1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_DMA_MAPPING_H 3 #define _LINUX_DMA_MAPPING_H 4 5 #include <linux/cache.h> 6 #include <linux/sizes.h> 7 #include <linux/string.h> 8 #include <linux/device.h> 9 #include <linux/err.h> 10 #include <linux/dma-direction.h> 11 #include <linux/scatterlist.h> 12 #include <linux/bug.h> 13 #include <linux/mem_encrypt.h> 14 15 /** 16 * List of possible attributes associated with a DMA mapping. The semantics 17 * of each attribute should be defined in Documentation/core-api/dma-attributes.rst. 18 */ 19 20 /* 21 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping 22 * may be weakly ordered, that is that reads and writes may pass each other. 23 */ 24 #define DMA_ATTR_WEAK_ORDERING (1UL << 1) 25 /* 26 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be 27 * buffered to improve performance. 28 */ 29 #define DMA_ATTR_WRITE_COMBINE (1UL << 2) 30 /* 31 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel 32 * virtual mapping for the allocated buffer. 33 */ 34 #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4) 35 /* 36 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of 37 * the CPU cache for the given buffer assuming that it has been already 38 * transferred to 'device' domain. 39 */ 40 #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5) 41 /* 42 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer 43 * in physical memory. 44 */ 45 #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6) 46 /* 47 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem 48 * that it's probably not worth the time to try to allocate memory to in a way 49 * that gives better TLB efficiency. 50 */ 51 #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7) 52 /* 53 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress 54 * allocation failure reports (similarly to __GFP_NOWARN). 55 */ 56 #define DMA_ATTR_NO_WARN (1UL << 8) 57 58 /* 59 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully 60 * accessible at an elevated privilege level (and ideally inaccessible or 61 * at least read-only at lesser-privileged levels). 62 */ 63 #define DMA_ATTR_PRIVILEGED (1UL << 9) 64 65 /* 66 * A dma_addr_t can hold any valid DMA or bus address for the platform. It can 67 * be given to a device to use as a DMA source or target. It is specific to a 68 * given device and there may be a translation between the CPU physical address 69 * space and the bus address space. 70 * 71 * DMA_MAPPING_ERROR is the magic error code if a mapping failed. It should not 72 * be used directly in drivers, but checked for using dma_mapping_error() 73 * instead. 74 */ 75 #define DMA_MAPPING_ERROR (~(dma_addr_t)0) 76 77 #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) 78 79 #ifdef CONFIG_DMA_API_DEBUG 80 void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr); 81 void debug_dma_map_single(struct device *dev, const void *addr, 82 unsigned long len); 83 #else 84 static inline void debug_dma_mapping_error(struct device *dev, 85 dma_addr_t dma_addr) 86 { 87 } 88 static inline void debug_dma_map_single(struct device *dev, const void *addr, 89 unsigned long len) 90 { 91 } 92 #endif /* CONFIG_DMA_API_DEBUG */ 93 94 #ifdef CONFIG_HAS_DMA 95 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 96 { 97 debug_dma_mapping_error(dev, dma_addr); 98 99 if (unlikely(dma_addr == DMA_MAPPING_ERROR)) 100 return -ENOMEM; 101 return 0; 102 } 103 104 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 105 size_t offset, size_t size, enum dma_data_direction dir, 106 unsigned long attrs); 107 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 108 enum dma_data_direction dir, unsigned long attrs); 109 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 110 int nents, enum dma_data_direction dir, unsigned long attrs); 111 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 112 int nents, enum dma_data_direction dir, 113 unsigned long attrs); 114 int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 115 enum dma_data_direction dir, unsigned long attrs); 116 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 117 size_t size, enum dma_data_direction dir, unsigned long attrs); 118 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 119 enum dma_data_direction dir, unsigned long attrs); 120 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 121 enum dma_data_direction dir); 122 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 123 size_t size, enum dma_data_direction dir); 124 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 125 int nelems, enum dma_data_direction dir); 126 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 127 int nelems, enum dma_data_direction dir); 128 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 129 gfp_t flag, unsigned long attrs); 130 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 131 dma_addr_t dma_handle, unsigned long attrs); 132 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 133 gfp_t gfp, unsigned long attrs); 134 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 135 dma_addr_t dma_handle); 136 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 137 void *cpu_addr, dma_addr_t dma_addr, size_t size, 138 unsigned long attrs); 139 