1 #ifndef _LINUX_DMA_MAPPING_H 2 #define _LINUX_DMA_MAPPING_H 3 4 #include <linux/sizes.h> 5 #include <linux/string.h> 6 #include <linux/device.h> 7 #include <linux/err.h> 8 #include <linux/dma-debug.h> 9 #include <linux/dma-direction.h> 10 #include <linux/scatterlist.h> 11 #include <linux/kmemcheck.h> 12 #include <linux/bug.h> 13 14 /** 15 * List of possible attributes associated with a DMA mapping. The semantics 16 * of each attribute should be defined in Documentation/DMA-attributes.txt. 17 * 18 * DMA_ATTR_WRITE_BARRIER: DMA to a memory region with this attribute 19 * forces all pending DMA writes to complete. 20 */ 21 #define DMA_ATTR_WRITE_BARRIER (1UL << 0) 22 /* 23 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping 24 * may be weakly ordered, that is that reads and writes may pass each other. 25 */ 26 #define DMA_ATTR_WEAK_ORDERING (1UL << 1) 27 /* 28 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be 29 * buffered to improve performance. 30 */ 31 #define DMA_ATTR_WRITE_COMBINE (1UL << 2) 32 /* 33 * DMA_ATTR_NON_CONSISTENT: Lets the platform to choose to return either 34 * consistent or non-consistent memory as it sees fit. 35 */ 36 #define DMA_ATTR_NON_CONSISTENT (1UL << 3) 37 /* 38 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel 39 * virtual mapping for the allocated buffer. 40 */ 41 #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4) 42 /* 43 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of 44 * the CPU cache for the given buffer assuming that it has been already 45 * transferred to 'device' domain. 46 */ 47 #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5) 48 /* 49 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer 50 * in physical memory. 51 */ 52 #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6) 53 /* 54 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem 55 * that it's probably not worth the time to try to allocate memory to in a way 56 * that gives better TLB efficiency. 57 */ 58 #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7) 59 60 /* 61 * A dma_addr_t can hold any valid DMA or bus address for the platform. 62 * It can be given to a device to use as a DMA source or target. A CPU cannot 63 * reference a dma_addr_t directly because there may be translation between 64 * its physical address space and the bus address space. 65 */ 66 struct dma_map_ops { 67 void* (*alloc)(struct device *dev, size_t size, 68 dma_addr_t *dma_handle, gfp_t gfp, 69 unsigned long attrs); 70 void (*free)(struct device *dev, size_t size, 71 void *vaddr, dma_addr_t dma_handle, 72 unsigned long attrs); 73 int (*mmap)(struct device *, struct vm_area_struct *, 74 void *, dma_addr_t, size_t, 75 unsigned long attrs); 76 77 int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *, 78 dma_addr_t, size_t, unsigned long attrs); 79 80 dma_addr_t (*map_page)(struct device *dev, struct page *page, 81 unsigned long offset, size_t size, 82 enum dma_data_direction dir, 83 unsigned long attrs); 84 void (*unmap_page)(struct device *dev, dma_addr_t dma_handle, 85 size_t size, enum dma_data_direction dir, 86 unsigned long attrs); 87 /* 88 * map_sg returns 0 on error and a value > 0 on success. 89 * It should never return a value < 0. 90 */ 91 int (*map_sg)(struct device *dev, struct scatterlist *sg, 92 int nents, enum dma_data_direction dir, 93 unsigned long attrs); 94 void (*unmap_sg)(struct device *dev, 95 struct scatterlist *sg, int nents, 96 enum dma_data_direction dir, 97 unsigned long attrs); 98 void (*sync_single_for_cpu)(struct device *dev, 99 dma_addr_t dma_handle, size_t size, 100 enum dma_data_direction dir); 101 void (*sync_single_for_device)(struct device *dev, 102 dma_addr_t dma_handle, size_t size, 103 enum dma_data_direction dir); 104 void (*sync_sg_for_cpu)(struct device *dev, 105 struct scatterlist *sg, int nents, 106 enum dma_data_direction dir); 107 void (*sync_sg_for_device)(struct