1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_DMA_MAPPING_H 3 #define _LINUX_DMA_MAPPING_H 4 5 #include <linux/sizes.h> 6 #include <linux/string.h> 7 #include <linux/device.h> 8 #include <linux/err.h> 9 #include <linux/dma-debug.h> 10 #include <linux/dma-direction.h> 11 #include <linux/scatterlist.h> 12 #include <linux/kmemcheck.h> 13 #include <linux/bug.h> 14 #include <linux/mem_encrypt.h> 15 16 /** 17 * List of possible attributes associated with a DMA mapping. The semantics 18 * of each attribute should be defined in Documentation/DMA-attributes.txt. 19 * 20 * DMA_ATTR_WRITE_BARRIER: DMA to a memory region with this attribute 21 * forces all pending DMA writes to complete. 22 */ 23 #define DMA_ATTR_WRITE_BARRIER (1UL << 0) 24 /* 25 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping 26 * may be weakly ordered, that is that reads and writes may pass each other. 27 */ 28 #define DMA_ATTR_WEAK_ORDERING (1UL << 1) 29 /* 30 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be 31 * buffered to improve performance. 32 */ 33 #define DMA_ATTR_WRITE_COMBINE (1UL << 2) 34 /* 35 * DMA_ATTR_NON_CONSISTENT: Lets the platform to choose to return either 36 * consistent or non-consistent memory as it sees fit. 37 */ 38 #define DMA_ATTR_NON_CONSISTENT (1UL << 3) 39 /* 40 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel 41 * virtual mapping for the allocated buffer. 42 */ 43 #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4) 44 /* 45 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of 46 * the CPU cache for the given buffer assuming that it has been already 47 * transferred to 'device' domain. 48 */ 49 #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5) 50 /* 51 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer 52 * in physical memory. 53 */ 54 #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6) 55 /* 56 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem 57 * that it's probably not worth the time to try to allocate memory to in a way 58 * that gives better TLB efficiency. 59 */ 60 #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7) 61 /* 62 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress 63 * allocation failure reports (similarly to __GFP_NOWARN). 64 */ 65 #define DMA_ATTR_NO_WARN (1UL << 8) 66 67 /* 68 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully 69 * accessible at an elevated privilege level (and ideally inaccessible or 70 * at least read-only at lesser-privileged levels). 71 */ 72 #define DMA_ATTR_PRIVILEGED (1UL << 9) 73 74 /* 75 * A dma_addr_t can hold any valid DMA or bus address for the platform. 76 * It can be given to a device to use as a DMA source or target. A CPU cannot 77 * reference a dma_addr_t directly because there may be translation between 78 * its physical address space and the bus address space. 79 */ 80 struct dma_map_ops { 81 void* (*alloc)(struct device *dev, size_t size, 82 dma_addr_t *dma_handle, gfp_t gfp, 83 unsigned long attrs); 84 void (*free)(struct device *dev, size_t size, 85 void *vaddr, dma_addr_t dma_handle, 86 unsigned long attrs); 87 int (*mmap)(struct device *, struct vm_area_struct *, 88 void *, dma_addr_t, size_t, 89 unsigned long attrs); 90 91 int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *, 92 dma_addr_t, size_t, unsigned long attrs); 93 94 dma_addr_t (*map_page)(struct device *dev, struct page *page, 95 unsigned long offset, size_t size, 96 enum dma_data_direction dir, 97 unsigned long attrs); 98 void (*unmap_page)(struct device *dev, dma_addr_t dma_handle, 99 size_t size, enum dma_data_direction dir, 100 unsigned long attrs); 101 /* 102 * map_sg returns 0 on error and a value > 0 on success. 103 * It should never return a value < 0. 