1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_DMA_MAPPING_H 3 #define _LINUX_DMA_MAPPING_H 4 5 #include <linux/sizes.h> 6 #include <linux/string.h> 7 #include <linux/device.h> 8 #include <linux/err.h> 9 #include <linux/dma-debug.h> 10 #include <linux/dma-direction.h> 11 #include <linux/scatterlist.h> 12 #include <linux/bug.h> 13 #include <linux/mem_encrypt.h> 14 15 /** 16 * List of possible attributes associated with a DMA mapping. The semantics 17 * of each attribute should be defined in Documentation/DMA-attributes.txt. 18 * 19 * DMA_ATTR_WRITE_BARRIER: DMA to a memory region with this attribute 20 * forces all pending DMA writes to complete. 21 */ 22 #define DMA_ATTR_WRITE_BARRIER (1UL << 0) 23 /* 24 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping 25 * may be weakly ordered, that is that reads and writes may pass each other. 26 */ 27 #define DMA_ATTR_WEAK_ORDERING (1UL << 1) 28 /* 29 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be 30 * buffered to improve performance. 31 */ 32 #define DMA_ATTR_WRITE_COMBINE (1UL << 2) 33 /* 34 * DMA_ATTR_NON_CONSISTENT: Lets the platform to choose to return either 35 * consistent or non-consistent memory as it sees fit. 36 */ 37 #define DMA_ATTR_NON_CONSISTENT (1UL << 3) 38 /* 39 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel 40 * virtual mapping for the allocated buffer. 41 */ 42 #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4) 43 /* 44 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of 45 * the CPU cache for the given buffer assuming that it has been already 46 * transferred to 'device' domain. 47 */ 48 #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5) 49 /* 50 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer 51 * in physical memory. 52 */ 53 #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6) 54 /* 55 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem 56 * that it's probably not worth the time to try to allocate memory to in a way 57 * that gives better TLB efficiency. 58 */ 59 #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7) 60 /* 61 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress 62 * allocation failure reports (similarly to __GFP_NOWARN). 63 */ 64 #define DMA_ATTR_NO_WARN (1UL << 8) 65 66 /* 67 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully 68 * accessible at an elevated privilege level (and ideally inaccessible or 69 * at least read-only at lesser-privileged levels). 70 */ 71 #define DMA_ATTR_PRIVILEGED (1UL << 9) 72 73 /* 74 * A dma_addr_t can hold any valid DMA or bus address for the platform. 75 * It can be given to a device to use as a DMA source or target. A CPU cannot 76 * reference a dma_addr_t directly because there may be translation between 77 * its physical address space and the bus address space. 78 */ 79 struct dma_map_ops { 80 void* (*alloc)(struct device *dev, size_t size, 81 dma_addr_t *dma_handle, gfp_t gfp, 82 unsigned long attrs); 83 void (*free)(struct device *dev, size_t size, 84 void *vaddr, dma_addr_t dma_handle, 85 unsigned long attrs); 86 int (*mmap)(struct device *, struct vm_area_struct *, 87 void *, dma_addr_t, size_t, 88 unsigned long attrs); 89 90 int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *, 91 dma_addr_t, size_t, unsigned long attrs); 92 93 dma_addr_t (*map_page)(struct device *dev, struct page *page, 94 unsigned long offset, size_t size, 95 enum dma_data_direction dir, 96 unsigned long attrs); 97 void (*unmap_page)(struct device *dev, dma_addr_t dma_handle, 98 size_t size, enum dma_data_direction dir, 99 unsigned long attrs); 100 /* 101 * map_sg returns 0 on error and a value > 0 on success. 102 * It should never return a value < 0. 