device *dev, 108 struct scatterlist *sg, int nents, 109 enum dma_data_direction dir); 110 int (*mapping_error)(struct device *dev, dma_addr_t dma_addr); 111 int (*dma_supported)(struct device *dev, u64 mask); 112 int (*set_dma_mask)(struct device *dev, u64 mask); 113 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK 114 u64 (*get_required_mask)(struct device *dev); 115 #endif 116 int is_phys; 117 }; 118 119 extern struct dma_map_ops dma_noop_ops; 120 121 #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) 122 123 #define DMA_MASK_NONE 0x0ULL 124 125 static inline int valid_dma_direction(int dma_direction) 126 { 127 return ((dma_direction == DMA_BIDIRECTIONAL) || 128 (dma_direction == DMA_TO_DEVICE) || 129 (dma_direction == DMA_FROM_DEVICE)); 130 } 131 132 static inline int is_device_dma_capable(struct device *dev) 133 { 134 return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE; 135 } 136 137 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 138 /* 139 * These three functions are only for dma allocator. 140 * Don't use them in device drivers. 141 */ 142 int dma_alloc_from_coherent(struct device *dev, ssize_t size, 143 dma_addr_t *dma_handle, void **ret); 144 int dma_release_from_coherent(struct device *dev, int order, void *vaddr); 145 146 int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma, 147 void *cpu_addr, size_t size, int *ret); 148 #else 149 #define dma_alloc_from_coherent(dev, size, handle, ret) (0) 150 #define dma_release_from_coherent(dev, order, vaddr) (0) 151 #define dma_mmap_from_coherent(dev, vma, vaddr, order, ret) (0) 152 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 153 154 #ifdef CONFIG_HAS_DMA 155 #include <asm/dma-mapping.h> 156 #else 157 /* 158 * Define the dma api to allow compilation but not linking of 159 * dma dependent code. Code that depends on the dma-mapping 160 * API needs to set 'depends on HAS_DMA' in its Kconfig 161 */ 162 extern struct dma_map_ops bad_dma_ops; 163 static inline struct dma_map_ops *get_dma_ops(struct device *dev) 164 { 165 return &bad_dma_ops; 166 } 167 #endif 168 169 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, 170 size_t size, 171 enum dma_data_direction dir, 172 unsigned long attrs) 173 { 174 struct dma_map_ops *ops = get_dma_ops(dev); 175 dma_addr_t addr; 176 177 kmemcheck_mark_initialized(ptr, size); 178 BUG_ON(!valid_dma_direction(dir)); 179 addr = ops->map_page(dev, virt_to_page(ptr), 180 offset_in_page(ptr), size, 181 dir, attrs); 182 debug_dma_map_page(dev, virt_to_page(ptr), 183 offset_in_page(ptr), size, 184 dir, addr, true); 185 return addr; 186 } 187 188 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, 189 size_t size, 190 enum dma_data_direction dir, 191 unsigned long attrs) 192 { 193 struct dma_map_ops *ops = get_dma_ops(dev); 194 195 BUG_ON(!valid_dma_direction(dir)); 196 if (ops->unmap_page) 197 ops->unmap_page(dev, addr, size, dir, attrs); 198 debug_dma_unmap_page(dev, addr, size, dir, true); 199 } 200 201 /* 202 * dma_maps_sg_attrs returns 0 on error and > 0 on success. 203 * It should never return a value < 0. 204 */ 205 static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 206 int nents, enum dma_data_direction dir, 207 unsigned long attrs) 208 { 209 struct dma_map_ops *ops = get_dma_ops(dev); 210 int i, ents; 211 struct scatterlist *s; 212 213 for_each_sg(sg, s, nents, i) 214 kmemcheck_mark_initialized(sg_virt(s), s->length); 215 BUG_ON(!valid_dma_direction(dir)); 216 ents = ops->map_sg(dev, sg, nents, dir, attrs); 217 BUG_ON(ents < 0); 218 debug_dma_map_sg(dev, sg, nents, ents, dir); 219 220 return ents; 221 } 222 223 static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 224 int nents, enum dma_data_direction dir, 225 unsigned long attrs) 226 { 227 struct dma_map_ops *ops = get_dma_ops(dev); 228 229 BUG_ON(!valid_dma_direction(dir)); 230 debug_dma_unmap_sg(dev, sg, nents, dir); 