: Bus address of source for the first chunk.
134  * @dst_start: Bus address of destination for the first chunk.
135  * @dir: Specifies the type of Source and Destination.
136  * @src_inc: If the source address increments after reading from it.
137  * @dst_inc: If the destination address increments after writing to it.
138  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
139  *		Otherwise, source is read contiguously (icg ignored).
140  *		Ignored if src_inc is false.
141  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
142  *		Otherwise, destination is filled contiguously (icg ignored).
143  *		Ignored if dst_inc is false.
144  * @numf: Number of frames in this template.
145  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
146  * @sgl: Array of {chunk,icg} pairs that make up a frame.
147  */
148 struct dma_interleaved_template {
149 	dma_addr_t src_start;
150 	dma_addr_t dst_start;
151 	enum dma_transfer_direction dir;
152 	bool src_inc;
153 	bool dst_inc;
154 	bool src_sgl;
155 	bool dst_sgl;
156 	size_t numf;
157 	size_t frame_size;
158 	struct data_chunk sgl[0];
159 };
160 
161 /**
162  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
163  *  control completion, and communicate status.
164  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
165  *  this transaction
166  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
167  *  acknowledges receipt, i.e. has a chance to establish any dependency
168  *  chains
169  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
170  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
171  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
172  *  sources that were the result of a previous operation, in the case of a PQ
173  *  operation it continues the calculation with new sources
174  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
175  *  on the result of this operation
176  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
177  *  cleared or freed
178  * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
179  *  data and the descriptor should be in different format from normal
180  *  data descriptors.
181  */
182 enum dma_ctrl_flags {
183 	DMA_PREP_INTERRUPT = (1 << 0),
184 	DMA_CTRL_ACK = (1 << 1),
185 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
186 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
187 	DMA_PREP_CONTINUE = (1 << 4),
188 	DMA_PREP_FENCE = (1 << 5),
189 	DMA_CTRL_REUSE = (1 << 6),
190 	DMA_PREP_CMD = (1 << 7),
191 };
192 
193 /**
194  * enum sum_check_bits - bit position of pq_check_flags
195  */
196 enum sum_check_bits {
197 	SUM_CHECK_P = 0,
198 	SUM_CHECK_Q = 1,
199 };
200 
201 /**
202  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
203  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
204  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
205  */
206 enum sum_check_flags {
207 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
208 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
209 };
210 
211 
212 /**
213  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
214  * See linux/cpumask.h
215  */
216 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
217 
218 /**
219  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
220  * @memcpy_count: transaction counter
221  * @bytes_transferred: byte counter
222  */
223 
224 /**
225  * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
226  * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
227  *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
228  *  helper) to the descriptor.
229  *
230  * Client drivers interested to use this mode can follow:
231  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
232  *   1. prepare the descriptor (dmaengine_prep_*)
233  *	construct the metadata in the client's buffer
234  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
235  *	descriptor
236  *   3. submit the transfer
237  * - DMA_DEV_TO_MEM:
238  *   1. prepare the descriptor (dmaengine_prep_*)
239  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
240  *	descriptor
241  *   3. submit the transfer
242  *   4. when the transfer is completed, the metadata should be available in the
243  *	attached buffer
244  *
245  * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
246  *  driver. The client driver can ask for the pointer, maximum size and the
247  *  currently used size of the metadata and can directly update or read it.
248  *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
249  *  provided as helper functions.
250  *
251  *  Note: the metadata area for the descriptor is no longer valid after the
252  *  transfer has been completed (valid up to the point when the completion
253  *  callback returns if used).
254  *
255  * Client drivers interested to use this mode can follow:
256  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
257  *   1. prepare the descriptor (dmaengine_prep_*)
258  *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
259  *	metadata area
260  *   3. update the metadata at the pointer
261  *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
262  *	of data the client has placed into the metadata buffer
263  *   5. submit the transfer
264  * - DMA_DEV_TO_MEM:
265  *   1. prepare the descriptor (dmaengine_prep_*)
266  *   2. submit the transfer
267  *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
268  *	pointer to the engine's metadata area
269  *   4. Read out the metadata from the pointer
270  *
271  * Note: the two mode is not compatible and clients must use one mode for a
272  * descriptor.