103 */ 104 int (*map_sg)(struct device *dev, struct scatterlist *sg, 105 int nents, enum dma_data_direction dir, 106 unsigned long attrs); 107 void (*unmap_sg)(struct device *dev, 108 struct scatterlist *sg, int nents, 109 enum dma_data_direction dir, 110 unsigned long attrs); 111 dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr, 112 size_t size, enum dma_data_direction dir, 113 unsigned long attrs); 114 void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle, 115 size_t size, enum dma_data_direction dir, 116 unsigned long attrs); 117 void (*sync_single_for_cpu)(struct device *dev, 118 dma_addr_t dma_handle, size_t size, 119 enum dma_data_direction dir); 120 void (*sync_single_for_device)(struct device *dev, 121 dma_addr_t dma_handle, size_t size, 122 enum dma_data_direction dir); 123 void (*sync_sg_for_cpu)(struct device *dev, 124 struct scatterlist *sg, int nents, 125 enum dma_data_direction dir); 126 void (*sync_sg_for_device)(struct device *dev, 127 struct scatterlist *sg, int nents, 128 enum dma_data_direction dir); 129 void (*cache_sync)(struct device *dev, void *vaddr, size_t size, 130 enum dma_data_direction direction); 131 int (*mapping_error)(struct device *dev, dma_addr_t dma_addr); 132 int (*dma_supported)(struct device *dev, u64 mask); 133 u64 (*get_required_mask)(struct device *dev); 134 }; 135 136 extern const struct dma_map_ops dma_direct_ops; 137 extern const struct dma_map_ops dma_virt_ops; 138 139 #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) 140 141 #define DMA_MASK_NONE 0x0ULL 142 143 static inline int valid_dma_direction(int dma_direction) 144 { 145 return ((dma_direction == DMA_BIDIRECTIONAL) || 146 (dma_direction == DMA_TO_DEVICE) || 147 (dma_direction == DMA_FROM_DEVICE)); 148 } 149 150 static inline int is_device_dma_capable(struct device *dev) 151 { 152 return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE; 153 } 154 155 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 156 /* 157 * These three functions are only for dma allocator. 158 * Don't use them in device drivers. 159 */ 160 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size, 161 dma_addr_t *dma_handle, void **ret); 162 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr); 163 164 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma, 165 void *cpu_addr, size_t size, int *ret); 166 167 void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle); 168 int dma_release_from_global_coherent(int order, void *vaddr); 169 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr, 170 size_t size, int *ret); 171 172 #else 173 #define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0) 174 #define dma_release_from_dev_coherent(dev, order, vaddr) (0) 175 #define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0) 176 177 static inline void *dma_alloc_from_global_coherent(ssize_t size, 178 dma_addr_t *dma_handle) 179 { 180 return NULL; 181 } 182 183 static inline int dma_release_from_global_coherent(int order, void *vaddr) 184 { 185 return 0; 186 } 187 188 static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma, 189 void *cpu_addr, size_t size, 190 int *ret) 191 { 192 return 0; 193 } 194 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 195 196 #ifdef CONFIG_HAS_DMA 197 #include <asm/dma-mapping.h> 198 static inline const struct dma_map_ops *get_dma_ops(struct device *dev) 199 { 200 if (dev && dev->dma_ops) 201 return dev->dma_ops; 202 return get_arch_dma_ops(dev ? dev->bus : NULL); 203 } 204 205 static inline void set_dma_ops(struct device *dev, 206 const struct dma_map_ops *dma_ops) 207 { 208 dev->dma_ops = dma_ops; 209 } 210 #else 211 /* 212 * Define the dma api to allow compilation of dma dependent code. 213 * Code that depends on the dma-mapping API needs to set 'depends on HAS_DMA' 214 * in its Kconfig, unless it already depends on <something> || COMPILE_TEST, 215 * where <something> guarantuees the availability of the dma-mapping API. 216 */ 217 static inline const struct dma_map_ops *get_dma_ops(struct device *dev) 