231 if (ops->unmap_sg) 232 ops->unmap_sg(dev, sg, nents, dir, attrs); 233 } 234 235 static inline dma_addr_t dma_map_page(struct device *dev, struct page *page, 236 size_t offset, size_t size, 237 enum dma_data_direction dir) 238 { 239 struct dma_map_ops *ops = get_dma_ops(dev); 240 dma_addr_t addr; 241 242 kmemcheck_mark_initialized(page_address(page) + offset, size); 243 BUG_ON(!valid_dma_direction(dir)); 244 addr = ops->map_page(dev, page, offset, size, dir, 0); 245 debug_dma_map_page(dev, page, offset, size, dir, addr, false); 246 247 return addr; 248 } 249 250 static inline void dma_unmap_page(struct device *dev, dma_addr_t addr, 251 size_t size, enum dma_data_direction dir) 252 { 253 struct dma_map_ops *ops = get_dma_ops(dev); 254 255 BUG_ON(!valid_dma_direction(dir)); 256 if (ops->unmap_page) 257 ops->unmap_page(dev, addr, size, dir, 0); 258 debug_dma_unmap_page(dev, addr, size, dir, false); 259 } 260 261 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 262 size_t size, 263 enum dma_data_direction dir) 264 { 265 struct dma_map_ops *ops = get_dma_ops(dev); 266 267 BUG_ON(!valid_dma_direction(dir)); 268 if (ops->sync_single_for_cpu) 269 ops->sync_single_for_cpu(dev, addr, size, dir); 270 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 271 } 272 273 static inline void dma_sync_single_for_device(struct device *dev, 274 dma_addr_t addr, size_t size, 275 enum dma_data_direction dir) 276 { 277 struct dma_map_ops *ops = get_dma_ops(dev); 278 279 BUG_ON(!valid_dma_direction(dir)); 280 if (ops->sync_single_for_device) 281 ops->sync_single_for_device(dev, addr, size, dir); 282 debug_dma_sync_single_for_device(dev, addr, size, dir); 283 } 284 285 static inline void dma_sync_single_range_for_cpu(struct device *dev, 286 dma_addr_t addr, 287 unsigned long offset, 288 size_t size, 289 enum dma_data_direction dir) 290 { 291 const struct dma_map_ops *ops = get_dma_ops(dev); 292 293 BUG_ON(!valid_dma_direction(dir)); 294 if (ops->sync_single_for_cpu) 295 ops->sync_single_for_cpu(dev, addr + offset, size, dir); 296 debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir); 297 } 298 299 static inline void dma_sync_single_range_for_device(struct device *dev, 300 dma_addr_t addr, 301 unsigned long offset, 302 size_t size, 303 enum dma_data_direction dir) 304 { 305 const struct dma_map_ops *ops = get_dma_ops(dev); 306 307 BUG_ON(!valid_dma_direction(dir)); 308 if (ops->sync_single_for_device) 309 ops->sync_single_for_device(dev, addr + offset, size, dir); 310 debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir); 311 } 312 313 static inline void 314 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 315 int nelems, enum dma_data_direction dir) 316 { 317 struct dma_map_ops *ops = get_dma_ops(dev); 318 319 BUG_ON(!valid_dma_direction(dir)); 320 if (ops->sync_sg_for_cpu) 321 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 322 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 323 } 324 325 static inline void 326 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 327 int nelems, enum dma_data_direction dir) 328 { 329 struct dma_map_ops *ops = get_dma_ops(dev); 330 331 BUG_ON(!valid_dma_direction(dir)); 332 if (ops->sync_sg_for_device) 333 ops->sync_sg_for_device(dev, sg, nelems, dir); 334 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 335 336 } 337 338 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0) 339 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0) 340 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0) 341 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0) 342 343 extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, 344 void *cpu_addr, dma_addr_t dma_addr, size_t size); 345 346 void *dma_common_contiguous_remap(struct page *page, size_t size, 347 unsigned long vm_flags, 348 pgprot_t prot, const void *caller); 349 350 void *dma_common_pages_remap(struct page **pages, size_t