104 */ 105 int (*map_sg)(struct device *dev, struct scatterlist *sg, 106 int nents, enum dma_data_direction dir, 107 unsigned long attrs); 108 void (*unmap_sg)(struct device *dev, 109 struct scatterlist *sg, int nents, 110 enum dma_data_direction dir, 111 unsigned long attrs); 112 dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr, 113 size_t size, enum dma_data_direction dir, 114 unsigned long attrs); 115 void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle, 116 size_t size, enum dma_data_direction dir, 117 unsigned long attrs); 118 void (*sync_single_for_cpu)(struct device *dev, 119 dma_addr_t dma_handle, size_t size, 120 enum dma_data_direction dir); 121 void (*sync_single_for_device)(struct device *dev, 122 dma_addr_t dma_handle, size_t size, 123 enum dma_data_direction dir); 124 void (*sync_sg_for_cpu)(struct device *dev, 125 struct scatterlist *sg, int nents, 126 enum dma_data_direction dir); 127 void (*sync_sg_for_device)(struct device *dev, 128 struct scatterlist *sg, int nents, 129 enum dma_data_direction dir); 130 void (*cache_sync)(struct device *dev, void *vaddr, size_t size, 131 enum dma_data_direction direction); 132 int (*mapping_error)(struct device *dev, dma_addr_t dma_addr); 133 int (*dma_supported)(struct device *dev, u64 mask); 134 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK 135 u64 (*get_required_mask)(struct device *dev); 136 #endif 137 int is_phys; 138 }; 139 140 extern const struct dma_map_ops dma_noop_ops; 141 extern const struct dma_map_ops dma_virt_ops; 142 143 #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) 144 145 #define DMA_MASK_NONE 0x0ULL 146 147 static inline int valid_dma_direction(int dma_direction) 148 { 149 return ((dma_direction == DMA_BIDIRECTIONAL) || 150 (dma_direction == DMA_TO_DEVICE) || 151 (dma_direction == DMA_FROM_DEVICE)); 152 } 153 154 static inline int is_device_dma_capable(struct device *dev) 155 { 156 return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE; 157 } 158 159 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 160 /* 161 * These three functions are only for dma allocator. 162 * Don't use them in device drivers. 163 */ 164 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size, 165 dma_addr_t *dma_handle, void **ret); 166 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr); 167 168 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma, 169 void *cpu_addr, size_t size, int *ret); 170 171 void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle); 172 int dma_release_from_global_coherent(int order, void *vaddr); 173 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr, 174 size_t size, int *ret); 175 176 #else 177 #define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0) 178 #define dma_release_from_dev_coherent(dev, order, vaddr) (0) 179 #define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0) 180 181 static inline void *dma_alloc_from_global_coherent(ssize_t size, 182 dma_addr_t *dma_handle) 183 { 184 return NULL; 185 } 186 187 static inline int dma_release_from_global_coherent(int order, void *vaddr) 188 { 189 return 0; 190 } 191 192 static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma, 193 void *cpu_addr, size_t size, 194 int *ret) 195 { 196 return 0; 197 } 198 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 199 200 #ifdef CONFIG_HAS_DMA 201 #include <asm/dma-mapping.h> 202 static inline const struct dma_map_ops *get_dma_ops(struct device *dev) 203 { 204 if (dev && dev->dma_ops) 205 return dev->dma_ops; 206 return get_arch_dma_ops(dev ? dev->bus : NULL); 207 } 208 209 static inline void set_dma_ops(struct device *dev, 210 const struct dma_map_ops *dma_ops) 211 { 212 dev->dma_ops = dma_ops; 213 } 214 #else 215 /* 216 * Define the dma api to allow compilation but not linking of 217 * dma dependent code. Code that depends on the dma-mapping 218 * API