1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in the 15 * file called COPYING. 16 */ 17 #ifndef LINUX_DMAENGINE_H 18 #define LINUX_DMAENGINE_H 19 20 #include <linux/device.h> 21 #include <linux/err.h> 22 #include <linux/uio.h> 23 #include <linux/bug.h> 24 #include <linux/scatterlist.h> 25 #include <linux/bitmap.h> 26 #include <linux/types.h> 27 #include <asm/page.h> 28 29 /** 30 * typedef dma_cookie_t - an opaque DMA cookie 31 * 32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 33 */ 34 typedef s32 dma_cookie_t; 35 #define DMA_MIN_COOKIE 1 36 37 static inline int dma_submit_error(dma_cookie_t cookie) 38 { 39 return cookie < 0 ? cookie : 0; 40 } 41 42 /** 43 * enum dma_status - DMA transaction status 44 * @DMA_COMPLETE: transaction completed 45 * @DMA_IN_PROGRESS: transaction not yet processed 46 * @DMA_PAUSED: transaction is paused 47 * @DMA_ERROR: transaction failed 48 */ 49 enum dma_status { 50 DMA_COMPLETE, 51 DMA_IN_PROGRESS, 52 DMA_PAUSED, 53 DMA_ERROR, 54 }; 55 56 /** 57 * enum dma_transaction_type - DMA transaction types/indexes 58 * 59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 60 * automatically set as dma devices are registered. 61 */ 62 enum dma_transaction_type { 63 DMA_MEMCPY, 64 DMA_XOR, 65 DMA_PQ, 66 DMA_XOR_VAL, 67 DMA_PQ_VAL, 68 DMA_MEMSET, 69 DMA_MEMSET_SG, 70 DMA_INTERRUPT, 71 DMA_PRIVATE, 72 DMA_ASYNC_TX, 73 DMA_SLAVE, 74 DMA_CYCLIC, 75 DMA_INTERLEAVE, 76 /* last transaction type for creation of the capabilities mask */ 77 DMA_TX_TYPE_END, 78 }; 79 80 /** 81 * enum dma_transfer_direction - dma transfer mode and direction indicator 82 * @DMA_MEM_TO_MEM: Async/Memcpy mode 83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 86 */ 87 enum dma_transfer_direction { 88 DMA_MEM_TO_MEM, 89 DMA_MEM_TO_DEV, 90 DMA_DEV_TO_MEM, 91 DMA_DEV_TO_DEV, 92 DMA_TRANS_NONE, 93 }; 94 95 /** 96 * Interleaved Transfer Request 97 * ---------------------------- 98 * A chunk is collection of contiguous bytes to be transfered. 99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 100 * ICGs may or maynot change between chunks. 101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 102 * that when repeated an integral number of times, specifies the transfer. 103 * A transfer template is specification of a Frame, the number of times 104 * it is to be repeated and other per-transfer attributes. 105 * 106 * Practically, a client driver would have ready a template for each 107 * type of transfer it is going to need during its lifetime and 108 * set only 'src_start' and 'dst_start' before submitting the requests. 109 * 110 * 111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 113 * 114 * == Chunk size 115 * ... ICG 116 */ 117 118 /** 119 * struct data_chunk - Element of scatter-gather list that makes a frame. 120 * @size: Number of bytes to read from source. 121 * size_dst := fn(op, size_src), so doesn't mean much for destination. 122 * @icg: Number of bytes to jump after last src/dst address of this 123 * chunk and before first src/dst address for next chunk. 124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 126 * @dst_icg: Number of bytes to jump after last dst address of this 127 * chunk and before the first dst address for next chunk. 128 * Ignored if dst_inc is true and dst_sgl is false. 129 * @src_icg: Number of bytes to jump after last src address of this 130 * chunk and before the first src address for next chunk. 131 * Ignored if src_inc is true and src_sgl is false. 132 */ 133 struct data_chunk { 134 size_t size; 135 size_t icg; 136 size_t dst_icg; 137 size_t src_icg; 138 }; 139 140 /** 141 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 142 * and attributes. 143 * @src_start: Bus address of source for the first chunk. 144 * @dst_start: Bus address of destination for the first chunk. 145 * @dir: Specifies the type of Source and Destination. 146 * @src_inc: If the source address increments after reading from it. 147 * @dst_inc: If the destination address increments after writing to it. 148 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 149 * Otherwise, source is read contiguously (icg ignored). 150 * Ignored if src_inc is false. 151 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 152 * Otherwise, destination is filled contiguously (icg ignored). 153 * Ignored if dst_inc is false. 154 * @numf: Number of frames in this template. 155 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 156 * @sgl: Array of {chunk,icg} pairs that make up a frame. 157 */ 158 struct dma_interleaved_template { 159 dma_addr_t src_start; 160 dma_addr_t dst_start; 161 enum dma_transfer_direction dir; 162 bool src_inc; 163 bool dst_inc; 164 bool src_sgl; 165 bool dst_sgl; 166 size_t numf; 167 size_t frame_size; 168 struct data_chunk sgl[0]; 169 }; 170 171 /** 172 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 173 * control completion, and communicate status. 174 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 175 * this transaction 176 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 177 * acknowledges receipt, i.e. has has a chance to establish any dependency 178 * chains 179 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 180 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 181 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 182 * sources that were the result of a previous operation, in the case of a PQ 183 * operation it continues the calculation with new sources 184 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 185 * on the result of this operation 186 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 187 * cleared or freed 188 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 189 * data and the descriptor should be in different format from normal 190 * data descriptors. 