size, 351 unsigned long vm_flags, pgprot_t prot, 352 const void *caller); 353 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags); 354 355 /** 356 * dma_mmap_attrs - map a coherent DMA allocation into user space 357 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 358 * @vma: vm_area_struct describing requested user mapping 359 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 360 * @handle: device-view address returned from dma_alloc_attrs 361 * @size: size of memory originally requested in dma_alloc_attrs 362 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 363 * 364 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs 365 * into user space. The coherent DMA buffer must not be freed by the 366 * driver until the user space mapping has been released. 367 */ 368 static inline int 369 dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, 370 dma_addr_t dma_addr, size_t size, unsigned long attrs) 371 { 372 struct dma_map_ops *ops = get_dma_ops(dev); 373 BUG_ON(!ops); 374 if (ops->mmap) 375 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 376 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size); 377 } 378 379 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0) 380 381 int 382 dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, 383 void *cpu_addr, dma_addr_t dma_addr, size_t size); 384 385 static inline int 386 dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, 387 dma_addr_t dma_addr, size_t size, 388 unsigned long attrs) 389 { 390 struct dma_map_ops *ops = get_dma_ops(dev); 391 BUG_ON(!ops); 392 if (ops->get_sgtable) 393 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, 394 attrs); 395 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size); 396 } 397 398 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0) 399 400 #ifndef arch_dma_alloc_attrs 401 #define arch_dma_alloc_attrs(dev, flag) (true) 402 #endif 403 404 static inline void *dma_alloc_attrs(struct device *dev, size_t size, 405 dma_addr_t *dma_handle, gfp_t flag, 406 unsigned long attrs) 407 { 408 struct dma_map_ops *ops = get_dma_ops(dev); 409 void *cpu_addr; 410 411 BUG_ON(!ops); 412 413 if (dma_alloc_from_coherent(dev, size, dma_handle, &cpu_addr)) 414 return cpu_addr; 415 416 if (!arch_dma_alloc_attrs(&dev, &flag)) 417 return NULL; 418 if (!ops->alloc) 419 return NULL; 420 421 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 422 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); 423 return cpu_addr; 424 } 425 426 static inline void dma_free_attrs(struct device *dev, size_t size, 427 void *cpu_addr, dma_addr_t dma_handle, 428 unsigned long attrs) 429 { 430 struct dma_map_ops *ops = get_dma_ops(dev); 431 432 BUG_ON(!ops); 433 WARN_ON(irqs_disabled()); 434 435 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 436 return; 437 438 if (!ops->free || !cpu_addr) 439 return; 440 441 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 442 ops->free(dev, size, cpu_addr, dma_handle, attrs); 443 } 444 445 static inline void *dma_alloc_coherent(struct device *dev, size_t size, 446 dma_addr_t *dma_handle, gfp_t flag) 447 { 448 return dma_alloc_attrs(dev, size, dma_handle, flag, 0); 449 } 450 451 static inline void dma_free_coherent(struct device *dev, size_t size, 452 void *cpu_addr, dma_addr_t dma_handle) 453 { 454 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0); 455 } 456 457 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size, 458 dma_addr_t *dma_handle, gfp_t gfp) 459 { 460 return dma_alloc_attrs(dev, size, dma_handle, gfp, 461 DMA_ATTR_NON_CONSISTENT); 462 } 463 464 static inline void dma_free_noncoherent(struct device *dev, size_t size, 465 void *cpu_addr, dma_addr_t dma_handle) 466 { 467 dma_free_attrs(dev, size, cpu_addr, dma_handle, 468 DMA_ATTR_NON_CONSISTENT); 469 } 470 471 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 472 { 473 debug_dma_mapping_error(dev, dma_addr); 