273  */
274 enum dma_desc_metadata_mode {
275 	DESC_METADATA_NONE = 0,
276 	DESC_METADATA_CLIENT = BIT(0),
277 	DESC_METADATA_ENGINE = BIT(1),
278 };
279 
280 struct dma_chan_percpu {
281 	/* stats */
282 	unsigned long memcpy_count;
283 	unsigned long bytes_transferred;
284 };
285 
286 /**
287  * struct dma_router - DMA router structure
288  * @dev: pointer to the DMA router device
289  * @route_free: function to be called when the route can be disconnected
290  */
291 struct dma_router {
292 	struct device *dev;
293 	void (*route_free)(struct device *dev, void *route_data);
294 };
295 
296 /**
297  * struct dma_chan - devices supply DMA channels, clients use them
298  * @device: ptr to the dma device who supplies this channel, always !%NULL
299  * @slave: ptr to the device using this channel
300  * @cookie: last cookie value returned to client
301  * @completed_cookie: last completed cookie for this channel
302  * @chan_id: channel ID for sysfs
303  * @dev: class device for sysfs
304  * @name: backlink name for sysfs
305  * @dbg_client_name: slave name for debugfs in format:
306  *	dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
307  * @device_node: used to add this to the device chan list
308  * @local: per-cpu pointer to a struct dma_chan_percpu
309  * @client_count: how many clients are using this channel
310  * @table_count: number of appearances in the mem-to-mem allocation table
311  * @router: pointer to the DMA router structure
312  * @route_data: channel specific data for the router
313  * @private: private data for certain client-channel associations
314  */
315 struct dma_chan {
316 	struct dma_device *device;
317 	struct device *slave;
318 	dma_cookie_t cookie;
319 	dma_cookie_t completed_cookie;
320 
321 	/* sysfs */
322 	int chan_id;
323 	struct dma_chan_dev *dev;
324 	const char *name;
325 #ifdef CONFIG_DEBUG_FS
326 	char *dbg_client_name;
327 #endif
328 
329 	struct list_head device_node;
330 	struct dma_chan_percpu __percpu *local;
331 	int client_count;
332 	int table_count;
333 
334 	/* DMA router */
335 	struct dma_router *router;
336 	void *route_data;
337 
338 	void *private;
339 };
340 
341 /**
342  * struct dma_chan_dev - relate sysfs device node to backing channel device
343  * @chan: driver channel device
344  * @device: sysfs device
345  * @dev_id: parent dma_device dev_id
346  */
347 struct dma_chan_dev {
348 	struct dma_chan *chan;
349 	struct device device;
350 	int dev_id;
351 };
352 
353 /**
354  * enum dma_slave_buswidth - defines bus width of the DMA slave
355  * device, source or target buses
356  */
357 enum dma_slave_buswidth {
358 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
359 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
360 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
361 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
362 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
363 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
364 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
365 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
366 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
367 };
368 
369 /**
370  * struct dma_slave_config - dma slave channel runtime config
371  * @direction: whether the data shall go in or out on this slave
372  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
373  * legal values. DEPRECATED, drivers should use the direction argument
374  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
375  * the dir field in the dma_interleaved_template structure.
376  * @src_addr: this is the physical address where DMA slave data
377  * should be read (RX), if the source is memory this argument is
378  * ignored.
379  * @dst_addr: this is the physical address where DMA slave data
380  * should be written (TX), if the source is memory this argument
381  * is ignored.
382  * @src_addr_width: this is the width in bytes of the source (RX)
383  * register where DMA data shall be read. If the source
384  * is memory this may be ignored depending on architecture.
385  * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
386  * @dst_addr_width: same as src_addr_width but for destination
387  * target (TX) mutatis mutandis.
388  * @src_maxburst: the maximum number of words (note: words, as in
389  * units of the src_addr_width member, not bytes) that can be sent
390  * in one burst to the device. Typically something like half the
391  * FIFO depth on I/O peripherals so you don't overflow it. This
392  * may or may not be applicable on memory sources.
393  * @dst_maxburst: same as src_maxburst but for destination target
394  * mutatis mutandis.
395  * @src_port_window_size: The length of the register area in words the data need
396  * to be accessed on the device side. It is only used for devices which is using
397  * an area instead of a single register to receive the data. Typically the DMA
398  * loops in this area in order to transfer the data.
399  * @dst_port_window_size: same as src_port_window_size but for the destination
400  * port.
401  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
402  * with 'true' if peripheral should be flow controller. Direction will be
403  * selected at Runtime.
404  * @slave_id: Slave requester id. Only valid for slave channels. The dma
405  * slave peripheral will have unique id as dma requester which need to be
406  * pass as slave config.
407  *
408  * This struct is passed in as configuration data to a DMA engine
409  * in order to set up a certain channel for DMA transport at runtime.
410  * The DMA device/engine has to provide support for an additional
411  * callback in the dma_device structure, device_config and this struct
412  * will then be passed in as an argument to the function.
413  *
414  * The rationale for adding configuration information to this struct is as
415  * follows: if it is likely that more than one DMA slave controllers in
416  * the world will support the configuration option, then make it generic.
417  * If not: if it is fixed so that it be sent in static from the platform
418  * data, then prefer to do that.
419  */
420 struct dma_slave_config {
421 	enum dma_transfer_direction direction;
422 	phys_addr_t src_addr;
423 	phys_addr_t dst_addr;
424 	enum dma_slave_buswidth src_addr_width;
425 	enum dma_slave_buswidth dst_addr_width;
426 	u32 src_maxburst;
427 	u32 dst_maxburst;
428 	u32 src_port_window_size;
429 	u32 dst_port_window_size;
430 	bool device_fc;
431 	unsigned int slave_id;
432 };
433 
434 /**
435  * enum dma_residue_granularity - Granularity of the reported transfer residue
436  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
437  *  DMA channel is only able to tell whether a descriptor has been completed or
438  *  not, which means residue reporting is not supported by this channel. The
439  *  residue field of the dma_tx_state field will always be 0.
440  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
441  *  completed segment of the transfer (For cyclic transfers this is after each
442  *  period). This is typically implemented by having the hardware generate an
443  *  interrupt after each transferred segment and then the drivers updates the
444  *  outstanding residue by the size of the segment. Another possibility is if
445  *  the hardware supports scatter-gather and the segment descriptor has a field
446  *  which gets set after the segment has been completed. The driver then counts
447  *  the number of segments without the flag set to compute the residue.
448  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
449  *  burst. This is typically only supported if the hardware has a progress
450  *  register of some sort (E.g. a register with the current read/write address
451  *  or a register with the amount of bursts/beats/bytes that have been
452  *  transferred or still need to be transferred).
453  */
454 enum dma_residue_granularity {
455 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
456 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
457 	DMA_RESIDUE_GRANULARITY_BURST = 2,
458 };
459 
460 /**
461  * struct dma_slave_caps - expose capabilities of a slave channel only
462  * @src_addr_widths: bit mask of src addr widths the channel supports.
463  *	Width is specified in bytes, e.g. for a channel supporting
464  *	a width of 4 the mask should have BIT(4) set.