191 */ 192 enum dma_ctrl_flags { 193 DMA_PREP_INTERRUPT = (1 << 0), 194 DMA_CTRL_ACK = (1 << 1), 195 DMA_PREP_PQ_DISABLE_P = (1 << 2), 196 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 197 DMA_PREP_CONTINUE = (1 << 4), 198 DMA_PREP_FENCE = (1 << 5), 199 DMA_CTRL_REUSE = (1 << 6), 200 DMA_PREP_CMD = (1 << 7), 201 }; 202 203 /** 204 * enum sum_check_bits - bit position of pq_check_flags 205 */ 206 enum sum_check_bits { 207 SUM_CHECK_P = 0, 208 SUM_CHECK_Q = 1, 209 }; 210 211 /** 212 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 213 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 214 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 215 */ 216 enum sum_check_flags { 217 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 218 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 219 }; 220 221 222 /** 223 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 224 * See linux/cpumask.h 225 */ 226 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 227 228 /** 229 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 230 * @memcpy_count: transaction counter 231 * @bytes_transferred: byte counter 232 */ 233 234 struct dma_chan_percpu { 235 /* stats */ 236 unsigned long memcpy_count; 237 unsigned long bytes_transferred; 238 }; 239 240 /** 241 * struct dma_router - DMA router structure 242 * @dev: pointer to the DMA router device 243 * @route_free: function to be called when the route can be disconnected 244 */ 245 struct dma_router { 246 struct device *dev; 247 void (*route_free)(struct device *dev, void *route_data); 248 }; 249 250 /** 251 * struct dma_chan - devices supply DMA channels, clients use them 252 * @device: ptr to the dma device who supplies this channel, always !%NULL 253 * @cookie: last cookie value returned to client 254 * @completed_cookie: last completed cookie for this channel 255 * @chan_id: channel ID for sysfs 256 * @dev: class device for sysfs 257 * @device_node: used to add this to the device chan list 258 * @local: per-cpu pointer to a struct dma_chan_percpu 259 * @client_count: how many clients are using this channel 260 * @table_count: number of appearances in the mem-to-mem allocation table 261 * @router: pointer to the DMA router structure 262 * @route_data: channel specific data for the router 263 * @private: private data for certain client-channel associations 264 */ 265 struct dma_chan { 266 struct dma_device *device; 267 dma_cookie_t cookie; 268 dma_cookie_t completed_cookie; 269 270 /* sysfs */ 271 int chan_id; 272 struct dma_chan_dev *dev; 273 274 struct list_head device_node; 275 struct dma_chan_percpu __percpu *local; 276 int client_count; 277 int table_count; 278 279 /* DMA router */ 280 struct dma_router *router; 281 void *route_data; 282 283 void *private; 284 }; 285 286 /** 287 * struct dma_chan_dev - relate sysfs device node to backing channel device 288 * @chan: driver channel device 289 * @device: sysfs device 290 * @dev_id: parent dma_device dev_id 291 * @idr_ref: reference count to gate release of dma_device dev_id 292 */ 293 struct dma_chan_dev { 294 struct dma_chan *chan; 295 struct device device; 296 int dev_id; 297 atomic_t *idr_ref; 298 }; 299 300 /** 301 * enum dma_slave_buswidth - defines bus width of the DMA slave 302 * device, source or target buses 303 */ 304 enum dma_slave_buswidth { 305 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 306 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 307 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 308 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 309 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 310 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 311 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 312 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 313 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 314 }; 315 316 /** 317 * struct dma_slave_config - dma slave channel runtime config 318 * @direction: whether the data shall go in or out on this slave 319 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 320 * legal values. DEPRECATED, drivers should use the direction argument 321 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 322 * the dir field in the dma_interleaved_template structure. 323 * @src_addr: this is the physical address where DMA slave data 324 * should be read (RX), if the source is memory this argument is 325 * ignored. 326 * @dst_addr: this is the physical address where DMA slave data 327 * should be written (TX), if the source is memory this argument 328 * is ignored. 329 * @src_addr_width: this is the width in bytes of the source (RX) 330 * register where DMA data shall be read. If the source 331 * is memory this may be ignored depending on architecture. 332 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64. 333 * @dst_addr_width: same as src_addr_width but for destination 334 * target (TX) mutatis mutandis. 335 * @src_maxburst: the maximum number of words (note: words, as in 336 * units of the src_addr_width member, not bytes) that can be sent 337 * in one burst to the device. Typically something like half the 338 * FIFO depth on I/O peripherals so you don't overflow it. This 339 * may or may not be applicable on memory sources. 340 * @dst_maxburst: same as src_maxburst but for destination target 341 * mutatis mutandis. 342 * @src_port_window_size: The length of the register area in words the data need 343 * to be accessed on the device side. It is only used for devices which is using 344 * an area instead of a single register to receive the data. Typically the DMA 345 * loops in this area in order to transfer the data. 346 * @dst_port_window_size: same as src_port_window_size but for the destination 347 * port. 348 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 349 * with 'true' if peripheral should be flow controller. Direction will be 350 * selected at Runtime. 351 * @slave_id: Slave requester id. Only valid for slave channels. The dma 352 * slave peripheral will have unique id as dma requester which need to be 353 * pass as slave config. 354 * 355 * This struct is passed in as configuration data to a DMA engine 356 * in order to set up a certain channel for DMA transport at runtime. 357 * The DMA device/engine has to provide support for an additional 358 * callback in the dma_device structure, device_config and this struct 359 * will then be passed in as an argument to the function. 