xref: /linux-6.15/include/linux/dmaengine.h (revision 32ae976e)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19 
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28 
29 /**
30  * typedef dma_cookie_t - an opaque DMA cookie
31  *
32  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33  */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE	1
36 
37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 	return cookie < 0 ? cookie : 0;
40 }
41 
42 /**
43  * enum dma_status - DMA transaction status
44  * @DMA_COMPLETE: transaction completed
45  * @DMA_IN_PROGRESS: transaction not yet processed
46  * @DMA_PAUSED: transaction is paused
47  * @DMA_ERROR: transaction failed
48  */
49 enum dma_status {
50 	DMA_COMPLETE,
51 	DMA_IN_PROGRESS,
52 	DMA_PAUSED,
53 	DMA_ERROR,
54 };
55 
56 /**
57  * enum dma_transaction_type - DMA transaction types/indexes
58  *
59  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
60  * automatically set as dma devices are registered.
61  */
62 enum dma_transaction_type {
63 	DMA_MEMCPY,
64 	DMA_XOR,
65 	DMA_PQ,
66 	DMA_XOR_VAL,
67 	DMA_PQ_VAL,
68 	DMA_MEMSET,
69 	DMA_INTERRUPT,
70 	DMA_SG,
71 	DMA_PRIVATE,
72 	DMA_ASYNC_TX,
73 	DMA_SLAVE,
74 	DMA_CYCLIC,
75 	DMA_INTERLEAVE,
76 /* last transaction type for creation of the capabilities mask */
77 	DMA_TX_TYPE_END,
78 };
79 
80 /**
81  * enum dma_transfer_direction - dma transfer mode and direction indicator
82  * @DMA_MEM_TO_MEM: Async/Memcpy mode
83  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
86  */
87 enum dma_transfer_direction {
88 	DMA_MEM_TO_MEM,
89 	DMA_MEM_TO_DEV,
90 	DMA_DEV_TO_MEM,
91 	DMA_DEV_TO_DEV,
92 	DMA_TRANS_NONE,
93 };
94 
95 /**
96  * Interleaved Transfer Request
97  * ----------------------------
98  * A chunk is collection of contiguous bytes to be transfered.
99  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100  * ICGs may or maynot change between chunks.
101  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102  *  that when repeated an integral number of times, specifies the transfer.
103  * A transfer template is specification of a Frame, the number of times
104  *  it is to be repeated and other per-transfer attributes.
105  *
106  * Practically, a client driver would have ready a template for each
107  *  type of transfer it is going to need during its lifetime and
108  *  set only 'src_start' and 'dst_start' before submitting the requests.
109  *
110  *
111  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
112  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
113  *
114  *    ==  Chunk size
115  *    ... ICG
116  */
117 
118 /**
119  * struct data_chunk - Element of scatter-gather list that makes a frame.
120  * @size: Number of bytes to read from source.
121  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
122  * @icg: Number of bytes to jump after last src/dst address of this
123  *	 chunk and before first src/dst address for next chunk.
124  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
126  * @dst_icg: Number of bytes to jump after last dst address of this
127  *	 chunk and before the first dst address for next chunk.
128  *	 Ignored if dst_inc is true and dst_sgl is false.
129  * @src_icg: Number of bytes to jump after last src address of this
130  *	 chunk and before the first src address for next chunk.
131  *	 Ignored if src_inc is true and src_sgl is false.
132  */
133 struct data_chunk {
134 	size_t size;
135 	size_t icg;
136 	size_t dst_icg;
137 	size_t src_icg;
138 };
139 
140 /**
141  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
142  *	 and attributes.
143  * @src_start: Bus address of source for the first chunk.
144  * @dst_start: Bus address of destination for the first chunk.
145  * @dir: Specifies the type of Source and Destination.
146  * @src_inc: If the source address increments after reading from it.
147  * @dst_inc: If the destination address increments after writing to it.
148  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
149  *		Otherwise, source is read contiguously (icg ignored).
150  *		Ignored if src_inc is false.
151  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
152  *		Otherwise, destination is filled contiguously (icg ignored).
153  *		Ignored if dst_inc is false.
154  * @numf: Number of frames in this template.
155  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
156  * @sgl: Array of {chunk,icg} pairs that make up a frame.