465  * @dst_addr_widths: bit mask of dst addr widths the channel supports
466  * @directions: bit mask of slave directions the channel supports.
467  *	Since the enum dma_transfer_direction is not defined as bit flag for
468  *	each type, the dma controller should set BIT(<TYPE>) and same
469  *	should be checked by controller as well
470  * @min_burst: min burst capability per-transfer
471  * @max_burst: max burst capability per-transfer
472  * @max_sg_burst: max number of SG list entries executed in a single burst
473  *	DMA tansaction with no software intervention for reinitialization.
474  *	Zero value means unlimited number of entries.
475  * @cmd_pause: true, if pause is supported (i.e. for reading residue or
476  *	       for resume later)
477  * @cmd_resume: true, if resume is supported
478  * @cmd_terminate: true, if terminate cmd is supported
479  * @residue_granularity: granularity of the reported transfer residue
480  * @descriptor_reuse: if a descriptor can be reused by client and
481  * resubmitted multiple times
482  */
483 struct dma_slave_caps {
484 	u32 src_addr_widths;
485 	u32 dst_addr_widths;
486 	u32 directions;
487 	u32 min_burst;
488 	u32 max_burst;
489 	u32 max_sg_burst;
490 	bool cmd_pause;
491 	bool cmd_resume;
492 	bool cmd_terminate;
493 	enum dma_residue_granularity residue_granularity;
494 	bool descriptor_reuse;
495 };
496 
497 static inline const char *dma_chan_name(struct dma_chan *chan)
498 {
499 	return dev_name(&chan->dev->device);
500 }
501 
502 void dma_chan_cleanup(struct kref *kref);
503 
504 /**
505  * typedef dma_filter_fn - callback filter for dma_request_channel
506  * @chan: channel to be reviewed
507  * @filter_param: opaque parameter passed through dma_request_channel
508  *
509  * When this optional parameter is specified in a call to dma_request_channel a
510  * suitable channel is passed to this routine for further dispositioning before
511  * being returned.  Where 'suitable' indicates a non-busy channel that
512  * satisfies the given capability mask.  It returns 'true' to indicate that the
513  * channel is suitable.
514  */
515 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
516 
517 typedef void (*dma_async_tx_callback)(void *dma_async_param);
518 
519 enum dmaengine_tx_result {
520 	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
521 	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
522 	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
523 	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
524 };
525 
526 struct dmaengine_result {
527 	enum dmaengine_tx_result result;
528 	u32 residue;
529 };
530 
531 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
532 				const struct dmaengine_result *result);
533 
534 struct dmaengine_unmap_data {
535 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
536 	u16 map_cnt;
537 #else
538 	u8 map_cnt;
539 #endif
540 	u8 to_cnt;
541 	u8 from_cnt;
542 	u8 bidi_cnt;
543 	struct device *dev;
544 	struct kref kref;
545 	size_t len;
546 	dma_addr_t addr[0];
547 };
548 
549 struct dma_async_tx_descriptor;
550 
551 struct dma_descriptor_metadata_ops {
552 	int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
553 		      size_t len);
554 
555 	void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
556 			 size_t *payload_len, size_t *max_len);
557 	int (*set_len)(struct dma_async_tx_descriptor *desc,
558 		       size_t payload_len);
559 };
560 
561 /**
562  * struct dma_async_tx_descriptor - async transaction descriptor
563  * ---dma generic offload fields---
564  * @cookie: tracking cookie for this transaction, set to -EBUSY if
565  *	this tx is sitting on a dependency list
566  * @flags: flags to augment operation preparation, control completion, and
567  *	communicate status
568  * @phys: physical address of the descriptor
569  * @chan: target channel for this operation
570  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
571  * descriptor pending. To be pushed on .issue_pending() call
572  * @callback: routine to call after this operation is complete
573  * @callback_param: general parameter to pass to the callback routine
574  * @desc_metadata_mode: core managed metadata mode to protect mixed use of
575  *	DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
576  *	DESC_METADATA_NONE
577  * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
578  *	DMA driver if metadata mode is supported with the descriptor
579  * ---async_tx api specific fields---
580  * @next: at completion submit this descriptor
581  * @parent: pointer to the next level up in the dependency chain
582  * @lock: protect the parent and next pointers
583  */
584 struct dma_async_tx_descriptor {
585 	dma_cookie_t cookie;
586 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
587 	dma_addr_t phys;
588 	struct dma_chan *chan;
589 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
590 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
591 	dma_async_tx_callback callback;
592 	dma_async_tx_callback_result callback_result;
593 	void *callback_param;
594 	struct dmaengine_unmap_data *unmap;
595 	enum dma_desc_metadata_mode desc_metadata_mode;
596 	struct dma_descriptor_metadata_ops *metadata_ops;
597 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
598 	struct dma_async_tx_descriptor *next;
599 	struct dma_async_tx_descriptor *parent;
600 	spinlock_t lock;
601 #endif
602 };
603 
604 #ifdef CONFIG_DMA_ENGINE
605 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
606 				 struct dmaengine_unmap_data *unmap)
607 {
608 	kref_get(&unmap->kref);
609 	tx->unmap = unmap;
610 }
611 
612 struct dmaengine_unmap_data *
613 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
614 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
615 #else
616 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
617 				 struct dmaengine_unmap_data *unmap)
618 {
619 }
620 static inline struct dmaengine_unmap_data *
621 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
622 {
623 	return NULL;
624 }
625 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
626 {
627 }
628 #endif
629 
630 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
631 {
632 	if (!tx->unmap)
633 		return;
634 
635 	dmaengine_unmap_put(tx->unmap);
636 	tx->unmap = NULL;
637 }
638 
639 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
640 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
641 {
642 }
643 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
644 {
645 }
646 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
647 {
648 	BUG();
649 }
650 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
651 {
652 }
653 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
654 {
655 }
656 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
657 {
658 	return NULL;
659 }
660 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
661 {
662 	return NULL;
663 }
664 
665 #else
666 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
667 {
668 	spin_lock_bh(&txd->lock);
669 }
670 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
671 {
672 	spin_unlock_bh(&txd->lock);
673 }
674 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
675 {
676 	txd->next = next;
677 	next->parent = txd;
678 }
679 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
680 {
681 	txd->parent = NULL;
682 }
683 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
684 {
685 	txd->next = NULL;
686 }
687 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
688 {
689 	return txd->parent;
690 }
691 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
692 {
693 	return txd->next;
694 }
695 #endif
696 
697 /**
698  * struct dma_tx_state - filled in to report the status of
699  * a transfer.