360 * 361 * The rationale for adding configuration information to this struct is as 362 * follows: if it is likely that more than one DMA slave controllers in 363 * the world will support the configuration option, then make it generic. 364 * If not: if it is fixed so that it be sent in static from the platform 365 * data, then prefer to do that. 366 */ 367 struct dma_slave_config { 368 enum dma_transfer_direction direction; 369 phys_addr_t src_addr; 370 phys_addr_t dst_addr; 371 enum dma_slave_buswidth src_addr_width; 372 enum dma_slave_buswidth dst_addr_width; 373 u32 src_maxburst; 374 u32 dst_maxburst; 375 u32 src_port_window_size; 376 u32 dst_port_window_size; 377 bool device_fc; 378 unsigned int slave_id; 379 }; 380 381 /** 382 * enum dma_residue_granularity - Granularity of the reported transfer residue 383 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 384 * DMA channel is only able to tell whether a descriptor has been completed or 385 * not, which means residue reporting is not supported by this channel. The 386 * residue field of the dma_tx_state field will always be 0. 387 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 388 * completed segment of the transfer (For cyclic transfers this is after each 389 * period). This is typically implemented by having the hardware generate an 390 * interrupt after each transferred segment and then the drivers updates the 391 * outstanding residue by the size of the segment. Another possibility is if 392 * the hardware supports scatter-gather and the segment descriptor has a field 393 * which gets set after the segment has been completed. The driver then counts 394 * the number of segments without the flag set to compute the residue. 395 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 396 * burst. This is typically only supported if the hardware has a progress 397 * register of some sort (E.g. a register with the current read/write address 398 * or a register with the amount of bursts/beats/bytes that have been 399 * transferred or still need to be transferred). 400 */ 401 enum dma_residue_granularity { 402 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 403 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 404 DMA_RESIDUE_GRANULARITY_BURST = 2, 405 }; 406 407 /** 408 * struct dma_slave_caps - expose capabilities of a slave channel only 409 * @src_addr_widths: bit mask of src addr widths the channel supports. 410 * Width is specified in bytes, e.g. for a channel supporting 411 * a width of 4 the mask should have BIT(4) set. 412 * @dst_addr_widths: bit mask of dst addr widths the channel supports 413 * @directions: bit mask of slave directions the channel supports. 414 * Since the enum dma_transfer_direction is not defined as bit flag for 415 * each type, the dma controller should set BIT(<TYPE>) and same 416 * should be checked by controller as well 417 * @max_burst: max burst capability per-transfer 418 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 419 * for resume later) 420 * @cmd_resume: true, if resume is supported 421 * @cmd_terminate: true, if terminate cmd is supported 422 * @residue_granularity: granularity of the reported transfer residue 423 * @descriptor_reuse: if a descriptor can be reused by client and 424 * resubmitted multiple times 425 */ 426 struct dma_slave_caps { 427 u32 src_addr_widths; 428 u32 dst_addr_widths; 429 u32 directions; 430 u32 max_burst; 431 bool cmd_pause; 432 bool cmd_resume; 433 bool cmd_terminate; 434 enum dma_residue_granularity residue_granularity; 435 bool descriptor_reuse; 436 }; 437 438 static inline const char *dma_chan_name(struct dma_chan *chan) 439 { 440 return dev_name(&chan->dev->device); 441 } 442 443 void dma_chan_cleanup(struct kref *kref); 444 445 /** 446 * typedef dma_filter_fn - callback filter for dma_request_channel 447 * @chan: channel to be reviewed 448 * @filter_param: opaque parameter passed through dma_request_channel 449 * 450 * When this optional parameter is specified in a call to dma_request_channel a 451 * suitable channel is passed to this routine for further dispositioning before 452 * being returned. Where 'suitable' indicates a non-busy channel that 453 * satisfies the given capability mask. It returns 'true' to indicate that the 454 * channel is suitable. 455 */ 456 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 457 458 typedef void (*dma_async_tx_callback)(void *dma_async_param); 459 460 enum dmaengine_tx_result { 461 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 462 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 463 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 464 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 465 }; 466 467 struct dmaengine_result { 468 enum dmaengine_tx_result result; 469 u32 residue; 470 }; 471 472 typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 473 const struct dmaengine_result *result); 474 475 struct dmaengine_unmap_data { 476 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 477 u16 map_cnt; 478 #else 479 u8 map_cnt; 480 #endif 481 u8 to_cnt; 482 u8 from_cnt; 483 u8 bidi_cnt; 484 struct device *dev; 485 struct kref kref; 486 size_t len; 487 dma_addr_t addr[0]; 488 }; 489 490 /** 491 * struct dma_async_tx_descriptor - async transaction descriptor 492 * ---dma generic offload fields--- 493 * @cookie: tracking cookie for this transaction, set to -EBUSY if 494 * this tx is sitting on a dependency list 495 * @flags: flags to augment operation preparation, control completion, and 496 * communicate status 497 * @phys: physical address of the descriptor 498 * @chan: target channel for this operation 499 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 500 * descriptor pending. To be pushed on .issue_pending() call 501 * @callback: routine to call after this operation is complete 502 * @callback_param: general parameter to pass to the callback routine 503 * ---async_tx api specific fields--- 504 * @next: at completion submit this descriptor 505 * @parent: pointer to the next