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 140 void *cpu_addr, dma_addr_t dma_addr, size_t size, 141 unsigned long attrs); 142 bool dma_can_mmap(struct device *dev); 143 bool dma_pci_p2pdma_supported(struct device *dev); 144 int dma_set_mask(struct device *dev, u64 mask); 145 int dma_set_coherent_mask(struct device *dev, u64 mask); 146 u64 dma_get_required_mask(struct device *dev); 147 bool dma_addressing_limited(struct device *dev); 148 size_t dma_max_mapping_size(struct device *dev); 149 size_t dma_opt_mapping_size(struct device *dev); 150 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr); 151 unsigned long dma_get_merge_boundary(struct device *dev); 152 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 153 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs); 154 void dma_free_noncontiguous(struct device *dev, size_t size, 155 struct sg_table *sgt, enum dma_data_direction dir); 156 void *dma_vmap_noncontiguous(struct device *dev, size_t size, 157 struct sg_table *sgt); 158 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr); 159 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 160 size_t size, struct sg_table *sgt); 161 #else /* CONFIG_HAS_DMA */ 162 static inline dma_addr_t dma_map_page_attrs(struct device *dev, 163 struct page *page, size_t offset, size_t size, 164 enum dma_data_direction dir, unsigned long attrs) 165 { 166 return DMA_MAPPING_ERROR; 167 } 168 static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, 169 size_t size, enum dma_data_direction dir, unsigned long attrs) 170 { 171 } 172 static inline unsigned int dma_map_sg_attrs(struct device *dev, 173 struct scatterlist *sg, int nents, enum dma_data_direction dir, 174 unsigned long attrs) 175 { 176 return 0; 177 } 178 static inline void dma_unmap_sg_attrs(struct device *dev, 179 struct scatterlist *sg, int nents, enum dma_data_direction dir, 180 unsigned long attrs) 181 { 182 } 183 static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 184 enum dma_data_direction dir, unsigned long attrs) 185 { 186 return -EOPNOTSUPP; 187 } 188 static inline dma_addr_t dma_map_resource(struct device *dev, 189 phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, 190 unsigned long attrs) 191 { 192 return DMA_MAPPING_ERROR; 193 } 194 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr, 195 size_t size, enum dma_data_direction dir, unsigned long attrs) 196 { 197 } 198 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 199 size_t size, enum dma_data_direction dir) 200 { 201 } 202 static inline void dma_sync_single_for_device(struct device *dev, 203 dma_addr_t addr, size_t size, enum dma_data_direction dir) 204 { 205 } 206 static inline void dma_sync_sg_for_cpu(struct device *dev, 207 struct scatterlist *sg, int nelems, enum dma_data_direction dir) 208 { 209 } 210 static inline void dma_sync_sg_for_device(struct device *dev, 211 struct scatterlist *sg, int nelems, enum dma_data_direction dir) 212 { 213 } 214 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 215 { 216 return -ENOMEM; 217 } 218 static inline void *dma_alloc_attrs(struct device *dev, size_t size, 219 dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) 220 { 221 return NULL; 222 } 223 static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 224 dma_addr_t dma_handle, unsigned long attrs) 225 { 226 } 227 static inline void *dmam_alloc_attrs(struct device *dev, size_t size, 228 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 229 { 230 return NULL; 231 } 232 static inline void dmam_free_coherent(struct device *dev, size_t size, 233 void *vaddr, dma_addr_t dma_handle) 234 { 235 } 236 static inline int dma_get_sgtable_attrs(struct device *dev, 237 struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, 238 size_t size, unsigned long attrs) 239 { 240 return -ENXIO; 241 } 242 static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 243 void *cpu_addr, dma_addr_t dma_addr, size_t size, 244 unsigned long attrs) 245 { 246 return -ENXIO; 247 } 248 static inline bool dma_can_mmap(struct device *dev) 249 { 250 return false; 251 } 252 static inline bool dma_pci_p2pdma_supported(struct device *dev) 253 { 254 return false; 255 } 256 static inline int dma_set_mask(struct device *dev, u64 mask) 257 { 258 return -EIO; 259 } 260 static inline int dma_set_coherent_mask(struct device *dev, u64 mask) 261 { 262 return -EIO; 263 } 264 static inline u64 dma_get_required_mask(struct device *dev) 265 { 266 return 0; 267 } 268 static inline bool dma_addressing_limited(struct device *dev) 269 { 270 return false; 271 } 272 static inline size_t dma_max_mapping_size(struct device *dev) 273 { 274 return 0; 275 } 276 static inline size_t dma_opt_mapping_size(struct device *dev) 277 { 278 return 0; 279 } 280 static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) 281 { 282 return false; 283 } 284 static inline unsigned long dma_get_merge_boundary(struct device *dev) 285 { 286 return 0; 287 } 288 static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev, 289 size_t size, enum dma_data_direction dir, gfp_t gfp, 290 unsigned long attrs) 291 { 292 return NULL; 293 } 294 static inline void dma_free_noncontiguous(struct device *dev, size_t size, 295 struct sg_table *sgt, enum