700  * @last: last completed DMA cookie
701  * @used: last issued DMA cookie (i.e. the one in progress)
702  * @residue: the remaining number of bytes left to transmit
703  *	on the selected transfer for states DMA_IN_PROGRESS and
704  *	DMA_PAUSED if this is implemented in the driver, else 0
705  * @in_flight_bytes: amount of data in bytes cached by the DMA.
706  */
707 struct dma_tx_state {
708 	dma_cookie_t last;
709 	dma_cookie_t used;
710 	u32 residue;
711 	u32 in_flight_bytes;
712 };
713 
714 /**
715  * enum dmaengine_alignment - defines alignment of the DMA async tx
716  * buffers
717  */
718 enum dmaengine_alignment {
719 	DMAENGINE_ALIGN_1_BYTE = 0,
720 	DMAENGINE_ALIGN_2_BYTES = 1,
721 	DMAENGINE_ALIGN_4_BYTES = 2,
722 	DMAENGINE_ALIGN_8_BYTES = 3,
723 	DMAENGINE_ALIGN_16_BYTES = 4,
724 	DMAENGINE_ALIGN_32_BYTES = 5,
725 	DMAENGINE_ALIGN_64_BYTES = 6,
726 };
727 
728 /**
729  * struct dma_slave_map - associates slave device and it's slave channel with
730  * parameter to be used by a filter function
731  * @devname: name of the device
732  * @slave: slave channel name
733  * @param: opaque parameter to pass to struct dma_filter.fn
734  */
735 struct dma_slave_map {
736 	const char *devname;
737 	const char *slave;
738 	void *param;
739 };
740 
741 /**
742  * struct dma_filter - information for slave device/channel to filter_fn/param
743  * mapping
744  * @fn: filter function callback
745  * @mapcnt: number of slave device/channel in the map
746  * @map: array of channel to filter mapping data
747  */
748 struct dma_filter {
749 	dma_filter_fn fn;
750 	int mapcnt;
751 	const struct dma_slave_map *map;
752 };
753 
754 /**
755  * struct dma_device - info on the entity supplying DMA services
756  * @chancnt: how many DMA channels are supported
757  * @privatecnt: how many DMA channels are requested by dma_request_channel
758  * @channels: the list of struct dma_chan
759  * @global_node: list_head for global dma_device_list
760  * @filter: information for device/slave to filter function/param mapping
761  * @cap_mask: one or more dma_capability flags
762  * @desc_metadata_modes: supported metadata modes by the DMA device
763  * @max_xor: maximum number of xor sources, 0 if no capability
764  * @max_pq: maximum number of PQ sources and PQ-continue capability
765  * @copy_align: alignment shift for memcpy operations
766  * @xor_align: alignment shift for xor operations
767  * @pq_align: alignment shift for pq operations
768  * @fill_align: alignment shift for memset operations
769  * @dev_id: unique device ID
770  * @dev: struct device reference for dma mapping api
771  * @owner: owner module (automatically set based on the provided dev)
772  * @src_addr_widths: bit mask of src addr widths the device supports
773  *	Width is specified in bytes, e.g. for a device supporting
774  *	a width of 4 the mask should have BIT(4) set.
775  * @dst_addr_widths: bit mask of dst addr widths the device supports
776  * @directions: bit mask of slave directions the device supports.
777  *	Since the enum dma_transfer_direction is not defined as bit flag for
778  *	each type, the dma controller should set BIT(<TYPE>) and same
779  *	should be checked by controller as well
780  * @min_burst: min burst capability per-transfer
781  * @max_burst: max burst capability per-transfer
782  * @max_sg_burst: max number of SG list entries executed in a single burst
783  *	DMA tansaction with no software intervention for reinitialization.
784  *	Zero value means unlimited number of entries.
785  * @residue_granularity: granularity of the transfer residue reported
786  *	by tx_status
787  * @device_alloc_chan_resources: allocate resources and return the
788  *	number of allocated descriptors
789  * @device_free_chan_resources: release DMA channel's resources
790  * @device_prep_dma_memcpy: prepares a memcpy operation
791  * @device_prep_dma_xor: prepares a xor operation
792  * @device_prep_dma_xor_val: prepares a xor validation operation
793  * @device_prep_dma_pq: prepares a pq operation
794  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
795  * @device_prep_dma_memset: prepares a memset operation
796  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
797  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
798  * @device_prep_slave_sg: prepares a slave dma operation
799  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
800  *	The function takes a buffer of size buf_len. The callback function will
801  *	be called after period_len bytes have been transferred.
802  * @device_prep_interleaved_dma: Transfer expression in a generic way.
803  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
804  * @device_caps: May be used to override the generic DMA slave capabilities
805  *	with per-channel specific ones
806  * @device_config: Pushes a new configuration to a channel, return 0 or an error
807  *	code
808  * @device_pause: Pauses any transfer happening on a channel. Returns
809  *	0 or an error code
810  * @device_resume: Resumes any transfer on a channel previously
811  *	paused. Returns 0 or an error code
812  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
813  *	or an error code
814  * @device_synchronize: Synchronizes the termination of a transfers to the
815  *  current context.