level up in the dependency chain 506 * @lock: protect the parent and next pointers 507 */ 508 struct dma_async_tx_descriptor { 509 dma_cookie_t cookie; 510 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 511 dma_addr_t phys; 512 struct dma_chan *chan; 513 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 514 int (*desc_free)(struct dma_async_tx_descriptor *tx); 515 dma_async_tx_callback callback; 516 dma_async_tx_callback_result callback_result; 517 void *callback_param; 518 struct dmaengine_unmap_data *unmap; 519 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 520 struct dma_async_tx_descriptor *next; 521 struct dma_async_tx_descriptor *parent; 522 spinlock_t lock; 523 #endif 524 }; 525 526 #ifdef CONFIG_DMA_ENGINE 527 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 528 struct dmaengine_unmap_data *unmap) 529 { 530 kref_get(&unmap->kref); 531 tx->unmap = unmap; 532 } 533 534 struct dmaengine_unmap_data * 535 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 536 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 537 #else 538 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 539 struct dmaengine_unmap_data *unmap) 540 { 541 } 542 static inline struct dmaengine_unmap_data * 543 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 544 { 545 return NULL; 546 } 547 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 548 { 549 } 550 #endif 551 552 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 553 { 554 if (tx->unmap) { 555 dmaengine_unmap_put(tx->unmap); 556 tx->unmap = NULL; 557 } 558 } 559 560 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 561 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 562 { 563 } 564 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 565 { 566 } 567 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 568 { 569 BUG(); 570 } 571 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 572 { 573 } 574 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 575 { 576 } 577 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 578 { 579 return NULL; 580 } 581 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 582 { 583 return NULL; 584 } 585 586 #else 587 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 588 { 589 spin_lock_bh(&txd->lock); 590 } 591 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 592 { 593 spin_unlock_bh(&txd->lock); 594 } 595 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 596 { 597 txd->next = next; 598 next->parent = txd; 599 } 600 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 601 { 602 txd->parent = NULL; 603 } 604 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 605 { 606 txd->next = NULL; 607 } 608 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 609 { 610 return txd->parent; 611 } 612 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 613 { 614 return txd->next; 615 } 616 #endif 617 618 /** 619 * struct dma_tx_state - filled in to report the status of 620 * a transfer. 621 * @last: last completed DMA cookie 622 * @used: last issued DMA cookie (i.e. the one in progress) 623 * @residue: the remaining number of bytes left to transmit 624 * on the selected transfer for states DMA_IN_PROGRESS and 625 * DMA_PAUSED if this is implemented in the driver, else 0 626 */ 627 struct dma_tx_state { 628 dma_cookie_t last; 629 dma_cookie_t used; 630 u32 residue; 631 }; 632 633 /** 634 * enum dmaengine_alignment - defines alignment of the DMA async tx 635 * buffers 636 */ 637 enum dmaengine_alignment { 638 DMAENGINE_ALIGN_1_BYTE = 0, 639 DMAENGINE_ALIGN_2_BYTES = 1, 640 DMAENGINE_ALIGN_4_BYTES = 2, 641 DMAENGINE_ALIGN_8_BYTES = 3, 642 DMAENGINE_ALIGN_16_BYTES = 4, 643 DMAENGINE_ALIGN_32_BYTES = 5, 644 DMAENGINE_ALIGN_64_BYTES = 6, 645 }; 646 647 /** 648 * struct dma_slave_map - associates slave device and it's slave channel with 649 * parameter to be used by a filter function 650 * @devname: name of the device 651 * @slave: slave channel name 652 * @param: opaque parameter to pass to struct dma_filter.fn 653 */ 654 struct dma_slave_map { 655 const char *devname; 656 const char *slave; 657 void *param; 658 }; 659 660 /** 661 * struct dma_filter - information for slave device/channel to filter_fn/param 662 * mapping 663 * @fn: filter function callback 664 * @mapcnt: number of slave device/channel in the map 665 * @map: array of channel to filter mapping data 666 */ 667 struct dma_filter { 668 dma_filter_fn fn; 669 int mapcnt; 670 const struct dma_slave_map *map; 671 }; 672 673 /** 674 * struct dma_device - info on the entity supplying DMA services 675 * @chancnt: how many DMA channels are supported 676 * @privatecnt: how many DMA channels are requested by dma_request_channel 677 * @channels: the list of struct dma_chan 678 * @global_node: list_head for global dma_device_list 679 * @filter: information for device/slave to filter function/param mapping 680 * @cap_mask: one or more dma_capability flags 681 * @max_xor: maximum number of xor sources, 0 if no capability 682 * @max_pq: maximum number of PQ sources and PQ-continue capability 683 * @copy_align: alignment shift for memcpy operations 684 * @xor_align: alignment shift for xor operations 685 * @pq_align: alignment shift for pq operations 686 * @fill_align: alignment shift for memset operations 687 * @dev_id: unique device ID 688 * @dev: struct device reference for dma mapping api 689 * @src_addr_widths: bit mask of src addr widths the device supports 690 * Width is specified in bytes, e.g. for a device supporting 691 * a width of 4 the mask should have BIT(4) set. 692 * @dst_addr_widths: bit mask of dst addr widths the device supports 693 * @directions: bit mask of slave directions the device supports. 