157  */
158 struct dma_interleaved_template {
159 	dma_addr_t src_start;
160 	dma_addr_t dst_start;
161 	enum dma_transfer_direction dir;
162 	bool src_inc;
163 	bool dst_inc;
164 	bool src_sgl;
165 	bool dst_sgl;
166 	size_t numf;
167 	size_t frame_size;
168 	struct data_chunk sgl[0];
169 };
170 
171 /**
172  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
173  *  control completion, and communicate status.
174  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
175  *  this transaction
176  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
177  *  acknowledges receipt, i.e. has has a chance to establish any dependency
178  *  chains
179  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
180  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
181  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
182  *  sources that were the result of a previous operation, in the case of a PQ
183  *  operation it continues the calculation with new sources
184  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
185  *  on the result of this operation
186  */
187 enum dma_ctrl_flags {
188 	DMA_PREP_INTERRUPT = (1 << 0),
189 	DMA_CTRL_ACK = (1 << 1),
190 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
191 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
192 	DMA_PREP_CONTINUE = (1 << 4),
193 	DMA_PREP_FENCE = (1 << 5),
194 };
195 
196 /**
197  * enum sum_check_bits - bit position of pq_check_flags
198  */
199 enum sum_check_bits {
200 	SUM_CHECK_P = 0,
201 	SUM_CHECK_Q = 1,
202 };
203 
204 /**
205  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
206  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
207  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
208  */
209 enum sum_check_flags {
210 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
211 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
212 };
213 
214 
215 /**
216  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
217  * See linux/cpumask.h
218  */
219 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
220 
221 /**
222  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
223  * @memcpy_count: transaction counter
224  * @bytes_transferred: byte counter
225  */
226 
227 struct dma_chan_percpu {
228 	/* stats */
229 	unsigned long memcpy_count;
230 	unsigned long bytes_transferred;
231 };
232 
233 /**
234  * struct dma_router - DMA router structure
235  * @dev: pointer to the DMA router device
236  * @route_free: function to be called when the route can be disconnected
237  */
238 struct dma_router {
239 	struct device *dev;
240 	void (*route_free)(struct device *dev, void *route_data);
241 };
242 
243 /**
244  * struct dma_chan - devices supply DMA channels, clients use them
245  * @device: ptr to the dma device who supplies this channel, always !%NULL
246  * @cookie: last cookie value returned to client
247  * @completed_cookie: last completed cookie for this channel
248  * @chan_id: channel ID for sysfs
249  * @dev: class device for sysfs
250  * @device_node: used to add this to the device chan list
251  * @local: per-cpu pointer to a struct dma_chan_percpu
252  * @client_count: how many clients are using this channel
253  * @table_count: number of appearances in the mem-to-mem allocation table
254  * @router: pointer to the DMA router structure
255  * @route_data: channel specific data for the router
256  * @private: private data for certain client-channel associations
257  */
258 struct dma_chan {
259 	struct dma_device *device;
260 	dma_cookie_t cookie;
261 	dma_cookie_t completed_cookie;
262 
263 	/* sysfs */
264 	int chan_id;
265 	struct dma_chan_dev *dev;
266 
267 	struct list_head device_node;
268 	struct dma_chan_percpu __percpu *local;
269 	int client_count;
270 	int table_count;
271 
272 	/* DMA router */
273 	struct dma_router *router;
274 	void *route_data;
275 
276 	void *private;
277 };
278 
279 /**
280  * struct dma_chan_dev - relate sysfs device node to backing channel device
281  * @chan: driver channel device
282  * @device: sysfs device
283  * @dev_id: parent dma_device dev_id
284  * @idr_ref: reference count to gate release of dma_device dev_id
285  */
286 struct dma_chan_dev {
287 	struct dma_chan *chan;
288 	struct device device;
289 	int dev_id;
290 	atomic_t *idr_ref;
291 };
292 
293 /**
294  * enum dma_slave_buswidth - defines bus width of the DMA slave
295  * device, source or target buses
296  */
297 enum dma_slave_buswidth {
298 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
299 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
300 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
301 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
302 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
303 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
304 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
305 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
306 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
307 };
308 
309 /**
310  * struct dma_slave_config - dma slave channel runtime config
311  * @direction: whether the data shall go in or out on this slave
312  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
313  * legal values. DEPRECATED, drivers should use the direction argument
314  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
315  * the dir field in the dma_interleaved_template structure.