needs to set 'depends on HAS_DMA' in its Kconfig 219 */ 220 extern const struct dma_map_ops bad_dma_ops; 221 static inline const struct dma_map_ops *get_dma_ops(struct device *dev) 222 { 223 return &bad_dma_ops; 224 } 225 #endif 226 227 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, 228 size_t size, 229 enum dma_data_direction dir, 230 unsigned long attrs) 231 { 232 const struct dma_map_ops *ops = get_dma_ops(dev); 233 dma_addr_t addr; 234 235 kmemcheck_mark_initialized(ptr, size); 236 BUG_ON(!valid_dma_direction(dir)); 237 addr = ops->map_page(dev, virt_to_page(ptr), 238 offset_in_page(ptr), size, 239 dir, attrs); 240 debug_dma_map_page(dev, virt_to_page(ptr), 241 offset_in_page(ptr), size, 242 dir, addr, true); 243 return addr; 244 } 245 246 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, 247 size_t size, 248 enum dma_data_direction dir, 249 unsigned long attrs) 250 { 251 const struct dma_map_ops *ops = get_dma_ops(dev); 252 253 BUG_ON(!valid_dma_direction(dir)); 254 if (ops->unmap_page) 255 ops->unmap_page(dev, addr, size, dir, attrs); 256 debug_dma_unmap_page(dev, addr, size, dir, true); 257 } 258 259 /* 260 * dma_maps_sg_attrs returns 0 on error and > 0 on success. 261 * It should never return a value < 0. 262 */ 263 static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 264 int nents, enum dma_data_direction dir, 265 unsigned long attrs) 266 { 267 const struct dma_map_ops *ops = get_dma_ops(dev); 268 int i, ents; 269 struct scatterlist *s; 270 271 for_each_sg(sg, s, nents, i) 272 kmemcheck_mark_initialized(sg_virt(s), s->length); 273 BUG_ON(!valid_dma_direction(dir)); 274 ents = ops->map_sg(dev, sg, nents, dir, attrs); 275 BUG_ON(ents < 0); 276 debug_dma_map_sg(dev, sg, nents, ents, dir); 277 278 return ents; 279 } 280 281 static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 282 int nents, enum dma_data_direction dir, 283 unsigned long attrs) 284 { 285 const struct dma_map_ops *ops = get_dma_ops(dev); 286 287 BUG_ON(!valid_dma_direction(dir)); 288 debug_dma_unmap_sg(dev, sg, nents, dir); 289 if (ops->unmap_sg) 290 ops->unmap_sg(dev, sg, nents, dir, attrs); 291 } 292 293 static inline dma_addr_t dma_map_page_attrs(struct device *dev, 294 struct page *page, 295 size_t offset, size_t size, 296 enum dma_data_direction dir, 297 unsigned long attrs) 298 { 299 const struct dma_map_ops *ops = get_dma_ops(dev); 300 dma_addr_t addr; 301 302 kmemcheck_mark_initialized(page_address(page) + offset, size); 303 BUG_ON(!valid_dma_direction(dir)); 304 addr = ops->map_page(dev, page, offset, size, dir, attrs); 305 debug_dma_map_page(dev, page, offset, size, dir, addr, false); 306 307 return addr; 308 } 309 310 static inline void dma_unmap_page_attrs(struct device *dev, 311 dma_addr_t addr, size_t size, 312 enum dma_data_direction dir, 313 unsigned long attrs) 314 { 315 const struct dma_map_ops *ops = get_dma_ops(dev); 316 317 BUG_ON(!valid_dma_direction(dir)); 318 if (ops->unmap_page) 319 ops->unmap_page(dev, addr, size, dir, attrs); 320 debug_dma_unmap_page(dev, addr, size, dir, false); 321 } 322 323 static inline dma_addr_t dma_map_resource(struct device *dev, 324 phys_addr_t phys_addr, 325 size_t size, 326 enum dma_data_direction dir, 327 unsigned long attrs) 328 { 329 const struct dma_map_ops *ops = get_dma_ops(dev); 330 dma_addr_t addr; 331 332 BUG_ON(!valid_dma_direction(dir)); 333 334 /* Don't allow RAM to be mapped */ 335 BUG_ON(pfn_valid(PHYS_PFN(phys_addr))); 336 337 addr = phys_addr; 338 if (ops->map_resource) 339 addr = ops->map_resource(dev, phys_addr, size, dir, attrs); 340 341 debug_dma_map_resource(dev, phys_addr, size, dir, addr); 342 343 return addr; 344 } 345 346 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr, 347 size_t size, enum dma_data_direction dir, 348 unsigned long attrs) 