694 * Since the enum dma_transfer_direction is not defined as bit flag for 695 * each type, the dma controller should set BIT(<TYPE>) and same 696 * should be checked by controller as well 697 * @max_burst: max burst capability per-transfer 698 * @residue_granularity: granularity of the transfer residue reported 699 * by tx_status 700 * @device_alloc_chan_resources: allocate resources and return the 701 * number of allocated descriptors 702 * @device_free_chan_resources: release DMA channel's resources 703 * @device_prep_dma_memcpy: prepares a memcpy operation 704 * @device_prep_dma_xor: prepares a xor operation 705 * @device_prep_dma_xor_val: prepares a xor validation operation 706 * @device_prep_dma_pq: prepares a pq operation 707 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 708 * @device_prep_dma_memset: prepares a memset operation 709 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 710 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 711 * @device_prep_slave_sg: prepares a slave dma operation 712 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 713 * The function takes a buffer of size buf_len. The callback function will 714 * be called after period_len bytes have been transferred. 715 * @device_prep_interleaved_dma: Transfer expression in a generic way. 716 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 717 * @device_config: Pushes a new configuration to a channel, return 0 or an error 718 * code 719 * @device_pause: Pauses any transfer happening on a channel. Returns 720 * 0 or an error code 721 * @device_resume: Resumes any transfer on a channel previously 722 * paused. Returns 0 or an error code 723 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 724 * or an error code 725 * @device_synchronize: Synchronizes the termination of a transfers to the 726 * current context. 727 * @device_tx_status: poll for transaction completion, the optional 728 * txstate parameter can be supplied with a pointer to get a 729 * struct with auxiliary transfer status information, otherwise the call 730 * will just return a simple status code 731 * @device_issue_pending: push pending transactions to hardware 732 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 733 */ 734 struct dma_device { 735 736 unsigned int chancnt; 737 unsigned int privatecnt; 738 struct list_head channels; 739 struct list_head global_node; 740 struct dma_filter filter; 741 dma_cap_mask_t cap_mask; 742 unsigned short max_xor; 743 unsigned short max_pq; 744 enum dmaengine_alignment copy_align; 745 enum dmaengine_alignment xor_align; 746 enum dmaengine_alignment pq_align; 747 enum dmaengine_alignment fill_align; 748 #define DMA_HAS_PQ_CONTINUE (1 << 15) 749 750 int dev_id; 751 struct device *dev; 752 753 u32 src_addr_widths; 754 u32 dst_addr_widths; 755 u32 directions; 756 u32 max_burst; 757 bool descriptor_reuse; 758 enum dma_residue_granularity residue_granularity; 759 760 int (*device_alloc_chan_resources)(struct dma_chan *chan); 761 void (*device_free_chan_resources)(struct dma_chan *chan); 762 763 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 764 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 765 size_t len, unsigned long flags); 766 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 767 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 768 unsigned int src_cnt, size_t len, unsigned long flags); 769 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 770 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 771 size_t len, enum sum_check_flags *result, unsigned long flags); 772 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 773 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 774 unsigned int src_cnt, const unsigned char *scf, 775 size_t len, unsigned long flags); 776 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 777 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 778 unsigned int src_cnt, const unsigned char *scf, size_t len, 779 enum sum_check_flags *pqres, unsigned long flags); 780 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 781 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 782 unsigned long flags); 783 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 784 struct dma_chan *chan, struct scatterlist *sg, 785 unsigned int nents, int value, unsigned long flags); 786 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 787 struct dma_chan *chan, unsigned long flags); 788 789 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 790 struct dma_chan *chan, struct scatterlist *sgl, 791 unsigned int sg_len, enum dma_transfer_direction direction, 792 unsigned long flags, void *context); 793 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 794 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 795 size_t period_len, enum dma_transfer_direction direction, 796 unsigned long flags); 797 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 798 struct dma_chan *chan, struct dma_interleaved_template *xt, 799 unsigned long flags); 800 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 801 struct dma_chan *chan, dma_addr_t dst, u64 data, 802 unsigned long flags); 803 804 int (*device_config)(struct dma_chan *chan, 805 struct dma_slave_config *config); 806 int (*device_pause)(struct dma_chan *chan); 807 int (*device_resume)(struct dma_chan *chan); 808 int (*device_terminate_all)(struct dma_chan *chan); 809 void (*device_synchronize)(struct dma_chan *chan); 810 811 enum dma_status (*device_tx_status)(struct dma_chan *chan, 812 dma_cookie_t cookie, 813 struct dma_tx_state *txstate); 814 void (*device_issue_pending)(struct dma_chan *chan); 815 }; 816 817 static inline int dmaengine_slave_config(struct dma_chan *chan, 818 struct dma_slave_config *config) 819 { 820 if (chan->device->device_config) 821 return chan->device->device_config(chan, config); 822 823 return -ENOSYS; 824 } 825 826 static inline bool is_slave_direction(enum dma_transfer_direction direction) 827 { 828 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 829 } 830 831 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 832 struct dma_chan *chan, dma_addr_t buf, size_t len, 833 enum dma_transfer_direction dir, unsigned long flags) 834 { 835 struct scatterlist sg; 836 sg_init_table(&sg, 1); 837 sg_dma_address(&sg) = buf; 838 sg_dma_len(&sg) = len; 839 840 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 841 return NULL; 842 843 return chan->device->device_prep_slave_sg(chan, &sg, 1, 844 