316  * @src_addr: this is the physical address where DMA slave data
317  * should be read (RX), if the source is memory this argument is
318  * ignored.
319  * @dst_addr: this is the physical address where DMA slave data
320  * should be written (TX), if the source is memory this argument
321  * is ignored.
322  * @src_addr_width: this is the width in bytes of the source (RX)
323  * register where DMA data shall be read. If the source
324  * is memory this may be ignored depending on architecture.
325  * Legal values: 1, 2, 4, 8.
326  * @dst_addr_width: same as src_addr_width but for destination
327  * target (TX) mutatis mutandis.
328  * @src_maxburst: the maximum number of words (note: words, as in
329  * units of the src_addr_width member, not bytes) that can be sent
330  * in one burst to the device. Typically something like half the
331  * FIFO depth on I/O peripherals so you don't overflow it. This
332  * may or may not be applicable on memory sources.
333  * @dst_maxburst: same as src_maxburst but for destination target
334  * mutatis mutandis.
335  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
336  * with 'true' if peripheral should be flow controller. Direction will be
337  * selected at Runtime.
338  * @slave_id: Slave requester id. Only valid for slave channels. The dma
339  * slave peripheral will have unique id as dma requester which need to be
340  * pass as slave config.
341  *
342  * This struct is passed in as configuration data to a DMA engine
343  * in order to set up a certain channel for DMA transport at runtime.
344  * The DMA device/engine has to provide support for an additional
345  * callback in the dma_device structure, device_config and this struct
346  * will then be passed in as an argument to the function.
347  *
348  * The rationale for adding configuration information to this struct is as
349  * follows: if it is likely that more than one DMA slave controllers in
350  * the world will support the configuration option, then make it generic.
351  * If not: if it is fixed so that it be sent in static from the platform
352  * data, then prefer to do that.
353  */
354 struct dma_slave_config {
355 	enum dma_transfer_direction direction;
356 	dma_addr_t src_addr;
357 	dma_addr_t dst_addr;
358 	enum dma_slave_buswidth src_addr_width;
359 	enum dma_slave_buswidth dst_addr_width;
360 	u32 src_maxburst;
361 	u32 dst_maxburst;
362 	bool device_fc;
363 	unsigned int slave_id;
364 };
365 
366 /**
367  * enum dma_residue_granularity - Granularity of the reported transfer residue
368  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
369  *  DMA channel is only able to tell whether a descriptor has been completed or
370  *  not, which means residue reporting is not supported by this channel. The
371  *  residue field of the dma_tx_state field will always be 0.
372  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
373  *  completed segment of the transfer (For cyclic transfers this is after each
374  *  period). This is typically implemented by having the hardware generate an
375  *  interrupt after each transferred segment and then the drivers updates the
376  *  outstanding residue by the size of the segment. Another possibility is if
377  *  the hardware supports scatter-gather and the segment descriptor has a field
378  *  which gets set after the segment has been completed. The driver then counts
379  *  the number of segments without the flag set to compute the residue.
380  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
381  *  burst. This is typically only supported if the hardware has a progress
382  *  register of some sort (E.g. a register with the current read/write address
383  *  or a register with the amount of bursts/beats/bytes that have been
384  *  transferred or still need to be transferred).
385  */
386 enum dma_residue_granularity {
387 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
388 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
389 	DMA_RESIDUE_GRANULARITY_BURST = 2,
390 };
391 
392 /* struct dma_slave_caps - expose capabilities of a slave channel only
393  *
394  * @src_addr_widths: bit mask of src addr widths the channel supports
395  * @dst_addr_widths: bit mask of dstn addr widths the channel supports
396  * @directions: bit mask of slave direction the channel supported
397  * 	since the enum dma_transfer_direction is not defined as bits for each
398  * 	type of direction, the dma controller should fill (1 << <TYPE>) and same
399  * 	should be checked by controller as well
400  * @cmd_pause: true, if pause and thereby resume is supported
401  * @cmd_terminate: true, if terminate cmd is supported
402  * @residue_granularity: granularity of the reported transfer residue
403  */
404 struct dma_slave_caps {
405 	u32 src_addr_widths;
406 	u32 dst_addr_widths;
407 	u32 directions;
408 	bool cmd_pause;
409 	bool cmd_terminate;
410 	enum dma_residue_granularity residue_granularity;
411 };
412 
413 static inline const char *dma_chan_name(struct dma_chan *chan)
414 {
415 	return dev_name(&chan->dev->device);
416 }
417 
418 void dma_chan_cleanup(struct kref *kref);
419 
420 /**
421  * typedef dma_filter_fn - callback filter for dma_request_channel
422  * @chan: channel to be reviewed
423  * @filter_param: opaque parameter passed through dma_request_channel
424  *
425  * When this optional parameter is specified in a call to dma_request_channel a
426  * suitable channel is passed to this routine for further dispositioning before
427  * being returned.  Where 'suitable' indicates a non-busy channel that
428  * satisfies the given capability mask.  It returns 'true' to indicate that the
429  * channel is suitable.