816  * @device_tx_status: poll for transaction completion, the optional
817  *	txstate parameter can be supplied with a pointer to get a
818  *	struct with auxiliary transfer status information, otherwise the call
819  *	will just return a simple status code
820  * @device_issue_pending: push pending transactions to hardware
821  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
822  * @device_release: called sometime atfer dma_async_device_unregister() is
823  *     called and there are no further references to this structure. This
824  *     must be implemented to free resources however many existing drivers
825  *     do not and are therefore not safe to unbind while in use.
826  * @dbg_summary_show: optional routine to show contents in debugfs; default code
827  *     will be used when this is omitted, but custom code can show extra,
828  *     controller specific information.
829  */
830 struct dma_device {
831 	struct kref ref;
832 	unsigned int chancnt;
833 	unsigned int privatecnt;
834 	struct list_head channels;
835 	struct list_head global_node;
836 	struct dma_filter filter;
837 	dma_cap_mask_t  cap_mask;
838 	enum dma_desc_metadata_mode desc_metadata_modes;
839 	unsigned short max_xor;
840 	unsigned short max_pq;
841 	enum dmaengine_alignment copy_align;
842 	enum dmaengine_alignment xor_align;
843 	enum dmaengine_alignment pq_align;
844 	enum dmaengine_alignment fill_align;
845 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
846 
847 	int dev_id;
848 	struct device *dev;
849 	struct module *owner;
850 	struct ida chan_ida;
851 	struct mutex chan_mutex;	/* to protect chan_ida */
852 
853 	u32 src_addr_widths;
854 	u32 dst_addr_widths;
855 	u32 directions;
856 	u32 min_burst;
857 	u32 max_burst;
858 	u32 max_sg_burst;
859 	bool descriptor_reuse;
860 	enum dma_residue_granularity residue_granularity;
861 
862 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
863 	void (*device_free_chan_resources)(struct dma_chan *chan);
864 
865 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
866 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
867 		size_t len, unsigned long flags);
868 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
869 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
870 		unsigned int src_cnt, size_t len, unsigned long flags);
871 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
872 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
873 		size_t len, enum sum_check_flags *result, unsigned long flags);
874 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
875 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
876 		unsigned int src_cnt, const unsigned char *scf,
877 		size_t len, unsigned long flags);
878 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
879 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
880 		unsigned int src_cnt, const unsigned char *scf, size_t len,
881 		enum sum_check_flags *pqres, unsigned long flags);
882 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
883 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
884 		unsigned long flags);
885 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
886 		struct dma_chan *chan, struct scatterlist *sg,
887 		unsigned int nents, int value, unsigned long flags);
888 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
889 		struct dma_chan *chan, unsigned long flags);
890 
891 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
892 		struct dma_chan *chan, struct scatterlist *sgl,
893 		unsigned int sg_len, enum dma_transfer_direction direction,
894 		unsigned long flags, void *context);
895 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
896 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
897 		size_t period_len, enum dma_transfer_direction direction,
898 		unsigned long flags);
899 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
900 		struct dma_chan *chan, struct dma_interleaved_template *xt,
901 		unsigned long flags);
902 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
903 		struct dma_chan *chan, dma_addr_t dst, u64 data,
904 		unsigned long flags);
905 
906 	void (*device_caps)(struct dma_chan *chan,
907 			    struct dma_slave_caps *caps);
908 	int (*device_config)(struct dma_chan *chan,
909 			     struct dma_slave_config *config);
910 	int (*device_pause)(struct dma_chan *chan);
911 	int (*device_resume)(struct dma_chan *chan);
912 	int (*device_terminate_all)(struct dma_chan *chan);
913 	void (*device_synchronize)(struct dma_chan *chan);
914 
915 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
916 					    dma_cookie_t cookie,
917 					    struct dma_tx_state *txstate);
918 	void (*device_issue_pending)(struct dma_chan *chan);
919 	void (*device_release)(struct dma_device *dev);
920 	/* debugfs support */
921 #ifdef CONFIG_DEBUG_FS
922 	void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
923 	struct dentry *dbg_dev_root;
924 #endif
925 };
926 
927 static inline int dmaengine_slave_config(struct dma_chan *chan,
928 					  struct dma_slave_config *config)
929 {
930 	if (chan->device->device_config)
931 		return chan->device->device_config(chan, config);
932 
933 	return -ENOSYS;
934 }
935 
936 static inline bool is_slave_direction(enum dma_transfer_direction direction)
937 {
938 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
939 }
940 
941 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
942 	struct dma_chan *chan, dma_addr_t buf, size_t len,
943 	enum dma_transfer_direction dir, unsigned long flags)
944 {
945 	struct scatterlist sg;
946 	sg_init_table(&sg, 1);
947 	sg_dma_address(&sg) = buf;
948 	sg_dma_len(&sg) = len;
949 
950 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
951 		return NULL;
952 
953 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
954 						  dir, flags, NULL);
955 }
956 
957 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
958 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
959 	enum dma_transfer_direction dir, unsigned long flags)
960 {
961 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
962 		return NULL;
963 
964 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
965 						  dir, flags, NULL);
966 }
967 
968 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
969 struct rio_dma_ext;
970 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
971 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
972 	enum dma_transfer_direction dir, unsigned long flags,