dir, flags, NULL); 845 } 846 847 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 848 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 849 enum dma_transfer_direction dir, unsigned long flags) 850 { 851 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 852 return NULL; 853 854 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 855 dir, flags, NULL); 856 } 857 858 #ifdef CONFIG_RAPIDIO_DMA_ENGINE 859 struct rio_dma_ext; 860 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 861 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 862 enum dma_transfer_direction dir, unsigned long flags, 863 struct rio_dma_ext *rio_ext) 864 { 865 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 866 return NULL; 867 868 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 869 dir, flags, rio_ext); 870 } 871 #endif 872 873 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 874 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 875 size_t period_len, enum dma_transfer_direction dir, 876 unsigned long flags) 877 { 878 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 879 return NULL; 880 881 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 882 period_len, dir, flags); 883 } 884 885 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 886 struct dma_chan *chan, struct dma_interleaved_template *xt, 887 unsigned long flags) 888 { 889 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 890 return NULL; 891 892 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 893 } 894 895 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 896 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 897 unsigned long flags) 898 { 899 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 900 return NULL; 901 902 return chan->device->device_prep_dma_memset(chan, dest, value, 903 len, flags); 904 } 905 906 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 907 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 908 size_t len, unsigned long flags) 909 { 910 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 911 return NULL; 912 913 return chan->device->device_prep_dma_memcpy(chan, dest, src, 914 len, flags); 915 } 916 917 /** 918 * dmaengine_terminate_all() - Terminate all active DMA transfers 919 * @chan: The channel for which to terminate the transfers 920 * 921 * This function is DEPRECATED use either dmaengine_terminate_sync() or 922 * dmaengine_terminate_async() instead. 923 */ 924 static inline int dmaengine_terminate_all(struct dma_chan *chan) 925 { 926 if (chan->device->device_terminate_all) 927 return chan->device->device_terminate_all(chan); 928 929 return -ENOSYS; 930 } 931 932 /** 933 * dmaengine_terminate_async() - Terminate all active DMA transfers 934 * @chan: The channel for which to terminate the transfers 935 * 936 * Calling this function will terminate all active and pending descriptors 937 * that have previously been submitted to the channel. It is not guaranteed 938 * though that the transfer for the active descriptor has stopped when the 939 * function returns. Furthermore it is possible the complete callback of a 940 * submitted transfer is still running when this function returns. 941 * 942 * dmaengine_synchronize() needs to be called before it is safe to free 943 * any memory that is accessed by previously submitted descriptors or before 944 * freeing any resources accessed from within the completion callback of any 945 * perviously submitted descriptors. 946 * 947 * This function can be called from atomic context as well as from within a 948 * complete callback of a descriptor submitted on the same channel. 949 * 950 * If none of the two conditions above apply consider using 951 * dmaengine_terminate_sync() instead. 952 */ 953 static inline int dmaengine_terminate_async(struct dma_chan *chan) 954 { 955 if (chan->device->device_terminate_all) 956 return chan->device->device_terminate_all(chan); 957 958 return -EINVAL; 959 } 960 961 /** 962 * dmaengine_synchronize() - Synchronize DMA channel termination 963 * @chan: The channel to synchronize 964 * 965 * Synchronizes to the DMA channel termination to the current context. When this 966 * function returns it is guaranteed that all transfers for previously issued 967 * descriptors have stopped and and it is safe to free the memory assoicated 968 * with them. Furthermore it is guaranteed that all complete callback functions 969 * for a previously submitted descriptor have finished running and it is safe to 970 * free resources accessed from within the complete callbacks. 971 * 972 * The behavior of this function is undefined if dma_async_issue_pending() has 973 * been called between dmaengine_terminate_async() and this function. 974 * 975 * This function must only be called from non-atomic context and must not be 976 * called from within a complete callback of a descriptor submitted on the same 977 * channel. 978 */ 979 static inline void dmaengine_synchronize(struct dma_chan *chan) 980 { 981 might_sleep(); 982 983 if (chan->device->device_synchronize) 984 chan->device->device_synchronize(chan); 985 } 986 987 /** 988 * dmaengine_terminate_sync() - Terminate all active DMA transfers 989 * @chan: The channel for which to terminate the transfers 990 * 991 * Calling this function will terminate all active and pending transfers 992 * that have previously been submitted to the channel. It is similar to 993 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 994 * stopped and that all complete callbacks have finished running when the 995 * function returns. 996 * 997 * This function must only be called from non-atomic context and must not be 998 * called from within a complete callback of a descriptor submitted on the same 999 * channel. 