430  */
431 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
432 
433 typedef void (*dma_async_tx_callback)(void *dma_async_param);
434 
435 struct dmaengine_unmap_data {
436 	u8 map_cnt;
437 	u8 to_cnt;
438 	u8 from_cnt;
439 	u8 bidi_cnt;
440 	struct device *dev;
441 	struct kref kref;
442 	size_t len;
443 	dma_addr_t addr[0];
444 };
445 
446 /**
447  * struct dma_async_tx_descriptor - async transaction descriptor
448  * ---dma generic offload fields---
449  * @cookie: tracking cookie for this transaction, set to -EBUSY if
450  *	this tx is sitting on a dependency list
451  * @flags: flags to augment operation preparation, control completion, and
452  * 	communicate status
453  * @phys: physical address of the descriptor
454  * @chan: target channel for this operation
455  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
456  * descriptor pending. To be pushed on .issue_pending() call
457  * @callback: routine to call after this operation is complete
458  * @callback_param: general parameter to pass to the callback routine
459  * ---async_tx api specific fields---
460  * @next: at completion submit this descriptor
461  * @parent: pointer to the next level up in the dependency chain
462  * @lock: protect the parent and next pointers
463  */
464 struct dma_async_tx_descriptor {
465 	dma_cookie_t cookie;
466 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
467 	dma_addr_t phys;
468 	struct dma_chan *chan;
469 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
470 	dma_async_tx_callback callback;
471 	void *callback_param;
472 	struct dmaengine_unmap_data *unmap;
473 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
474 	struct dma_async_tx_descriptor *next;
475 	struct dma_async_tx_descriptor *parent;
476 	spinlock_t lock;
477 #endif
478 };
479 
480 #ifdef CONFIG_DMA_ENGINE
481 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
482 				 struct dmaengine_unmap_data *unmap)
483 {
484 	kref_get(&unmap->kref);
485 	tx->unmap = unmap;
486 }
487 
488 struct dmaengine_unmap_data *
489 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
490 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
491 #else
492 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
493 				 struct dmaengine_unmap_data *unmap)
494 {
495 }
496 static inline struct dmaengine_unmap_data *
497 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
498 {
499 	return NULL;
500 }
501 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
502 {
503 }
504 #endif
505 
506 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
507 {
508 	if (tx->unmap) {
509 		dmaengine_unmap_put(tx->unmap);
510 		tx->unmap = NULL;
511 	}
512 }
513 
514 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
515 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
516 {
517 }
518 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
519 {
520 }
521 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
522 {
523 	BUG();
524 }
525 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
526 {
527 }
528 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
529 {
530 }
531 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
532 {
533 	return NULL;
534 }
535 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
536 {
537 	return NULL;
538 }
539 
540 #else
541 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
542 {
543 	spin_lock_bh(&txd->lock);
544 }
545 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
546 {
547 	spin_unlock_bh(&txd->lock);
548 }
549 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
550 {
551 	txd->next = next;
552 	next->parent = txd;
553 }
554 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
555 {
556 	txd->parent = NULL;
557 }
558 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
559 {
560 	txd->next = NULL;
561 }
562 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
563 {
564 	return txd->parent;
565 }
566 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
567 {
568 	return txd->next;
569 }
570 #endif
571 
572 /**
573  * struct dma_tx_state - filled in to report the status of
574  * a transfer.