973 	struct rio_dma_ext *rio_ext)
974 {
975 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
976 		return NULL;
977 
978 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
979 						  dir, flags, rio_ext);
980 }
981 #endif
982 
983 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
984 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
985 		size_t period_len, enum dma_transfer_direction dir,
986 		unsigned long flags)
987 {
988 	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
989 		return NULL;
990 
991 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
992 						period_len, dir, flags);
993 }
994 
995 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
996 		struct dma_chan *chan, struct dma_interleaved_template *xt,
997 		unsigned long flags)
998 {
999 	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1000 		return NULL;
1001 
1002 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1003 }
1004 
1005 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1006 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1007 		unsigned long flags)
1008 {
1009 	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1010 		return NULL;
1011 
1012 	return chan->device->device_prep_dma_memset(chan, dest, value,
1013 						    len, flags);
1014 }
1015 
1016 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1017 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1018 		size_t len, unsigned long flags)
1019 {
1020 	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1021 		return NULL;
1022 
1023 	return chan->device->device_prep_dma_memcpy(chan, dest, src,
1024 						    len, flags);
1025 }
1026 
1027 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1028 		enum dma_desc_metadata_mode mode)
1029 {
1030 	if (!chan)
1031 		return false;
1032 
1033 	return !!(chan->device->desc_metadata_modes & mode);
1034 }
1035 
1036 #ifdef CONFIG_DMA_ENGINE
1037 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1038 				   void *data, size_t len);
1039 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1040 				      size_t *payload_len, size_t *max_len);
1041 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1042 				    size_t payload_len);
1043 #else /* CONFIG_DMA_ENGINE */
1044 static inline int dmaengine_desc_attach_metadata(
1045 		struct dma_async_tx_descriptor *desc, void *data, size_t len)
1046 {
1047 	return -EINVAL;
1048 }
1049 static inline void *dmaengine_desc_get_metadata_ptr(
1050 		struct dma_async_tx_descriptor *desc, size_t *payload_len,
1051 		size_t *max_len)
1052 {
1053 	return NULL;
1054 }
1055 static inline int dmaengine_desc_set_metadata_len(
1056 		struct dma_async_tx_descriptor *desc, size_t payload_len)
1057 {
1058 	return -EINVAL;
1059 }
1060 #endif /* CONFIG_DMA_ENGINE */
1061 
1062 /**
1063  * dmaengine_terminate_all() - Terminate all active DMA transfers
1064  * @chan: The channel for which to terminate the transfers
1065  *
1066  * This function is DEPRECATED use either dmaengine_terminate_sync() or
1067  * dmaengine_terminate_async() instead.
1068  */
1069 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1070 {
1071 	if (chan->device->device_terminate_all)
1072 		return chan->device->device_terminate_all(chan);
1073 
1074 	return -ENOSYS;
1075 }
1076 
1077 /**
1078  * dmaengine_terminate_async() - Terminate all active DMA transfers
1079  * @chan: The channel for which to terminate the transfers
1080  *
1081  * Calling this function will terminate all active and pending descriptors
1082  * that have previously been submitted to the channel. It is not guaranteed
1083  * though that the transfer for the active descriptor has stopped when the
1084  * function returns. Furthermore it is possible the complete callback of a
1085  * submitted transfer is still running when this function returns.
1086  *
1087  * dmaengine_synchronize() needs to be called before it is safe to free
1088  * any memory that is accessed by previously submitted descriptors or before
1089  * freeing any resources accessed from within the completion callback of any
1090  * previously submitted descriptors.
1091  *
1092  * This function can be called from atomic context as well as from within a
1093  * complete callback of a descriptor submitted on the same channel.
1094  *
1095  * If none of the two conditions above apply consider using
1096  * dmaengine_terminate_sync() instead.
1097  */
1098 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1099 {
1100 	if (chan->device->device_terminate_all)
1101 		return chan->device->device_terminate_all(chan);
1102 
1103 	return -EINVAL;
1104 }
1105 
1106 /**
1107  * dmaengine_synchronize() - Synchronize DMA channel termination
1108  * @chan: The channel to synchronize
1109  *
1110  * Synchronizes to the DMA channel termination to the current context. When this
1111  * function returns it is guaranteed that all transfers for previously issued
1112  * descriptors have stopped and it is safe to free the memory associated
1113  * with them. Furthermore it is guaranteed that all complete callback functions
1114  * for a previously submitted descriptor have finished running and it is safe to
1115  * free resources accessed from within the complete callbacks.
1116  *
1117  * The behavior of this function is undefined if dma_async_issue_pending() has
1118  * been called between dmaengine_terminate_async() and this function.
1119  *
1120  * This function must only be called from non-atomic context and must not be
1121  * called from within a complete callback of a descriptor submitted on the same
1122  * channel.
1123  */
1124 static inline void dmaengine_synchronize(struct dma_chan *chan)
1125 {
1126 	might_sleep();
1127 
1128 	if (chan->device->device_synchronize)
1129 		chan->device->device_synchronize(chan);
1130 }
1131 
1132 /**
1133  * dmaengine_terminate_sync() - Terminate all active DMA transfers
1134  * @chan: The channel for which to terminate the transfers
1135  *
1136  * Calling this function will terminate all active and pending transfers
1137  * that have previously been submitted to the channel. It is similar to
1138  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1139  * stopped and that all complete callbacks have finished running when the
1140  * function returns.
1141  *
1142  * This function must only be called from non-atomic context and must not be
1143  * called from within a complete callback of a descriptor submitted on the same
1144  * channel.