349 { 350 const struct dma_map_ops *ops = get_dma_ops(dev); 351 352 BUG_ON(!valid_dma_direction(dir)); 353 if (ops->unmap_resource) 354 ops->unmap_resource(dev, addr, size, dir, attrs); 355 debug_dma_unmap_resource(dev, addr, size, dir); 356 } 357 358 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 359 size_t size, 360 enum dma_data_direction dir) 361 { 362 const struct dma_map_ops *ops = get_dma_ops(dev); 363 364 BUG_ON(!valid_dma_direction(dir)); 365 if (ops->sync_single_for_cpu) 366 ops->sync_single_for_cpu(dev, addr, size, dir); 367 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 368 } 369 370 static inline void dma_sync_single_for_device(struct device *dev, 371 dma_addr_t addr, size_t size, 372 enum dma_data_direction dir) 373 { 374 const struct dma_map_ops *ops = get_dma_ops(dev); 375 376 BUG_ON(!valid_dma_direction(dir)); 377 if (ops->sync_single_for_device) 378 ops->sync_single_for_device(dev, addr, size, dir); 379 debug_dma_sync_single_for_device(dev, addr, size, dir); 380 } 381 382 static inline void dma_sync_single_range_for_cpu(struct device *dev, 383 dma_addr_t addr, 384 unsigned long offset, 385 size_t size, 386 enum dma_data_direction dir) 387 { 388 const struct dma_map_ops *ops = get_dma_ops(dev); 389 390 BUG_ON(!valid_dma_direction(dir)); 391 if (ops->sync_single_for_cpu) 392 ops->sync_single_for_cpu(dev, addr + offset, size, dir); 393 debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir); 394 } 395 396 static inline void dma_sync_single_range_for_device(struct device *dev, 397 dma_addr_t addr, 398 unsigned long offset, 399 size_t size, 400 enum dma_data_direction dir) 401 { 402 const struct dma_map_ops *ops = get_dma_ops(dev); 403 404 BUG_ON(!valid_dma_direction(dir)); 405 if (ops->sync_single_for_device) 406 ops->sync_single_for_device(dev, addr + offset, size, dir); 407 debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir); 408 } 409 410 static inline void 411 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 412 int nelems, enum dma_data_direction dir) 413 { 414 const struct dma_map_ops *ops = get_dma_ops(dev); 415 416 BUG_ON(!valid_dma_direction(dir)); 417 if (ops->sync_sg_for_cpu) 418 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 419 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 420 } 421 422 static inline void 423 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 424 int nelems, enum dma_data_direction dir) 425 { 426 const struct dma_map_ops *ops = get_dma_ops(dev); 427 428 BUG_ON(!valid_dma_direction(dir)); 429 if (ops->sync_sg_for_device) 430 ops->sync_sg_for_device(dev, sg, nelems, dir); 431 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 432 433 } 434 435 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0) 436 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0) 437 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0) 438 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0) 439 #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0) 440 #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0) 441 442 static inline void 443 dma_cache_sync(struct device *dev, void *vaddr, size_t size, 444 enum dma_data_direction dir) 445 { 446 const struct dma_map_ops *ops = get_dma_ops(dev); 447 448 BUG_ON(!valid_dma_direction(dir)); 449 if (ops->cache_sync) 450 ops->cache_sync(dev, vaddr, size, dir); 451 } 452 453 extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, 454 void *cpu_addr, dma_addr_t dma_addr, size_t size); 455 456 void *dma_common_contiguous_remap(struct page *page, size_t size, 457 unsigned long vm_flags, 458 pgprot_t prot, const void *caller); 459 460 void *dma_common_pages_remap(struct page **pages, size_t size, 461 unsigned long vm_flags, pgprot_t prot, 462 const void *caller); 463 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags); 