575  * @last: last completed DMA cookie
576  * @used: last issued DMA cookie (i.e. the one in progress)
577  * @residue: the remaining number of bytes left to transmit
578  *	on the selected transfer for states DMA_IN_PROGRESS and
579  *	DMA_PAUSED if this is implemented in the driver, else 0
580  */
581 struct dma_tx_state {
582 	dma_cookie_t last;
583 	dma_cookie_t used;
584 	u32 residue;
585 };
586 
587 /**
588  * struct dma_device - info on the entity supplying DMA services
589  * @chancnt: how many DMA channels are supported
590  * @privatecnt: how many DMA channels are requested by dma_request_channel
591  * @channels: the list of struct dma_chan
592  * @global_node: list_head for global dma_device_list
593  * @cap_mask: one or more dma_capability flags
594  * @max_xor: maximum number of xor sources, 0 if no capability
595  * @max_pq: maximum number of PQ sources and PQ-continue capability
596  * @copy_align: alignment shift for memcpy operations
597  * @xor_align: alignment shift for xor operations
598  * @pq_align: alignment shift for pq operations
599  * @fill_align: alignment shift for memset operations
600  * @dev_id: unique device ID
601  * @dev: struct device reference for dma mapping api
602  * @src_addr_widths: bit mask of src addr widths the device supports
603  * @dst_addr_widths: bit mask of dst addr widths the device supports
604  * @directions: bit mask of slave direction the device supports since
605  * 	the enum dma_transfer_direction is not defined as bits for
606  * 	each type of direction, the dma controller should fill (1 <<
607  * 	<TYPE>) and same should be checked by controller as well
608  * @residue_granularity: granularity of the transfer residue reported
609  *	by tx_status
610  * @device_alloc_chan_resources: allocate resources and return the
611  *	number of allocated descriptors
612  * @device_free_chan_resources: release DMA channel's resources
613  * @device_prep_dma_memcpy: prepares a memcpy operation
614  * @device_prep_dma_xor: prepares a xor operation
615  * @device_prep_dma_xor_val: prepares a xor validation operation
616  * @device_prep_dma_pq: prepares a pq operation
617  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
618  * @device_prep_dma_memset: prepares a memset operation
619  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
620  * @device_prep_slave_sg: prepares a slave dma operation
621  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
622  *	The function takes a buffer of size buf_len. The callback function will
623  *	be called after period_len bytes have been transferred.
624  * @device_prep_interleaved_dma: Transfer expression in a generic way.
625  * @device_config: Pushes a new configuration to a channel, return 0 or an error
626  *	code
627  * @device_pause: Pauses any transfer happening on a channel. Returns
628  *	0 or an error code
629  * @device_resume: Resumes any transfer on a channel previously
630  *	paused. Returns 0 or an error code
631  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
632  *	or an error code
633  * @device_tx_status: poll for transaction completion, the optional
634  *	txstate parameter can be supplied with a pointer to get a
635  *	struct with auxiliary transfer status information, otherwise the call
636  *	will just return a simple status code
637  * @device_issue_pending: push pending transactions to hardware
638  */
639 struct dma_device {
640 
641 	unsigned int chancnt;
642 	unsigned int privatecnt;
643 	struct list_head channels;
644 	struct list_head global_node;
645 	dma_cap_mask_t  cap_mask;
646 	unsigned short max_xor;
647 	unsigned short max_pq;
648 	u8 copy_align;
649 	u8 xor_align;
650 	u8 pq_align;
651 	u8 fill_align;
652 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
653 
654 	int dev_id;
655 	struct device *dev;
656 
657 	u32 src_addr_widths;
658 	u32 dst_addr_widths;
659 	u32 directions;
660 	enum dma_residue_granularity residue_granularity;
661 
662 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
663 	void (*device_free_chan_resources)(struct dma_chan *chan);
664 
665 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
666 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
667 		size_t len, unsigned long flags);
668 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
669 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
670 		unsigned int src_cnt, size_t len, unsigned long flags);
671 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
672 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
673 		size_t len, enum sum_check_flags *result, unsigned long flags);
674 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
675 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
676 		unsigned int src_cnt, const unsigned char *scf,
677 		size_t len, unsigned long flags);
678 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
679 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
680 		unsigned int src_cnt, const unsigned char *scf, size_t len,
681 		enum sum_check_flags *pqres, unsigned long flags);
682 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
683 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
684 		unsigned long flags);
685 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
686 		struct dma_chan *chan, unsigned long flags);
687 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