474 475 if (get_dma_ops(dev)->mapping_error) 476 return get_dma_ops(dev)->mapping_error(dev, dma_addr); 477 478 #ifdef DMA_ERROR_CODE 479 return dma_addr == DMA_ERROR_CODE; 480 #else 481 return 0; 482 #endif 483 } 484 485 #ifndef HAVE_ARCH_DMA_SUPPORTED 486 static inline int dma_supported(struct device *dev, u64 mask) 487 { 488 struct dma_map_ops *ops = get_dma_ops(dev); 489 490 if (!ops) 491 return 0; 492 if (!ops->dma_supported) 493 return 1; 494 return ops->dma_supported(dev, mask); 495 } 496 #endif 497 498 #ifndef HAVE_ARCH_DMA_SET_MASK 499 static inline int dma_set_mask(struct device *dev, u64 mask) 500 { 501 struct dma_map_ops *ops = get_dma_ops(dev); 502 503 if (ops->set_dma_mask) 504 return ops->set_dma_mask(dev, mask); 505 506 if (!dev->dma_mask || !dma_supported(dev, mask)) 507 return -EIO; 508 *dev->dma_mask = mask; 509 return 0; 510 } 511 #endif 512 513 static inline u64 dma_get_mask(struct device *dev) 514 { 515 if (dev && dev->dma_mask && *dev->dma_mask) 516 return *dev->dma_mask; 517 return DMA_BIT_MASK(32); 518 } 519 520 #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK 521 int dma_set_coherent_mask(struct device *dev, u64 mask); 522 #else 523 static inline int dma_set_coherent_mask(struct device *dev, u64 mask) 524 { 525 if (!dma_supported(dev, mask)) 526 return -EIO; 527 dev->coherent_dma_mask = mask; 528 return 0; 529 } 530 #endif 531 532 /* 533 * Set both the DMA mask and the coherent DMA mask to the same thing. 534 * Note that we don't check the return value from dma_set_coherent_mask() 535 * as the DMA API guarantees that the coherent DMA mask can be set to 536 * the same or smaller than the streaming DMA mask. 537 */ 538 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) 539 { 540 int rc = dma_set_mask(dev, mask); 541 if (rc == 0) 542 dma_set_coherent_mask(dev, mask); 543 return rc; 544 } 545 546 /* 547 * Similar to the above, except it deals with the case where the device 548 * does not have dev->dma_mask appropriately setup. 549 */ 550 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) 551 { 552 dev->dma_mask = &dev->coherent_dma_mask; 553 return dma_set_mask_and_coherent(dev, mask); 554 } 555 556 extern u64 dma_get_required_mask(struct device *dev); 557 558 #ifndef arch_setup_dma_ops 559 static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base, 560 u64 size, const struct iommu_ops *iommu, 561 bool coherent) { } 562 #endif 563 564 #ifndef arch_teardown_dma_ops 565 static inline void arch_teardown_dma_ops(struct device *dev) { } 566 #endif 567 568 static inline unsigned int dma_get_max_seg_size(struct device *dev) 569 { 570 if (dev->dma_parms && dev->dma_parms->max_segment_size) 571 return dev->dma_parms->max_segment_size; 572 return SZ_64K; 573 } 574 575 static inline unsigned int dma_set_max_seg_size(struct device *dev, 576 unsigned int size) 577 { 578 if (dev->dma_parms) { 579 dev->dma_parms->max_segment_size = size; 580 return 0; 581 } 582 return -EIO; 583 } 584 585 static inline unsigned long dma_get_seg_boundary(struct device *dev) 586 { 587 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) 588 return dev->dma_parms->segment_boundary_mask; 589 return DMA_BIT_MASK(32); 590 } 591 592 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) 593 { 594 if (dev->dma_parms) { 595 dev->dma_parms->segment_boundary_mask = mask; 596 return 0; 597 } 598 return -EIO; 599 } 600 601 #ifndef dma_max_pfn 602 static inline unsigned long dma_max_pfn(struct device *dev) 603 { 604 return *dev->dma_mask >> PAGE_SHIFT; 605 } 606 #endif 607 608 static inline void *dma_zalloc_coherent(struct device *dev, size_t size, 609 dma_addr_t *dma_handle, gfp_t flag) 610 { 611 void *ret = dma_alloc_coherent(dev, size, dma_handle, 612 flag | __GFP_ZERO); 613 return ret; 614 } 615 616 #ifdef CONFIG_HAS_DMA 617 static inline int dma_get_cache_alignment(void) 618 { 619 #ifdef ARCH_DMA_MINALIGN 620 return