464 465 /** 466 * dma_mmap_attrs - map a coherent DMA allocation into user space 467 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 468 * @vma: vm_area_struct describing requested user mapping 469 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 470 * @handle: device-view address returned from dma_alloc_attrs 471 * @size: size of memory originally requested in dma_alloc_attrs 472 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 473 * 474 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs 475 * into user space. The coherent DMA buffer must not be freed by the 476 * driver until the user space mapping has been released. 477 */ 478 static inline int 479 dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, 480 dma_addr_t dma_addr, size_t size, unsigned long attrs) 481 { 482 const struct dma_map_ops *ops = get_dma_ops(dev); 483 BUG_ON(!ops); 484 if (ops->mmap) 485 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 486 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size); 487 } 488 489 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0) 490 491 int 492 dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, 493 void *cpu_addr, dma_addr_t dma_addr, size_t size); 494 495 static inline int 496 dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, 497 dma_addr_t dma_addr, size_t size, 498 unsigned long attrs) 499 { 500 const struct dma_map_ops *ops = get_dma_ops(dev); 501 BUG_ON(!ops); 502 if (ops->get_sgtable) 503 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, 504 attrs); 505 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size); 506 } 507 508 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0) 509 510 #ifndef arch_dma_alloc_attrs 511 #define arch_dma_alloc_attrs(dev, flag) (true) 512 #endif 513 514 static inline void *dma_alloc_attrs(struct device *dev, size_t size, 515 dma_addr_t *dma_handle, gfp_t flag, 516 unsigned long attrs) 517 { 518 const struct dma_map_ops *ops = get_dma_ops(dev); 519 void *cpu_addr; 520 521 BUG_ON(!ops); 522 523 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) 524 return cpu_addr; 525 526 if (!arch_dma_alloc_attrs(&dev, &flag)) 527 return NULL; 528 if (!ops->alloc) 529 return NULL; 530 531 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 532 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); 533 return cpu_addr; 534 } 535 536 static inline void dma_free_attrs(struct device *dev, size_t size, 537 void *cpu_addr, dma_addr_t dma_handle, 538 unsigned long attrs) 539 { 540 const struct dma_map_ops *ops = get_dma_ops(dev); 541 542 BUG_ON(!ops); 543 WARN_ON(irqs_disabled()); 544 545 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) 546 return; 547 548 if (!ops->free || !cpu_addr) 549 return; 550 551 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 552 ops->free(dev, size, cpu_addr, dma_handle, attrs); 553 } 554 555 static inline void *dma_alloc_coherent(struct device *dev, size_t size, 556 dma_addr_t *dma_handle, gfp_t flag) 557 { 558 return dma_alloc_attrs(dev, size, dma_handle, flag, 0); 559 } 560 561 static inline void dma_free_coherent(struct device *dev, size_t size, 562 void *cpu_addr, dma_addr_t dma_handle) 563 { 564 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0); 565 } 566 567 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 568 { 569 const struct dma_map_ops *ops = get_dma_ops(dev); 570 571 debug_dma_mapping_error(dev, dma_addr); 572 if (ops->mapping_error) 573 return ops->mapping_error(dev, dma_addr); 574 return 0; 575 } 576 577 static inline void dma_check_mask(struct device *dev, u64 mask) 578 { 579 if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1))) 580 dev_warn(dev, "SME is active, device will require DMA bounce buffers\n"); 581 } 582 583 static inline int dma_supported(struct