688 		struct dma_chan *chan,
689 		struct scatterlist *dst_sg, unsigned int dst_nents,
690 		struct scatterlist *src_sg, unsigned int src_nents,
691 		unsigned long flags);
692 
693 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
694 		struct dma_chan *chan, struct scatterlist *sgl,
695 		unsigned int sg_len, enum dma_transfer_direction direction,
696 		unsigned long flags, void *context);
697 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
698 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
699 		size_t period_len, enum dma_transfer_direction direction,
700 		unsigned long flags);
701 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
702 		struct dma_chan *chan, struct dma_interleaved_template *xt,
703 		unsigned long flags);
704 
705 	int (*device_config)(struct dma_chan *chan,
706 			     struct dma_slave_config *config);
707 	int (*device_pause)(struct dma_chan *chan);
708 	int (*device_resume)(struct dma_chan *chan);
709 	int (*device_terminate_all)(struct dma_chan *chan);
710 
711 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
712 					    dma_cookie_t cookie,
713 					    struct dma_tx_state *txstate);
714 	void (*device_issue_pending)(struct dma_chan *chan);
715 };
716 
717 static inline int dmaengine_slave_config(struct dma_chan *chan,
718 					  struct dma_slave_config *config)
719 {
720 	if (chan->device->device_config)
721 		return chan->device->device_config(chan, config);
722 
723 	return -ENOSYS;
724 }
725 
726 static inline bool is_slave_direction(enum dma_transfer_direction direction)
727 {
728 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
729 }
730 
731 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
732 	struct dma_chan *chan, dma_addr_t buf, size_t len,
733 	enum dma_transfer_direction dir, unsigned long flags)
734 {
735 	struct scatterlist sg;
736 	sg_init_table(&sg, 1);
737 	sg_dma_address(&sg) = buf;
738 	sg_dma_len(&sg) = len;
739 
740 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
741 						  dir, flags, NULL);
742 }
743 
744 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
745 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
746 	enum dma_transfer_direction dir, unsigned long flags)
747 {
748 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
749 						  dir, flags, NULL);
750 }
751 
752 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
753 struct rio_dma_ext;
754 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
755 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
756 	enum dma_transfer_direction dir, unsigned long flags,
757 	struct rio_dma_ext *rio_ext)
758 {
759 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
760 						  dir, flags, rio_ext);
761 }
762 #endif
763 
764 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
765 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
766 		size_t period_len, enum dma_transfer_direction dir,
767 		unsigned long flags)
768 {
769 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
770 						period_len, dir, flags);
771 }
772 
773 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
774 		struct dma_chan *chan, struct dma_interleaved_template *xt,
775 		unsigned long flags)
776 {
777 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
778 }
779 
780 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
781 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
782 		unsigned long flags)
783 {
784 	if (!chan || !chan->device)
785 		return NULL;
786 
787 	return chan->device->device_prep_dma_memset(chan, dest, value,
788 						    len, flags);
789 }
790 
791 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
792 		struct dma_chan *chan,
793 		struct scatterlist *dst_sg, unsigned int dst_nents,
794 		struct scatterlist *src_sg, unsigned int src_nents,
795 		unsigned long flags)
796 {
797 	return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
798 			src_sg, src_nents, flags);
799 }
800 
801 static inline int dmaengine_terminate_all(struct dma_chan *chan)
802 {
803 	if (chan->device->device_terminate_all)
804 		return chan->device->device_terminate_all(chan);
805 
806 	return -ENOSYS;
807 }
808 
809 static inline int dmaengine_pause(struct dma_chan *chan)
810 {
811 	if (chan->device->device_pause)
812 		return chan->device->device_pause(chan);
813 
814 	return -ENOSYS;
815 }
816 
817 static inline int dmaengine_resume(struct dma_chan *chan)
818 {
819 	if (chan->device->device_resume)
820 		return chan->device->device_resume(chan);
821 
822 	return -ENOSYS;
823 }
824 
825 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
826 	dma_cookie_t cookie, struct dma_tx_state *state)
827 {
828 	return chan->device->device_tx_status(chan, cookie, state);
829 }
830 
831 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
832 {
833 	return desc->tx_submit(desc);
834 }
835 
836 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
837 {
838 	size_t mask;
839 
840 	if (!align)
841 		return true;
842 	mask = (1 << align) - 1;
843 	if (mask & (off1 | off2 | len))
844 		return false;
845 	return true;
846 }
847 
848 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
849 				       size_t off2, size_t len)
850 {
851 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
852 }
853 
854 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
855 				      size_t off2, size_t len)
856 {