218 { 219 return NULL; 220 } 221 #endif 222 223 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, 224 size_t size, 225 enum dma_data_direction dir, 226 unsigned long attrs) 227 { 228 const struct dma_map_ops *ops = get_dma_ops(dev); 229 dma_addr_t addr; 230 231 BUG_ON(!valid_dma_direction(dir)); 232 debug_dma_map_single(dev, ptr, size); 233 addr = ops->map_page(dev, virt_to_page(ptr), 234 offset_in_page(ptr), size, 235 dir, attrs); 236 debug_dma_map_page(dev, virt_to_page(ptr), 237 offset_in_page(ptr), size, 238 dir, addr, true); 239 return addr; 240 } 241 242 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, 243 size_t size, 244 enum dma_data_direction dir, 245 unsigned long attrs) 246 { 247 const struct dma_map_ops *ops = get_dma_ops(dev); 248 249 BUG_ON(!valid_dma_direction(dir)); 250 if (ops->unmap_page) 251 ops->unmap_page(dev, addr, size, dir, attrs); 252 debug_dma_unmap_page(dev, addr, size, dir, true); 253 } 254 255 /* 256 * dma_maps_sg_attrs returns 0 on error and > 0 on success. 257 * It should never return a value < 0. 258 */ 259 static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 260 int nents, enum dma_data_direction dir, 261 unsigned long attrs) 262 { 263 const struct dma_map_ops *ops = get_dma_ops(dev); 264 int ents; 265 266 BUG_ON(!valid_dma_direction(dir)); 267 ents = ops->map_sg(dev, sg, nents, dir, attrs); 268 BUG_ON(ents < 0); 269 debug_dma_map_sg(dev, sg, nents, ents, dir); 270 271 return ents; 272 } 273 274 static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 275 int nents, enum dma_data_direction dir, 276 unsigned long attrs) 277 { 278 const struct dma_map_ops *ops = get_dma_ops(dev); 279 280 BUG_ON(!valid_dma_direction(dir)); 281 debug_dma_unmap_sg(dev, sg, nents, dir); 282 if (ops->unmap_sg) 283 ops->unmap_sg(dev, sg, nents, dir, attrs); 284 } 285 286 static inline dma_addr_t dma_map_page_attrs(struct device *dev, 287 struct page *page, 288 size_t offset, size_t size, 289 enum dma_data_direction dir, 290 unsigned long attrs) 291 { 292 const struct dma_map_ops *ops = get_dma_ops(dev); 293 dma_addr_t addr; 294 295 BUG_ON(!valid_dma_direction(dir)); 296 addr = ops->map_page(dev, page, offset, size, dir, attrs); 297 debug_dma_map_page(dev, page, offset, size, dir, addr, false); 298 299 return addr; 300 } 301 302 static inline void dma_unmap_page_attrs(struct device *dev, 303 dma_addr_t addr, size_t size, 304 enum dma_data_direction dir, 305 unsigned long attrs) 306 { 307 const struct dma_map_ops *ops = get_dma_ops(dev); 308 309 BUG_ON(!valid_dma_direction(dir)); 310 if (ops->unmap_page) 311 ops->unmap_page(dev, addr, size, dir, attrs); 312 debug_dma_unmap_page(dev, addr, size, dir, false); 313 } 314 315 static inline dma_addr_t dma_map_resource(struct device *dev, 316 phys_addr_t phys_addr, 317 size_t size, 318 enum dma_data_direction dir, 319 unsigned long attrs) 320 { 321 const struct dma_map_ops *ops = get_dma_ops(dev); 322 dma_addr_t addr; 323 324 BUG_ON(!valid_dma_direction(dir)); 325 326 /* Don't allow RAM to be mapped */ 327 BUG_ON(pfn_valid(PHYS_PFN(phys_addr))); 328 329 addr = phys_addr; 330 if (ops->map_resource) 331 addr = ops->map_resource(dev, phys_addr, size, dir, attrs); 332 333 debug_dma_map_resource(dev, phys_addr, size, dir, addr); 334 335 return addr; 336 } 337 338 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr, 339 size_t size, enum dma_data_direction dir, 340 unsigned long attrs) 341 { 342 const struct dma_map_ops *ops = get_dma_ops(dev); 343 344 BUG_ON(!valid_dma_direction(dir)); 345 if (ops->unmap_resource) 346 ops->unmap_resource(dev, addr, size, dir, attrs); 347 debug_dma_unmap_resource(dev, addr, size, dir); 348 } 349 350 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 351 size_t size, 352 enum dma_data_direction dir) 353 { 354 const struct dma_map_ops *ops = get_dma_ops(dev); 355 356 BUG_ON(!valid_dma_direction(dir)); 