dma_data_direction dir) 296 { 297 } 298 static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size, 299 struct sg_table *sgt) 300 { 301 return NULL; 302 } 303 static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 304 { 305 } 306 static inline int dma_mmap_noncontiguous(struct device *dev, 307 struct vm_area_struct *vma, size_t size, struct sg_table *sgt) 308 { 309 return -EINVAL; 310 } 311 #endif /* CONFIG_HAS_DMA */ 312 313 struct page *dma_alloc_pages(struct device *dev, size_t size, 314 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); 315 void dma_free_pages(struct device *dev, size_t size, struct page *page, 316 dma_addr_t dma_handle, enum dma_data_direction dir); 317 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 318 size_t size, struct page *page); 319 320 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size, 321 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 322 { 323 struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp); 324 return page ? page_address(page) : NULL; 325 } 326 327 static inline void dma_free_noncoherent(struct device *dev, size_t size, 328 void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir) 329 { 330 dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir); 331 } 332 333 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, 334 size_t size, enum dma_data_direction dir, unsigned long attrs) 335 { 336 /* DMA must never operate on areas that might be remapped. */ 337 if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr), 338 "rejecting DMA map of vmalloc memory\n")) 339 return DMA_MAPPING_ERROR; 340 debug_dma_map_single(dev, ptr, size); 341 return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr), 342 size, dir, attrs); 343 } 344 345 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, 346 size_t size, enum dma_data_direction dir, unsigned long attrs) 347 { 348 return dma_unmap_page_attrs(dev, addr, size, dir, attrs); 349 } 350 351 static inline void dma_sync_single_range_for_cpu(struct device *dev, 352 dma_addr_t addr, unsigned long offset, size_t size, 353 enum dma_data_direction dir) 354 { 355 return dma_sync_single_for_cpu(dev, addr + offset, size, dir); 356 } 357 358 static inline void dma_sync_single_range_for_device(struct device *dev, 359 dma_addr_t addr, unsigned long offset, size_t size, 360 enum dma_data_direction dir) 361 { 362 return dma_sync_single_for_device(dev, addr + offset, size, dir); 363 } 364 365 /** 366 * dma_unmap_sgtable - Unmap the given buffer for DMA 367 * @dev: The device for which to perform the DMA operation 368 * @sgt: The sg_table object describing the buffer 369 * @dir: DMA direction 370 * @attrs: Optional DMA attributes for the unmap operation 371 * 372 * Unmaps a buffer described by a scatterlist stored in the given sg_table 373 * object for the @dir DMA operation by the @dev device. After this function 374 * the ownership of the buffer is transferred back to the CPU domain. 375 */ 376 static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt, 377 enum dma_data_direction dir, unsigned long attrs) 378 { 379 dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); 380 } 381 382 /** 383 * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access 384 * @dev: The device for which to perform the DMA operation 385 * @sgt: The sg_table object describing the buffer 386 * @dir: DMA direction 387 * 388 * Performs the needed cache synchronization and moves the ownership of the 389 * buffer back to the CPU domain, so it is safe to perform any access to it 390 * by the CPU. Before doing any further DMA operations, one has to transfer 391 * the ownership of the buffer back to the DMA domain by calling the 392 * dma_sync_sgtable_for_device(). 393 */ 394 static inline void dma_sync_sgtable_for_cpu(struct device *dev, 395 struct sg_table *sgt, enum dma_data_direction dir) 396 { 397 dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir); 398 } 399 400 /** 401 * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA 402 * @dev: The device for which to perform the DMA operation 403 * @sgt: The sg_table object describing the buffer 404 * @dir: DMA direction 405 * 406 * Performs the needed cache synchronization and moves the ownership of the 407 * buffer back to the DMA domain, so it is safe to perform the DMA operation. 408 * Once finished, one has to call dma_sync_sgtable_for_cpu() or 409 * dma_unmap_sgtable(). 410 */ 411 static inline void dma_sync_sgtable_for_device(struct device *dev, 412 struct sg_table *sgt, enum dma_data_direction dir) 413 { 414 dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir); 415 } 416 417 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0) 418 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0) 419 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0) 420 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0) 421 #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0) 422 #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0) 423 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0) 424 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0) 425 426 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size); 427 428 static inline void *dma_alloc_coherent(struct device *dev, size_t size, 429 dma_addr_t *dma_handle, gfp_t gfp) 430 { 431 return dma_alloc_attrs(dev, size, dma_handle, gfp, 432 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); 433 } 434 435 static inline void dma_free_coherent(struct device *dev, size_t size, 436 void *cpu_addr, dma_addr_t dma_handle) 437 { 438 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0); 439 } 440 441 442 static inline u64 dma_get_mask(struct device *dev) 443 { 444 if (dev->dma_mask && *dev->dma_mask) 445 return *dev->dma_mask; 446 return DMA_BIT_MASK(32); 447 } 448 449 /* 450 * Set both the DMA mask and the coherent DMA mask to the same thing. 