857 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
858 }
859 
860 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
861 				     size_t off2, size_t len)
862 {
863 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
864 }
865 
866 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
867 				       size_t off2, size_t len)
868 {
869 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
870 }
871 
872 static inline void
873 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
874 {
875 	dma->max_pq = maxpq;
876 	if (has_pq_continue)
877 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
878 }
879 
880 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
881 {
882 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
883 }
884 
885 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
886 {
887 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
888 
889 	return (flags & mask) == mask;
890 }
891 
892 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
893 {
894 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
895 }
896 
897 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
898 {
899 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
900 }
901 
902 /* dma_maxpq - reduce maxpq in the face of continued operations
903  * @dma - dma device with PQ capability
904  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
905  *
906  * When an engine does not support native continuation we need 3 extra
907  * source slots to reuse P and Q with the following coefficients:
908  * 1/ {00} * P : remove P from Q', but use it as a source for P'
909  * 2/ {01} * Q : use Q to continue Q' calculation
910  * 3/ {00} * Q : subtract Q from P' to cancel (2)
911  *
912  * In the case where P is disabled we only need 1 extra source:
913  * 1/ {01} * Q : use Q to continue Q' calculation
914  */
915 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
916 {
917 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
918 		return dma_dev_to_maxpq(dma);
919 	else if (dmaf_p_disabled_continue(flags))
920 		return dma_dev_to_maxpq(dma) - 1;
921 	else if (dmaf_continue(flags))
922 		return dma_dev_to_maxpq(dma) - 3;
923 	BUG();
924 }
925 
926 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
927 				      size_t dir_icg)
928 {
929 	if (inc) {
930 		if (dir_icg)
931 			return dir_icg;
932 		else if (sgl)
933 			return icg;
934 	}
935 
936 	return 0;
937 }
938 
939 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
940 					   struct data_chunk *chunk)
941 {
942 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
943 				 chunk->icg, chunk->dst_icg);
944 }
945 
946 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
947 					   struct data_chunk *chunk)
948 {
949 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
950 				 chunk->icg, chunk->src_icg);
951 }
952 
953 /* --- public DMA engine API --- */
954 
955 #ifdef CONFIG_DMA_ENGINE
956 void dmaengine_get(void);
957 void dmaengine_put(void);
958 #else
959 static inline void dmaengine_get(void)
960 {
961 }
962 static inline void dmaengine_put(void)
963 {
964 }
965 #endif
966 
967 #ifdef CONFIG_ASYNC_TX_DMA
968 #define async_dmaengine_get()	dmaengine_get()
969 #define async_dmaengine_put()	dmaengine_put()
970 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
971 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
972 #else
973 #define async_dma_find_channel(type) dma_find_channel(type)
974 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
975 #else
976 static inline void async_dmaengine_get(void)
977 {
978 }
979 static inline void async_dmaengine_put(void)
980 {
981 }
982 static inline struct dma_chan *
983 async_dma_find_channel(enum dma_transaction_type type)
984 {
985 	return NULL;
986 }
987 #endif /* CONFIG_ASYNC_TX_DMA */
988 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
989 				  struct dma_chan *chan);
990 
991 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
992 {
993 	tx->flags |= DMA_CTRL_ACK;
994 }
995 
996 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
997 {
998 	tx->flags &= ~DMA_CTRL_ACK;
999 }
1000 
1001 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1002 {
1003 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1004 }
1005 
1006 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1007 static inline void
1008 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1009 {
1010 	set_bit(tx_type, dstp->bits);
1011 }
1012 
1013 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1014 static inline void
1015 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1016 {
1017 	clear_bit(tx_type, dstp->bits);
1018 }
1019 
1020 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1021 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1022 {
1023 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1024 }
1025 
1026 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1027 static inline int
1028 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1029 {
1030 	return test_bit(tx_type, srcp->bits);
1031 }
1032 
1033 #define for_each_dma_cap_mask(cap, mask) \
1034 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1035 
1036 /**
1037  * dma_async_issue_pending - flush pending transactions to HW
1038  * @chan: target DMA channel
1039  *
1040  * This allows drivers to push copies to HW in batches,
1041  * reducing MMIO writes where possible.