1145  */
1146 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1147 {
1148 	int ret;
1149 
1150 	ret = dmaengine_terminate_async(chan);
1151 	if (ret)
1152 		return ret;
1153 
1154 	dmaengine_synchronize(chan);
1155 
1156 	return 0;
1157 }
1158 
1159 static inline int dmaengine_pause(struct dma_chan *chan)
1160 {
1161 	if (chan->device->device_pause)
1162 		return chan->device->device_pause(chan);
1163 
1164 	return -ENOSYS;
1165 }
1166 
1167 static inline int dmaengine_resume(struct dma_chan *chan)
1168 {
1169 	if (chan->device->device_resume)
1170 		return chan->device->device_resume(chan);
1171 
1172 	return -ENOSYS;
1173 }
1174 
1175 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1176 	dma_cookie_t cookie, struct dma_tx_state *state)
1177 {
1178 	return chan->device->device_tx_status(chan, cookie, state);
1179 }
1180 
1181 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1182 {
1183 	return desc->tx_submit(desc);
1184 }
1185 
1186 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1187 					 size_t off1, size_t off2, size_t len)
1188 {
1189 	return !(((1 << align) - 1) & (off1 | off2 | len));
1190 }
1191 
1192 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1193 				       size_t off2, size_t len)
1194 {
1195 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1196 }
1197 
1198 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1199 				      size_t off2, size_t len)
1200 {
1201 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1202 }
1203 
1204 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1205 				     size_t off2, size_t len)
1206 {
1207 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1208 }
1209 
1210 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1211 				       size_t off2, size_t len)
1212 {
1213 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1214 }
1215 
1216 static inline void
1217 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1218 {
1219 	dma->max_pq = maxpq;
1220 	if (has_pq_continue)
1221 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1222 }
1223 
1224 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1225 {
1226 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1227 }
1228 
1229 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1230 {
1231 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1232 
1233 	return (flags & mask) == mask;
1234 }
1235 
1236 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1237 {
1238 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1239 }
1240 
1241 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1242 {
1243 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1244 }
1245 
1246 /* dma_maxpq - reduce maxpq in the face of continued operations
1247  * @dma - dma device with PQ capability
1248  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1249  *
1250  * When an engine does not support native continuation we need 3 extra
1251  * source slots to reuse P and Q with the following coefficients:
1252  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1253  * 2/ {01} * Q : use Q to continue Q' calculation
1254  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1255  *
1256  * In the case where P is disabled we only need 1 extra source:
1257  * 1/ {01} * Q : use Q to continue Q' calculation
1258  */
1259 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1260 {
1261 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1262 		return dma_dev_to_maxpq(dma);
1263 	if (dmaf_p_disabled_continue(flags))
1264 		return dma_dev_to_maxpq(dma) - 1;
1265 	if (dmaf_continue(flags))
1266 		return dma_dev_to_maxpq(dma) - 3;
1267 	BUG();
1268 }
1269 
1270 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1271 				      size_t dir_icg)
1272 {
1273 	if (inc) {
1274 		if (dir_icg)
1275 			return dir_icg;
1276 		if (sgl)
1277 			return icg;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1284 					   struct data_chunk *chunk)
1285 {
1286 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1287 				 chunk->icg, chunk->dst_icg);
1288 }
1289 
1290 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1291 					   struct data_chunk *chunk)
1292 {
1293 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1294 				 chunk->icg, chunk->src_icg);
1295 }
1296 
1297 /* --- public DMA engine API --- */
1298 
1299 #ifdef CONFIG_DMA_ENGINE
1300 void dmaengine_get(void);
1301 void dmaengine_put(void);
1302 #else
1303 static inline void dmaengine_get(void)
1304 {
1305 }
1306 static inline void dmaengine_put(void)
1307 {
1308 }
1309 #endif
1310 
1311 #ifdef CONFIG_ASYNC_TX_DMA
1312 #define async_dmaengine_get()	dmaengine_get()
1313 #define async_dmaengine_put()	dmaengine_put()
1314 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1315 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1316 #else
1317 #define async_dma_find_channel(type) dma_find_channel(type)
1318 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1319 #else
1320 static inline void async_dmaengine_get(void)
1321 {
1322 }
1323 static inline void async_dmaengine_put(void)
1324 {
1325 }
1326 static inline struct dma_chan *
1327 async_dma_find_channel(enum dma_transaction_type type)
1328 {
1329 	return NULL;
1330 }
1331 #endif /* CONFIG_ASYNC_TX_DMA */
1332 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1333 				  struct dma_chan *chan);
1334 
1335 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1336 {
1337 	tx->flags |= DMA_CTRL_ACK;
1338 }
1339 
1340 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1341 {
1342 	tx->flags &= ~DMA_CTRL_ACK;
1343 }
1344 
1345 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1346 {
1347 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1348 }
1349 
1350 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1351 static inline void
1352 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1353 {
1354 	set_bit(tx_type, dstp->bits);
1355 }
1356 
1357 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1358 static inline void
1359 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1360 {
1361 	clear_bit(tx_type, dstp->bits);
1362 }
1363 
1364 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1365 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1366 {
1367 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1368 }
1369 
1370 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1371 static inline int
1372 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1373 {
1374 	return test_bit(tx_type, srcp->bits);
1375 }
1376 
1377 #define for_each_dma_cap_mask(cap, mask) \
1378 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1379 
1380 /**
1381  * dma_async_issue_pending - flush pending transactions to HW
1382  * @chan: target DMA channel
1383  *
1384  * This allows drivers to push copies to HW in batches,
1385  * reducing MMIO writes where possible.
1386  */
1387 static inline void dma_async_issue_pending(struct dma_chan *chan)
1388 {
1389 	chan->device->device_issue_pending(chan);
1390 }
1391 
1392 /**
1393  * dma_async_is_tx_complete - poll for transaction completion
1394  * @chan: DMA channel
1395  * @cookie: transaction identifier to check status of
1396  * @last: returns last completed cookie, can be NULL
1397  * @used: returns last issued cookie, can be NULL
1398  *
1399  * If @last and @used are passed in, upon return they reflect the driver
1400  * internal state and can be used with dma_async_is_complete() to check
1401  * the status of multiple cookies without re-checking hardware state.