ARCH_DMA_MINALIGN; 621 #endif 622 return 1; 623 } 624 #endif 625 626 /* flags for the coherent memory api */ 627 #define DMA_MEMORY_MAP 0x01 628 #define DMA_MEMORY_IO 0x02 629 #define DMA_MEMORY_INCLUDES_CHILDREN 0x04 630 #define DMA_MEMORY_EXCLUSIVE 0x08 631 632 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 633 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 634 dma_addr_t device_addr, size_t size, int flags); 635 void dma_release_declared_memory(struct device *dev); 636 void *dma_mark_declared_memory_occupied(struct device *dev, 637 dma_addr_t device_addr, size_t size); 638 #else 639 static inline int 640 dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 641 dma_addr_t device_addr, size_t size, int flags) 642 { 643 return 0; 644 } 645 646 static inline void 647 dma_release_declared_memory(struct device *dev) 648 { 649 } 650 651 static inline void * 652 dma_mark_declared_memory_occupied(struct device *dev, 653 dma_addr_t device_addr, size_t size) 654 { 655 return ERR_PTR(-EBUSY); 656 } 657 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 658 659 /* 660 * Managed DMA API 661 */ 662 extern void *dmam_alloc_coherent(struct device *dev, size_t size, 663 dma_addr_t *dma_handle, gfp_t gfp); 664 extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 665 dma_addr_t dma_handle); 666 extern void *dmam_alloc_noncoherent(struct device *dev, size_t size, 667 dma_addr_t *dma_handle, gfp_t gfp); 668 extern void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr, 669 dma_addr_t dma_handle); 670 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 671 extern int dmam_declare_coherent_memory(struct device *dev, 672 phys_addr_t phys_addr, 673 dma_addr_t device_addr, size_t size, 674 int flags); 675 extern void dmam_release_declared_memory(struct device *dev); 676 #else /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 677 static inline int dmam_declare_coherent_memory(struct device *dev, 678 phys_addr_t phys_addr, dma_addr_t device_addr, 679 size_t size, gfp_t gfp) 680 { 681 return 0; 682 } 683 684 static inline void dmam_release_declared_memory(struct device *dev) 685 { 686 } 687 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 688 689 static inline void *dma_alloc_wc(struct device *dev, size_t size, 690 dma_addr_t *dma_addr, gfp_t gfp) 691 { 692 return dma_alloc_attrs(dev, size, dma_addr, gfp, 693 DMA_ATTR_WRITE_COMBINE); 694 } 695 #ifndef dma_alloc_writecombine 696 #define dma_alloc_writecombine dma_alloc_wc 697 #endif 698 699 static inline void dma_free_wc(struct device *dev, size_t size, 700 void *cpu_addr, dma_addr_t dma_addr) 701 { 702 return dma_free_attrs(dev, size, cpu_addr, dma_addr, 703 DMA_ATTR_WRITE_COMBINE); 704 } 705 #ifndef dma_free_writecombine 706 #define dma_free_writecombine dma_free_wc 707 #endif 708 709 static inline int dma_mmap_wc(struct device *dev, 710 struct vm_area_struct *vma, 711 void *cpu_addr, dma_addr_t dma_addr, 712 size_t size) 713 { 714 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, 715 DMA_ATTR_WRITE_COMBINE); 716 } 717 #ifndef dma_mmap_writecombine 718 #define dma_mmap_writecombine dma_mmap_wc 719 #endif 720 721 #ifdef CONFIG_NEED_DMA_MAP_STATE 722 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME 723 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME 724 #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) 725 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) 726 #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) 727 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) 728 #else 729 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) 730 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) 731 #define dma_unmap_addr(PTR, ADDR_NAME) (0) 732 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) 733 #define dma_unmap_len(PTR, LEN_NAME) (0) 734 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) 735 #endif 736 737 #endif 738