1042  */
1043 static inline void dma_async_issue_pending(struct dma_chan *chan)
1044 {
1045 	chan->device->device_issue_pending(chan);
1046 }
1047 
1048 /**
1049  * dma_async_is_tx_complete - poll for transaction completion
1050  * @chan: DMA channel
1051  * @cookie: transaction identifier to check status of
1052  * @last: returns last completed cookie, can be NULL
1053  * @used: returns last issued cookie, can be NULL
1054  *
1055  * If @last and @used are passed in, upon return they reflect the driver
1056  * internal state and can be used with dma_async_is_complete() to check
1057  * the status of multiple cookies without re-checking hardware state.
1058  */
1059 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1060 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1061 {
1062 	struct dma_tx_state state;
1063 	enum dma_status status;
1064 
1065 	status = chan->device->device_tx_status(chan, cookie, &state);
1066 	if (last)
1067 		*last = state.last;
1068 	if (used)
1069 		*used = state.used;
1070 	return status;
1071 }
1072 
1073 /**
1074  * dma_async_is_complete - test a cookie against chan state
1075  * @cookie: transaction identifier to test status of
1076  * @last_complete: last know completed transaction
1077  * @last_used: last cookie value handed out
1078  *
1079  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1080  * the test logic is separated for lightweight testing of multiple cookies
1081  */
1082 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1083 			dma_cookie_t last_complete, dma_cookie_t last_used)
1084 {
1085 	if (last_complete <= last_used) {
1086 		if ((cookie <= last_complete) || (cookie > last_used))
1087 			return DMA_COMPLETE;
1088 	} else {
1089 		if ((cookie <= last_complete) && (cookie > last_used))
1090 			return DMA_COMPLETE;
1091 	}
1092 	return DMA_IN_PROGRESS;
1093 }
1094 
1095 static inline void
1096 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1097 {
1098 	if (st) {
1099 		st->last = last;
1100 		st->used = used;
1101 		st->residue = residue;
1102 	}
1103 }
1104 
1105 #ifdef CONFIG_DMA_ENGINE
1106 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1107 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1108 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1109 void dma_issue_pending_all(void);
1110 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1111 					dma_filter_fn fn, void *fn_param);
1112 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1113 						  const char *name);
1114 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1115 void dma_release_channel(struct dma_chan *chan);
1116 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1117 #else
1118 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1119 {
1120 	return NULL;
1121 }
1122 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1123 {
1124 	return DMA_COMPLETE;
1125 }
1126 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1127 {
1128 	return DMA_COMPLETE;
1129 }
1130 static inline void dma_issue_pending_all(void)
1131 {
1132 }
1133 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1134 					      dma_filter_fn fn, void *fn_param)
1135 {
1136 	return NULL;
1137 }
1138 static inline struct dma_chan *dma_request_slave_channel_reason(
1139 					struct device *dev, const char *name)
1140 {
1141 	return ERR_PTR(-ENODEV);
1142 }
1143 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1144 							 const char *name)
1145 {
1146 	return NULL;
1147 }
1148 static inline void dma_release_channel(struct dma_chan *chan)
1149 {
1150 }
1151 static inline int dma_get_slave_caps(struct dma_chan *chan,
1152 				     struct dma_slave_caps *caps)
1153 {
1154 	return -ENXIO;
1155 }
1156 #endif
1157 
1158 /* --- DMA device --- */
1159 
1160 int dma_async_device_register(struct dma_device *device);
1161 void dma_async_device_unregister(struct dma_device *device);
1162 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1163 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1164 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1165 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1166 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1167 	__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1168 
1169 static inline struct dma_chan
1170 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1171 				  dma_filter_fn fn, void *fn_param,
1172 				  struct device *dev, char *name)
1173 {
1174 	struct dma_chan *chan;
1175 
1176 	chan = dma_request_slave_channel(dev, name);
1177 	if (chan)
1178 		return chan;
1179 
1180 	return __dma_request_channel(mask, fn, fn_param);
1181 }
1182 #endif /* DMAENGINE_H */
1183