device *dev, u64 mask) 584 { 585 const struct dma_map_ops *ops = get_dma_ops(dev); 586 587 if (!ops) 588 return 0; 589 if (!ops->dma_supported) 590 return 1; 591 return ops->dma_supported(dev, mask); 592 } 593 594 #ifndef HAVE_ARCH_DMA_SET_MASK 595 static inline int dma_set_mask(struct device *dev, u64 mask) 596 { 597 if (!dev->dma_mask || !dma_supported(dev, mask)) 598 return -EIO; 599 600 dma_check_mask(dev, mask); 601 602 *dev->dma_mask = mask; 603 return 0; 604 } 605 #endif 606 607 static inline u64 dma_get_mask(struct device *dev) 608 { 609 if (dev && dev->dma_mask && *dev->dma_mask) 610 return *dev->dma_mask; 611 return DMA_BIT_MASK(32); 612 } 613 614 #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK 615 int dma_set_coherent_mask(struct device *dev, u64 mask); 616 #else 617 static inline int dma_set_coherent_mask(struct device *dev, u64 mask) 618 { 619 if (!dma_supported(dev, mask)) 620 return -EIO; 621 622 dma_check_mask(dev, mask); 623 624 dev->coherent_dma_mask = mask; 625 return 0; 626 } 627 #endif 628 629 /* 630 * Set both the DMA mask and the coherent DMA mask to the same thing. 631 * Note that we don't check the return value from dma_set_coherent_mask() 632 * as the DMA API guarantees that the coherent DMA mask can be set to 633 * the same or smaller than the streaming DMA mask. 634 */ 635 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) 636 { 637 int rc = dma_set_mask(dev, mask); 638 if (rc == 0) 639 dma_set_coherent_mask(dev, mask); 640 return rc; 641 } 642 643 /* 644 * Similar to the above, except it deals with the case where the device 645 * does not have dev->dma_mask appropriately setup. 646 */ 647 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) 648 { 649 dev->dma_mask = &dev->coherent_dma_mask; 650 return dma_set_mask_and_coherent(dev, mask); 651 } 652 653 extern u64 dma_get_required_mask(struct device *dev); 654 655 #ifndef arch_setup_dma_ops 656 static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base, 657 u64 size, const struct iommu_ops *iommu, 658 bool coherent) { } 659 #endif 660 661 #ifndef arch_teardown_dma_ops 662 static inline void arch_teardown_dma_ops(struct device *dev) { } 663 #endif 664 665 static inline unsigned int dma_get_max_seg_size(struct device *dev) 666 { 667 if (dev->dma_parms && dev->dma_parms->max_segment_size) 668 return dev->dma_parms->max_segment_size; 669 return SZ_64K; 670 } 671 672 static inline unsigned int dma_set_max_seg_size(struct device *dev, 673 unsigned int size) 674 { 675 if (dev->dma_parms) { 676 dev->dma_parms->max_segment_size = size; 677 return 0; 678 } 679 return -EIO; 680 } 681 682 static inline unsigned long dma_get_seg_boundary(struct device *dev) 683 { 684 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) 685 return dev->dma_parms->segment_boundary_mask; 686 return DMA_BIT_MASK(32); 687 } 688 689 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) 690 { 691 if (dev->dma_parms) { 692 dev->dma_parms->segment_boundary_mask = mask; 693 return 0; 694 } 695 return -EIO; 696 } 697 698 #ifndef dma_max_pfn 699 static inline unsigned long dma_max_pfn(struct device *dev) 700 { 701 return *dev->dma_mask >> PAGE_SHIFT; 702 } 703 #endif 704 705 static inline void *dma_zalloc_coherent(struct device *dev, size_t size, 706 dma_addr_t *dma_handle, gfp_t flag) 707 { 708 void *ret = dma_alloc_coherent(dev, size, dma_handle, 709 flag | __GFP_ZERO); 710 return ret; 711 } 712 713 #ifdef CONFIG_HAS_DMA 714 static inline int dma_get_cache_alignment(void) 715 { 716 #ifdef ARCH_DMA_MINALIGN 717 return ARCH_DMA_MINALIGN; 718 #endif 719 return 1; 720 } 721 #endif 722 723 /* flags for the coherent memory api */ 724 #define DMA_MEMORY_EXCLUSIVE 0x01 725 726 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 727 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 