1402  */
1403 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1404 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1405 {
1406 	struct dma_tx_state state;
1407 	enum dma_status status;
1408 
1409 	status = chan->device->device_tx_status(chan, cookie, &state);
1410 	if (last)
1411 		*last = state.last;
1412 	if (used)
1413 		*used = state.used;
1414 	return status;
1415 }
1416 
1417 /**
1418  * dma_async_is_complete - test a cookie against chan state
1419  * @cookie: transaction identifier to test status of
1420  * @last_complete: last know completed transaction
1421  * @last_used: last cookie value handed out
1422  *
1423  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1424  * the test logic is separated for lightweight testing of multiple cookies
1425  */
1426 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1427 			dma_cookie_t last_complete, dma_cookie_t last_used)
1428 {
1429 	if (last_complete <= last_used) {
1430 		if ((cookie <= last_complete) || (cookie > last_used))
1431 			return DMA_COMPLETE;
1432 	} else {
1433 		if ((cookie <= last_complete) && (cookie > last_used))
1434 			return DMA_COMPLETE;
1435 	}
1436 	return DMA_IN_PROGRESS;
1437 }
1438 
1439 static inline void
1440 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1441 {
1442 	if (!st)
1443 		return;
1444 
1445 	st->last = last;
1446 	st->used = used;
1447 	st->residue = residue;
1448 }
1449 
1450 #ifdef CONFIG_DMA_ENGINE
1451 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1452 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1453 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1454 void dma_issue_pending_all(void);
1455 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1456 				       dma_filter_fn fn, void *fn_param,
1457 				       struct device_node *np);
1458 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1459 
1460 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1461 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1462 
1463 void dma_release_channel(struct dma_chan *chan);
1464 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1465 #else
1466 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1467 {
1468 	return NULL;
1469 }
1470 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1471 {
1472 	return DMA_COMPLETE;
1473 }
1474 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1475 {
1476 	return DMA_COMPLETE;
1477 }
1478 static inline void dma_issue_pending_all(void)
1479 {
1480 }
1481 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1482 						     dma_filter_fn fn,
1483 						     void *fn_param,
1484 						     struct device_node *np)
1485 {
1486 	return NULL;
1487 }
1488 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1489 							 const char *name)
1490 {
1491 	return NULL;
1492 }
1493 static inline struct dma_chan *dma_request_chan(struct device *dev,
1494 						const char *name)
1495 {
1496 	return ERR_PTR(-ENODEV);
1497 }
1498 static inline struct dma_chan *dma_request_chan_by_mask(
1499 						const dma_cap_mask_t *mask)
1500 {
1501 	return ERR_PTR(-ENODEV);
1502 }
1503 static inline void dma_release_channel(struct dma_chan *chan)
1504 {
1505 }
1506 static inline int dma_get_slave_caps(struct dma_chan *chan,
1507 				     struct dma_slave_caps *caps)
1508 {
1509 	return -ENXIO;
1510 }
1511 #endif
1512 
1513 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1514 
1515 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1516 {
1517 	struct dma_slave_caps caps;
1518 	int ret;
1519 
1520 	ret = dma_get_slave_caps(tx->chan, &caps);
1521 	if (ret)
1522 		return ret;
1523 
1524 	if (!caps.descriptor_reuse)
1525 		return -EPERM;
1526 
1527 	tx->flags |= DMA_CTRL_REUSE;
1528 	return 0;
1529 }
1530 
1531 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1532 {
1533 	tx->flags &= ~DMA_CTRL_REUSE;
1534 }
1535 
1536 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1537 {
1538 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1539 }
1540 
1541 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1542 {
1543 	/* this is supported for reusable desc, so check that */
1544 	if (!dmaengine_desc_test_reuse(desc))
1545 		return -EPERM;
1546 
1547 	return desc->desc_free(desc);
1548 }
1549 
1550 /* --- DMA device --- */
1551 
1552 int dma_async_device_register(struct dma_device *device);
1553 int dmaenginem_async_device_register(struct dma_device *device);
1554 void dma_async_device_unregister(struct dma_device *device);
1555 int dma_async_device_channel_register(struct dma_device *device,
1556 				      struct dma_chan *chan);
1557 void dma_async_device_channel_unregister(struct dma_device *device,
1558 					 struct dma_chan *chan);
1559 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1560 #define dma_request_channel(mask, x, y) \
1561 	__dma_request_channel(&(mask), x, y, NULL)
1562 
1563 static inline struct dma_chan
1564 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1565 				  dma_filter_fn fn, void *fn_param,
1566 				  struct device *dev, const char *name)
1567 {
1568 	struct dma_chan *chan;
1569 
1570 	chan = dma_request_slave_channel(dev, name);
1571 	if (chan)
1572 		return chan;
1573 
1574 	if (!fn || !fn_param)
1575 		return NULL;
1576 
1577 	return __dma_request_channel(&mask, fn, fn_param, NULL);
1578 }
1579 
1580 static inline char *
1581 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1582 {
1583 	switch (dir) {
1584 	case DMA_DEV_TO_MEM:
1585 		return "DEV_TO_MEM";
1586 	case DMA_MEM_TO_DEV:
1587 		return "MEM_TO_DEV";
1588 	case DMA_MEM_TO_MEM:
1589 		return "MEM_TO_MEM";
1590 	case DMA_DEV_TO_DEV:
1591 		return "DEV_TO_DEV";
1592 	default:
1593 		return "invalid";
1594 	}
1595 }
1596 #endif /* DMAENGINE_H */
1597