357 if (ops->sync_single_for_cpu) 358 ops->sync_single_for_cpu(dev, addr, size, dir); 359 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 360 } 361 362 static inline void dma_sync_single_for_device(struct device *dev, 363 dma_addr_t addr, size_t size, 364 enum dma_data_direction dir) 365 { 366 const struct dma_map_ops *ops = get_dma_ops(dev); 367 368 BUG_ON(!valid_dma_direction(dir)); 369 if (ops->sync_single_for_device) 370 ops->sync_single_for_device(dev, addr, size, dir); 371 debug_dma_sync_single_for_device(dev, addr, size, dir); 372 } 373 374 static inline void dma_sync_single_range_for_cpu(struct device *dev, 375 dma_addr_t addr, 376 unsigned long offset, 377 size_t size, 378 enum dma_data_direction dir) 379 { 380 const struct dma_map_ops *ops = get_dma_ops(dev); 381 382 BUG_ON(!valid_dma_direction(dir)); 383 if (ops->sync_single_for_cpu) 384 ops->sync_single_for_cpu(dev, addr + offset, size, dir); 385 debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir); 386 } 387 388 static inline void dma_sync_single_range_for_device(struct device *dev, 389 dma_addr_t addr, 390 unsigned long offset, 391 size_t size, 392 enum dma_data_direction dir) 393 { 394 const struct dma_map_ops *ops = get_dma_ops(dev); 395 396 BUG_ON(!valid_dma_direction(dir)); 397 if (ops->sync_single_for_device) 398 ops->sync_single_for_device(dev, addr + offset, size, dir); 399 debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir); 400 } 401 402 static inline void 403 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 404 int nelems, enum dma_data_direction dir) 405 { 406 const struct dma_map_ops *ops = get_dma_ops(dev); 407 408 BUG_ON(!valid_dma_direction(dir)); 409 if (ops->sync_sg_for_cpu) 410 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 411 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 412 } 413 414 static inline void 415 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 416 int nelems, enum dma_data_direction dir) 417 { 418 const struct dma_map_ops *ops = get_dma_ops(dev); 419 420 BUG_ON(!valid_dma_direction(dir)); 421 if (ops->sync_sg_for_device) 422 ops->sync_sg_for_device(dev, sg, nelems, dir); 423 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 424 425 } 426 427 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0) 428 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0) 429 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0) 430 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0) 431 #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0) 432 #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0) 433 434 static inline void 435 dma_cache_sync(struct device *dev, void *vaddr, size_t size, 436 enum dma_data_direction dir) 437 { 438 const struct dma_map_ops *ops = get_dma_ops(dev); 439 440 BUG_ON(!valid_dma_direction(dir)); 441 if (ops->cache_sync) 442 ops->cache_sync(dev, vaddr, size, dir); 443 } 444 445 extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, 446 void *cpu_addr, dma_addr_t dma_addr, size_t size, 447 unsigned long attrs); 448 449 void *dma_common_contiguous_remap(struct page *page, size_t size, 450 unsigned long vm_flags, 451 pgprot_t prot, const void *caller); 452 453 void *dma_common_pages_remap(struct page **pages, size_t size, 454 unsigned long vm_flags, pgprot_t prot, 455 const void *caller); 456 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags); 457 458 /** 459 * dma_mmap_attrs - map a coherent DMA allocation into user space 460 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 461 * @vma: vm_area_struct describing requested user mapping 462 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 463 * @handle: device-view address returned from dma_alloc_attrs 464 * @size: size of memory originally requested in dma_alloc_attrs 465 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 466 * 467 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs 468 * into user space. The coherent DMA buffer must not be freed by the 469 * driver until the user space mapping has been released. 