1000 */ 1001 static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1002 { 1003 int ret; 1004 1005 ret = dmaengine_terminate_async(chan); 1006 if (ret) 1007 return ret; 1008 1009 dmaengine_synchronize(chan); 1010 1011 return 0; 1012 } 1013 1014 static inline int dmaengine_pause(struct dma_chan *chan) 1015 { 1016 if (chan->device->device_pause) 1017 return chan->device->device_pause(chan); 1018 1019 return -ENOSYS; 1020 } 1021 1022 static inline int dmaengine_resume(struct dma_chan *chan) 1023 { 1024 if (chan->device->device_resume) 1025 return chan->device->device_resume(chan); 1026 1027 return -ENOSYS; 1028 } 1029 1030 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1031 dma_cookie_t cookie, struct dma_tx_state *state) 1032 { 1033 return chan->device->device_tx_status(chan, cookie, state); 1034 } 1035 1036 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1037 { 1038 return desc->tx_submit(desc); 1039 } 1040 1041 static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1042 size_t off1, size_t off2, size_t len) 1043 { 1044 size_t mask; 1045 1046 if (!align) 1047 return true; 1048 mask = (1 << align) - 1; 1049 if (mask & (off1 | off2 | len)) 1050 return false; 1051 return true; 1052 } 1053 1054 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1055 size_t off2, size_t len) 1056 { 1057 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1058 } 1059 1060 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1061 size_t off2, size_t len) 1062 { 1063 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1064 } 1065 1066 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1067 size_t off2, size_t len) 1068 { 1069 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1070 } 1071 1072 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1073 size_t off2, size_t len) 1074 { 1075 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1076 } 1077 1078 static inline void 1079 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1080 { 1081 dma->max_pq = maxpq; 1082 if (has_pq_continue) 1083 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1084 } 1085 1086 static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1087 { 1088 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1089 } 1090 1091 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1092 { 1093 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1094 1095 return (flags & mask) == mask; 1096 } 1097 1098 static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1099 { 1100 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1101 } 1102 1103 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1104 { 1105 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1106 } 1107 1108 /* dma_maxpq - reduce maxpq in the face of continued operations 1109 * @dma - dma device with PQ capability 1110 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1111 * 1112 * When an engine does not support native continuation we need 3 extra 1113 * source slots to reuse P and Q with the following coefficients: 1114 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1115 * 2/ {01} * Q : use Q to continue Q' calculation 1116 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1117 * 1118 * In the case where P is disabled we only need 1 extra source: 1119 * 1/ {01} * Q : use Q to continue Q' calculation 1120 */ 1121 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1122 { 1123 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1124 return dma_dev_to_maxpq(dma); 1125 else if (dmaf_p_disabled_continue(flags)) 1126 return dma_dev_to_maxpq(dma) - 1; 1127 else if (dmaf_continue(flags)) 1128 return dma_dev_to_maxpq(dma) - 3; 1129 BUG(); 1130 } 1131 1132 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1133 size_t dir_icg) 1134 { 1135 if (inc) { 1136 if (dir_icg) 1137 return dir_icg; 1138 else if (sgl) 1139 return icg; 1140 } 1141 1142 return 0; 1143 } 1144 1145 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1146 struct data_chunk *chunk) 1147 { 1148 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1149 chunk->icg, chunk->dst_icg); 1150 } 1151 1152 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1153 struct data_chunk *chunk) 1154 { 1155 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1156 chunk->icg, chunk->src_icg); 1157 } 1158 1159 /* --- public DMA engine API --- */ 1160 1161 #ifdef CONFIG_DMA_ENGINE 1162 void dmaengine_get(void); 1163 void dmaengine_put(void); 1164 #else 1165 static inline void dmaengine_get(void) 1166 { 1167 } 1168 static inline void dmaengine_put(void) 1169 { 1170 } 1171 #endif 1172 1173 #ifdef CONFIG_ASYNC_TX_DMA 1174 #define async_dmaengine_get() dmaengine_get() 1175 #define async_dmaengine_put() dmaengine_put() 1176 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1177 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1178 #else 1179 #define async_dma_find_channel(type) dma_find_channel(type) 1180 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1181 #else 1182 static inline void async_dmaengine_get(void) 1183 { 1184 } 1185 static inline void async_dmaengine_put(void) 1186 { 1187 } 1188 static inline struct dma_chan * 1189 async_dma_find_channel(enum dma_transaction_type type) 1190 { 1191 return NULL; 1192 } 1193 #endif /* CONFIG_ASYNC_TX_DMA */ 1194 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1195 struct dma_chan *chan); 1196 1197 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1198 { 1199 tx->flags |= DMA_CTRL_ACK; 1200 } 1201 1202 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1203 { 1204 tx->flags &= ~DMA_CTRL_ACK; 1205 } 1206 1207 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1208 { 1209 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1210 } 1211 1212 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1213 static inline void 1214 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1215 { 1216 set_bit(tx_type, dstp->bits); 1217 } 1218 1219 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1220 static inline void 1221 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1222 { 1223 clear_bit(tx_type, dstp->bits); 1224 } 1225 1226 #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1227 static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1228 { 1229 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1230 } 1231 1232 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1233 static inline int 1234 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1235 { 1236 return test_bit(tx_type, srcp->bits); 1237 } 1238 1239 #define for_each_dma_cap_mask(cap, mask) \ 1240 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1241 1242 /** 1243 * dma_async_issue_pending - flush pending transactions to HW 1244 * @chan: target DMA channel 1245 * 1246 * This allows drivers to push copies to HW in batches, 1247 * reducing MMIO writes where possible. 