451 * Note that we don't check the return value from dma_set_coherent_mask() 452 * as the DMA API guarantees that the coherent DMA mask can be set to 453 * the same or smaller than the streaming DMA mask. 454 */ 455 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) 456 { 457 int rc = dma_set_mask(dev, mask); 458 if (rc == 0) 459 dma_set_coherent_mask(dev, mask); 460 return rc; 461 } 462 463 /* 464 * Similar to the above, except it deals with the case where the device 465 * does not have dev->dma_mask appropriately setup. 466 */ 467 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) 468 { 469 dev->dma_mask = &dev->coherent_dma_mask; 470 return dma_set_mask_and_coherent(dev, mask); 471 } 472 473 static inline unsigned int dma_get_max_seg_size(struct device *dev) 474 { 475 if (dev->dma_parms && dev->dma_parms->max_segment_size) 476 return dev->dma_parms->max_segment_size; 477 return SZ_64K; 478 } 479 480 static inline int dma_set_max_seg_size(struct device *dev, unsigned int size) 481 { 482 if (dev->dma_parms) { 483 dev->dma_parms->max_segment_size = size; 484 return 0; 485 } 486 return -EIO; 487 } 488 489 static inline unsigned long dma_get_seg_boundary(struct device *dev) 490 { 491 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) 492 return dev->dma_parms->segment_boundary_mask; 493 return ULONG_MAX; 494 } 495 496 /** 497 * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units 498 * @dev: device to guery the boundary for 499 * @page_shift: ilog() of the IOMMU page size 500 * 501 * Return the segment boundary in IOMMU page units (which may be different from 502 * the CPU page size) for the passed in device. 503 * 504 * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for 505 * non-DMA API callers. 506 */ 507 static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev, 508 unsigned int page_shift) 509 { 510 if (!dev) 511 return (U32_MAX >> page_shift) + 1; 512 return (dma_get_seg_boundary(dev) >> page_shift) + 1; 513 } 514 515 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) 516 { 517 if (dev->dma_parms) { 518 dev->dma_parms->segment_boundary_mask = mask; 519 return 0; 520 } 521 return -EIO; 522 } 523 524 static inline unsigned int dma_get_min_align_mask(struct device *dev) 525 { 526 if (dev->dma_parms) 527 return dev->dma_parms->min_align_mask; 528 return 0; 529 } 530 531 static inline int dma_set_min_align_mask(struct device *dev, 532 unsigned int min_align_mask) 533 { 534 if (WARN_ON_ONCE(!dev->dma_parms)) 535 return -EIO; 536 dev->dma_parms->min_align_mask = min_align_mask; 537 return 0; 538 } 539 540 #ifndef dma_get_cache_alignment 541 static inline int dma_get_cache_alignment(void) 542 { 543 #ifdef ARCH_HAS_DMA_MINALIGN 544 return ARCH_DMA_MINALIGN; 545 #endif 546 return 1; 547 } 548 #endif 549 550 static inline void *dmam_alloc_coherent(struct device *dev, size_t size, 551 dma_addr_t *dma_handle, gfp_t gfp) 552 { 553 return dmam_alloc_attrs(dev, size, dma_handle, gfp, 554 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); 555 } 556 557 static inline void *dma_alloc_wc(struct device *dev, size_t size, 558 dma_addr_t *dma_addr, gfp_t gfp) 559 { 560 unsigned long attrs = DMA_ATTR_WRITE_COMBINE; 561 562 if (gfp & __GFP_NOWARN) 563 attrs |= DMA_ATTR_NO_WARN; 564 565 return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs); 566 } 567 568 static inline void dma_free_wc(struct device *dev, size_t size, 569 void *cpu_addr, dma_addr_t dma_addr) 570 { 571 return dma_free_attrs(dev, size, cpu_addr, dma_addr, 572 DMA_ATTR_WRITE_COMBINE); 573 } 574 575 static inline int dma_mmap_wc(struct device *dev, 576 struct vm_area_struct *vma, 577 void *cpu_addr, dma_addr_t dma_addr, 578 size_t size) 579 { 580 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, 581 DMA_ATTR_WRITE_COMBINE); 582 } 583 584 #ifdef CONFIG_NEED_DMA_MAP_STATE 585 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME 586 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME 587 #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) 588 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) 589 #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) 590 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) 591 #else 592 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) 593 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) 594 #define dma_unmap_addr(PTR, ADDR_NAME) (0) 595 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) 596 #define dma_unmap_len(PTR, LEN_NAME) (0) 597 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) 598 #endif 599 600 #endif /* _LINUX_DMA_MAPPING_H */ 601