470 */ 471 static inline int 472 dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, 473 dma_addr_t dma_addr, size_t size, unsigned long attrs) 474 { 475 const struct dma_map_ops *ops = get_dma_ops(dev); 476 BUG_ON(!ops); 477 if (ops->mmap) 478 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 479 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 480 } 481 482 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0) 483 484 int 485 dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, 486 dma_addr_t dma_addr, size_t size, unsigned long attrs); 487 488 static inline int 489 dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, 490 dma_addr_t dma_addr, size_t size, 491 unsigned long attrs) 492 { 493 const struct dma_map_ops *ops = get_dma_ops(dev); 494 BUG_ON(!ops); 495 if (ops->get_sgtable) 496 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, 497 attrs); 498 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size, 499 attrs); 500 } 501 502 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0) 503 504 #ifndef arch_dma_alloc_attrs 505 #define arch_dma_alloc_attrs(dev) (true) 506 #endif 507 508 static inline void *dma_alloc_attrs(struct device *dev, size_t size, 509 dma_addr_t *dma_handle, gfp_t flag, 510 unsigned long attrs) 511 { 512 const struct dma_map_ops *ops = get_dma_ops(dev); 513 void *cpu_addr; 514 515 BUG_ON(!ops); 516 WARN_ON_ONCE(dev && !dev->coherent_dma_mask); 517 518 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) 519 return cpu_addr; 520 521 /* let the implementation decide on the zone to allocate from: */ 522 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); 523 524 if (!arch_dma_alloc_attrs(&dev)) 525 return NULL; 526 if (!ops->alloc) 527 return NULL; 528 529 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 530 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); 531 return cpu_addr; 532 } 533 534 static inline void dma_free_attrs(struct device *dev, size_t size, 535 void *cpu_addr, dma_addr_t dma_handle, 536 unsigned long attrs) 537 { 538 const struct dma_map_ops *ops = get_dma_ops(dev); 539 540 BUG_ON(!ops); 541 542 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) 543 return; 544 /* 545 * On non-coherent platforms which implement DMA-coherent buffers via 546 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting 547 * this far in IRQ context is a) at risk of a BUG_ON() or trying to 548 * sleep on some machines, and b) an indication that the driver is 549 * probably misusing the coherent API anyway. 550 */ 551 WARN_ON(irqs_disabled()); 552 553 if (!ops->free || !cpu_addr) 554 return; 555 556 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 557 ops->free(dev, size, cpu_addr, dma_handle, attrs); 558 } 559 560 static inline void *dma_alloc_coherent(struct device *dev, size_t size, 561 dma_addr_t *dma_handle, gfp_t gfp) 562 { 563 564 return dma_alloc_attrs(dev, size, dma_handle, gfp, 565 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); 566 } 567 568 static inline void dma_free_coherent(struct device *dev, size_t size, 569 void *cpu_addr, dma_addr_t dma_handle) 570 { 571 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0); 572 } 573 574 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 575 { 576 const struct dma_map_ops *ops = get_dma_ops(dev); 577 578 debug_dma_mapping_error(dev, dma_addr); 579 if (ops->mapping_error) 580 return ops->mapping_error(dev, dma_addr); 581 return 0; 582 } 583 584 static inline void dma_check_mask(struct device *dev, u64 mask) 585 { 586 if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1))) 587 dev_warn(dev, "SME is active, device will require DMA bounce buffers\n"); 588 } 589 590 static inline