728 dma_addr_t device_addr, size_t size, int flags); 729 void dma_release_declared_memory(struct device *dev); 730 void *dma_mark_declared_memory_occupied(struct device *dev, 731 dma_addr_t device_addr, size_t size); 732 #else 733 static inline int 734 dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 735 dma_addr_t device_addr, size_t size, int flags) 736 { 737 return -ENOSYS; 738 } 739 740 static inline void 741 dma_release_declared_memory(struct device *dev) 742 { 743 } 744 745 static inline void * 746 dma_mark_declared_memory_occupied(struct device *dev, 747 dma_addr_t device_addr, size_t size) 748 { 749 return ERR_PTR(-EBUSY); 750 } 751 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 752 753 #ifdef CONFIG_HAS_DMA 754 int dma_configure(struct device *dev); 755 void dma_deconfigure(struct device *dev); 756 #else 757 static inline int dma_configure(struct device *dev) 758 { 759 return 0; 760 } 761 762 static inline void dma_deconfigure(struct device *dev) {} 763 #endif 764 765 /* 766 * Managed DMA API 767 */ 768 extern void *dmam_alloc_coherent(struct device *dev, size_t size, 769 dma_addr_t *dma_handle, gfp_t gfp); 770 extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 771 dma_addr_t dma_handle); 772 extern void *dmam_alloc_attrs(struct device *dev, size_t size, 773 dma_addr_t *dma_handle, gfp_t gfp, 774 unsigned long attrs); 775 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 776 extern int dmam_declare_coherent_memory(struct device *dev, 777 phys_addr_t phys_addr, 778 dma_addr_t device_addr, size_t size, 779 int flags); 780 extern void dmam_release_declared_memory(struct device *dev); 781 #else /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 782 static inline int dmam_declare_coherent_memory(struct device *dev, 783 phys_addr_t phys_addr, dma_addr_t device_addr, 784 size_t size, gfp_t gfp) 785 { 786 return 0; 787 } 788 789 static inline void dmam_release_declared_memory(struct device *dev) 790 { 791 } 792 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 793 794 static inline void *dma_alloc_wc(struct device *dev, size_t size, 795 dma_addr_t *dma_addr, gfp_t gfp) 796 { 797 return dma_alloc_attrs(dev, size, dma_addr, gfp, 798 DMA_ATTR_WRITE_COMBINE); 799 } 800 #ifndef dma_alloc_writecombine 801 #define dma_alloc_writecombine dma_alloc_wc 802 #endif 803 804 static inline void dma_free_wc(struct device *dev, size_t size, 805 void *cpu_addr, dma_addr_t dma_addr) 806 { 807 return dma_free_attrs(dev, size, cpu_addr, dma_addr, 808 DMA_ATTR_WRITE_COMBINE); 809 } 810 #ifndef dma_free_writecombine 811 #define dma_free_writecombine dma_free_wc 812 #endif 813 814 static inline int dma_mmap_wc(struct device *dev, 815 struct vm_area_struct *vma, 816 void *cpu_addr, dma_addr_t dma_addr, 817 size_t size) 818 { 819 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, 820 DMA_ATTR_WRITE_COMBINE); 821 } 822 #ifndef dma_mmap_writecombine 823 #define dma_mmap_writecombine dma_mmap_wc 824 #endif 825 826 #if defined(CONFIG_NEED_DMA_MAP_STATE) || defined(CONFIG_DMA_API_DEBUG) 827 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME 828 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME 829 #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) 830 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) 831 #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) 832 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) 833 #else 834 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) 835 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) 836 #define dma_unmap_addr(PTR, ADDR_NAME) (0) 837 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) 838 #define dma_unmap_len(PTR, LEN_NAME) (0) 839 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) 840 #endif 841 842 #endif 843