1248 */ 1249 static inline void dma_async_issue_pending(struct dma_chan *chan) 1250 { 1251 chan->device->device_issue_pending(chan); 1252 } 1253 1254 /** 1255 * dma_async_is_tx_complete - poll for transaction completion 1256 * @chan: DMA channel 1257 * @cookie: transaction identifier to check status of 1258 * @last: returns last completed cookie, can be NULL 1259 * @used: returns last issued cookie, can be NULL 1260 * 1261 * If @last and @used are passed in, upon return they reflect the driver 1262 * internal state and can be used with dma_async_is_complete() to check 1263 * the status of multiple cookies without re-checking hardware state. 1264 */ 1265 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1266 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1267 { 1268 struct dma_tx_state state; 1269 enum dma_status status; 1270 1271 status = chan->device->device_tx_status(chan, cookie, &state); 1272 if (last) 1273 *last = state.last; 1274 if (used) 1275 *used = state.used; 1276 return status; 1277 } 1278 1279 /** 1280 * dma_async_is_complete - test a cookie against chan state 1281 * @cookie: transaction identifier to test status of 1282 * @last_complete: last know completed transaction 1283 * @last_used: last cookie value handed out 1284 * 1285 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1286 * the test logic is separated for lightweight testing of multiple cookies 1287 */ 1288 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1289 dma_cookie_t last_complete, dma_cookie_t last_used) 1290 { 1291 if (last_complete <= last_used) { 1292 if ((cookie <= last_complete) || (cookie > last_used)) 1293 return DMA_COMPLETE; 1294 } else { 1295 if ((cookie <= last_complete) && (cookie > last_used)) 1296 return DMA_COMPLETE; 1297 } 1298 return DMA_IN_PROGRESS; 1299 } 1300 1301 static inline void 1302 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1303 { 1304 if (st) { 1305 st->last = last; 1306 st->used = used; 1307 st->residue = residue; 1308 } 1309 } 1310 1311 #ifdef CONFIG_DMA_ENGINE 1312 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1313 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1314 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1315 void dma_issue_pending_all(void); 1316 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1317 dma_filter_fn fn, void *fn_param); 1318 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1319 1320 struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1321 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1322 1323 void dma_release_channel(struct dma_chan *chan); 1324 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1325 #else 1326 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1327 { 1328 return NULL; 1329 } 1330 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1331 { 1332 return DMA_COMPLETE; 1333 } 1334 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1335 { 1336 return DMA_COMPLETE; 1337 } 1338 static inline void dma_issue_pending_all(void) 1339 { 1340 } 1341 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1342 dma_filter_fn fn, void *fn_param) 1343 { 1344 return NULL; 1345 } 1346 static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1347 const char *name) 1348 { 1349 return NULL; 1350 } 1351 static inline struct dma_chan *dma_request_chan(struct device *dev, 1352 const char *name) 1353 { 1354 return ERR_PTR(-ENODEV); 1355 } 1356 static inline struct dma_chan *dma_request_chan_by_mask( 1357 const dma_cap_mask_t *mask) 1358 { 1359 return ERR_PTR(-ENODEV); 1360 } 1361 static inline void dma_release_channel(struct dma_chan *chan) 1362 { 1363 } 1364 static inline int dma_get_slave_caps(struct dma_chan *chan, 1365 struct dma_slave_caps *caps) 1366 { 1367 return -ENXIO; 1368 } 1369 #endif 1370 1371 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name) 1372 1373 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1374 { 1375 struct dma_slave_caps caps; 1376 1377 dma_get_slave_caps(tx->chan, &caps); 1378 1379 if (caps.descriptor_reuse) { 1380 tx->flags |= DMA_CTRL_REUSE; 1381 return 0; 1382 } else { 1383 return -EPERM; 1384 } 1385 } 1386 1387 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1388 { 1389 tx->flags &= ~DMA_CTRL_REUSE; 1390 } 1391 1392 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1393 { 1394 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1395 } 1396 1397 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1398 { 1399 /* this is supported for reusable desc, so check that */ 1400 if (dmaengine_desc_test_reuse(desc)) 1401 return desc->desc_free(desc); 1402 else 1403 return -EPERM; 1404 } 1405 1406 /* --- DMA device --- */ 1407 1408 int dma_async_device_register(struct dma_device *device); 1409 int dmaenginem_async_device_register(struct dma_device *device); 1410 void dma_async_device_unregister(struct dma_device *device); 1411 void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1412 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); 1413 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); 1414 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1415 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1416 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1417 1418 static inline struct dma_chan 1419 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1420 dma_filter_fn fn, void *fn_param, 1421 struct device *dev, const char *name) 1422 { 1423 struct dma_chan *chan; 1424 1425 chan = dma_request_slave_channel(dev, name); 1426 if (chan) 1427 return chan; 1428 1429 if (!fn || !fn_param) 1430 return NULL; 1431 1432 return __dma_request_channel(mask, fn, fn_param); 1433 } 1434 #endif /* DMAENGINE_H */ 1435