int dma_supported(struct device *dev, u64 mask) 591 { 592 const struct dma_map_ops *ops = get_dma_ops(dev); 593 594 if (!ops) 595 return 0; 596 if (!ops->dma_supported) 597 return 1; 598 return ops->dma_supported(dev, mask); 599 } 600 601 #ifndef HAVE_ARCH_DMA_SET_MASK 602 static inline int dma_set_mask(struct device *dev, u64 mask) 603 { 604 if (!dev->dma_mask || !dma_supported(dev, mask)) 605 return -EIO; 606 607 dma_check_mask(dev, mask); 608 609 *dev->dma_mask = mask; 610 return 0; 611 } 612 #endif 613 614 static inline u64 dma_get_mask(struct device *dev) 615 { 616 if (dev && dev->dma_mask && *dev->dma_mask) 617 return *dev->dma_mask; 618 return DMA_BIT_MASK(32); 619 } 620 621 #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK 622 int dma_set_coherent_mask(struct device *dev, u64 mask); 623 #else 624 static inline int dma_set_coherent_mask(struct device *dev, u64 mask) 625 { 626 if (!dma_supported(dev, mask)) 627 return -EIO; 628 629 dma_check_mask(dev, mask); 630 631 dev->coherent_dma_mask = mask; 632 return 0; 633 } 634 #endif 635 636 /* 637 * Set both the DMA mask and the coherent DMA mask to the same thing. 638 * Note that we don't check the return value from dma_set_coherent_mask() 639 * as the DMA API guarantees that the coherent DMA mask can be set to 640 * the same or smaller than the streaming DMA mask. 641 */ 642 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) 643 { 644 int rc = dma_set_mask(dev, mask); 645 if (rc == 0) 646 dma_set_coherent_mask(dev, mask); 647 return rc; 648 } 649 650 /* 651 * Similar to the above, except it deals with the case where the device 652 * does not have dev->dma_mask appropriately setup. 653 */ 654 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) 655 { 656 dev->dma_mask = &dev->coherent_dma_mask; 657 return dma_set_mask_and_coherent(dev, mask); 658 } 659 660 extern u64 dma_get_required_mask(struct device *dev); 661 662 #ifndef arch_setup_dma_ops 663 static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base, 664 u64 size, const struct iommu_ops *iommu, 665 bool coherent) { } 666 #endif 667 668 #ifndef arch_teardown_dma_ops 669 static inline void arch_teardown_dma_ops(struct device *dev) { } 670 #endif 671 672 static inline unsigned int dma_get_max_seg_size(struct device *dev) 673 { 674 if (dev->dma_parms && dev->dma_parms->max_segment_size) 675 return dev->dma_parms->max_segment_size; 676 return SZ_64K; 677 } 678 679 static inline unsigned int dma_set_max_seg_size(struct device *dev, 680 unsigned int size) 681 { 682 if (dev->dma_parms) { 683 dev->dma_parms->max_segment_size = size; 684 return 0; 685 } 686 return -EIO; 687 } 688 689 static inline unsigned long dma_get_seg_boundary(struct device *dev) 690 { 691 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) 692 return dev->dma_parms->segment_boundary_mask; 693 return DMA_BIT_MASK(32); 694 } 695 696 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) 697 { 698 if (dev->dma_parms) { 699 dev->dma_parms->segment_boundary_mask = mask; 700 return 0; 701 } 702 return -EIO; 703 } 704 705 #ifndef dma_max_pfn 706 static inline unsigned long dma_max_pfn(struct device *dev) 707 { 708 return (*dev->dma_mask >> PAGE_SHIFT) + dev->dma_pfn_offset; 709 } 710 #endif 711 712 static inline void *dma_zalloc_coherent(struct device *dev, size_t size, 713 dma_addr_t *dma_handle, gfp_t flag) 714 { 715 void *ret = dma_alloc_coherent(dev, size, dma_handle, 716 flag | __GFP_ZERO); 717 return ret; 718 } 719 720 static inline int dma_get_cache_alignment(void) 721 { 722 #ifdef ARCH_DMA_MINALIGN 723 return ARCH_DMA_MINALIGN; 724 #endif 725 return 1; 726 } 727 728 /* flags for the coherent memory api */ 729 #define DMA_MEMORY_EXCLUSIVE 0x01 730 731 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 732 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 733 dma_addr_t device_addr, size_t size, int flags); 734 void dma_release_declared_memory(struct device *dev); 735 void *dma_mark_declared_memory_occupied(struct device *dev, 736 dma_addr_t device_addr, size_t size); 737 #else 738 static inline int 739 dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 740 dma_addr_t device_addr, size_t size, int flags) 741 { 742 return -ENOSYS; 743 } 744 745 static inline void 746 dma_release_declared_memory(struct device *dev) 747 { 748 } 749 750 static inline void * 751 dma_mark_declared_memory_occupied(struct device *dev, 752 dma_addr_t device_addr, size_t size) 753 { 754 return ERR_PTR(-EBUSY); 755 } 756 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 757 758 /* 759 * Managed DMA API 760 */ 761 #ifdef CONFIG_HAS_DMA 762 extern void *dmam_alloc_coherent(struct device *dev, size_t size, 763 dma_addr_t *dma_handle, gfp_t gfp); 764 extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 765 dma_addr_t dma_handle); 766 #else /* !CONFIG_HAS_DMA */ 767 static inline void *dmam_alloc_coherent(struct device *dev, size_t size, 768 dma_addr_t *dma_handle, gfp_t gfp) 769 { return NULL; } 770 static inline void dmam_free_coherent(struct device *dev, size_t size, 771 void *vaddr, dma_addr_t dma_handle) { } 772 #endif /* !CONFIG_HAS_DMA */ 773 774 extern void *dmam_alloc_attrs(struct device *dev, size_t size, 775 dma_addr_t *dma_handle, gfp_t gfp, 776 unsigned long attrs); 777 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 778 extern int dmam_declare_coherent_memory(struct device *dev, 779 phys_addr_t phys_addr, 780 dma_addr_t device_addr, size_t size, 781 int flags); 782 extern void dmam_release_declared_memory(struct device *dev); 783 #else /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 784 static inline int dmam_declare_coherent_memory(struct device *dev, 785 phys_addr_t phys_addr, dma_addr_t device_addr, 786 size_t size, gfp_t gfp) 787 { 788 return 0; 789 } 790 791 static inline void dmam_release_declared_memory(struct device *dev) 792 { 793 } 794 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 795 796 static inline void *dma_alloc_wc(struct device *dev, size_t size, 797 dma_addr_t *dma_addr, gfp_t gfp) 798 { 799 unsigned long attrs = DMA_ATTR_NO_WARN; 800 801 if (gfp & __GFP_NOWARN) 802 attrs |= DMA_ATTR_NO_WARN; 803 804 return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs); 805 } 806 #ifndef dma_alloc_writecombine 807 #define dma_alloc_writecombine dma_alloc_wc 808 #endif 809 810 static inline void dma_free_wc(struct device *dev, size_t size, 811 void *cpu_addr, dma_addr_t dma_addr) 812 { 813 return dma_free_attrs(dev, size, cpu_addr, dma_addr, 814 DMA_ATTR_WRITE_COMBINE); 815 } 816 #ifndef dma_free_writecombine 817 #define dma_free_writecombine dma_free_wc 818 #endif 819 820 static inline int dma_mmap_wc(struct device *dev, 821 struct vm_area_struct *vma, 822 void *cpu_addr, dma_addr_t dma_addr, 823 size_t size) 824 { 825 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, 826 DMA_ATTR_WRITE_COMBINE); 827 } 828 #ifndef dma_mmap_writecombine 829 #define dma_mmap_writecombine dma_mmap_wc 830 #endif 831 832 #ifdef CONFIG_NEED_DMA_MAP_STATE 833 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME 834 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME 835 #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) 836 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) 837 #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) 838 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) 839 #else 840 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) 841 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) 842 #define dma_unmap_addr(PTR, ADDR_NAME) (0) 843 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) 844 #define dma_unmap_len(PTR, LEN_NAME) (0) 845 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) 846 #endif 847 848 #endif 849