xref: /linux-6.15/include/linux/dma-map-ops.h (revision de6c85bf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * This header is for implementations of dma_map_ops and related code.
4  * It should not be included in drivers just using the DMA API.
5  */
6 #ifndef _LINUX_DMA_MAP_OPS_H
7 #define _LINUX_DMA_MAP_OPS_H
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/pgtable.h>
11 #include <linux/slab.h>
12 
13 struct cma;
14 struct iommu_ops;
15 
16 struct dma_map_ops {
17 	void *(*alloc)(struct device *dev, size_t size,
18 			dma_addr_t *dma_handle, gfp_t gfp,
19 			unsigned long attrs);
20 	void (*free)(struct device *dev, size_t size, void *vaddr,
21 			dma_addr_t dma_handle, unsigned long attrs);
22 	struct page *(*alloc_pages_op)(struct device *dev, size_t size,
23 			dma_addr_t *dma_handle, enum dma_data_direction dir,
24 			gfp_t gfp);
25 	void (*free_pages)(struct device *dev, size_t size, struct page *vaddr,
26 			dma_addr_t dma_handle, enum dma_data_direction dir);
27 	struct sg_table *(*alloc_noncontiguous)(struct device *dev, size_t size,
28 			enum dma_data_direction dir, gfp_t gfp,
29 			unsigned long attrs);
30 	void (*free_noncontiguous)(struct device *dev, size_t size,
31 			struct sg_table *sgt, enum dma_data_direction dir);
32 	int (*mmap)(struct device *, struct vm_area_struct *,
33 			void *, dma_addr_t, size_t, unsigned long attrs);
34 
35 	int (*get_sgtable)(struct device *dev, struct sg_table *sgt,
36 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
37 			unsigned long attrs);
38 
39 	dma_addr_t (*map_page)(struct device *dev, struct page *page,
40 			unsigned long offset, size_t size,
41 			enum dma_data_direction dir, unsigned long attrs);
42 	void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
43 			size_t size, enum dma_data_direction dir,
44 			unsigned long attrs);
45 	/*
46 	 * map_sg should return a negative error code on error. See
47 	 * dma_map_sgtable() for a list of appropriate error codes
48 	 * and their meanings.
49 	 */
50 	int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents,
51 			enum dma_data_direction dir, unsigned long attrs);
52 	void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nents,
53 			enum dma_data_direction dir, unsigned long attrs);
54 	dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
55 			size_t size, enum dma_data_direction dir,
56 			unsigned long attrs);
57 	void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
58 			size_t size, enum dma_data_direction dir,
59 			unsigned long attrs);
60 	void (*sync_single_for_cpu)(struct device *dev, dma_addr_t dma_handle,
61 			size_t size, enum dma_data_direction dir);
62 	void (*sync_single_for_device)(struct device *dev,
63 			dma_addr_t dma_handle, size_t size,
64 			enum dma_data_direction dir);
65 	void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg,
66 			int nents, enum dma_data_direction dir);
67 	void (*sync_sg_for_device)(struct device *dev, struct scatterlist *sg,
68 			int nents, enum dma_data_direction dir);
69 	void (*cache_sync)(struct device *dev, void *vaddr, size_t size,
70 			enum dma_data_direction direction);
71 	int (*dma_supported)(struct device *dev, u64 mask);
72 	u64 (*get_required_mask)(struct device *dev);
73 	size_t (*max_mapping_size)(struct device *dev);
74 	size_t (*opt_mapping_size)(void);
75 	unsigned long (*get_merge_boundary)(struct device *dev);
76 };
77 
78 #ifdef CONFIG_ARCH_HAS_DMA_OPS
79 #include <asm/dma-mapping.h>
80 
81 static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
82 {
83 	if (dev->dma_ops)
84 		return dev->dma_ops;
85 	return get_arch_dma_ops();
86 }
87 
88 static inline void set_dma_ops(struct device *dev,
89 			       const struct dma_map_ops *dma_ops)
90 {
91 	dev->dma_ops = dma_ops;
92 }
93 #else /* CONFIG_ARCH_HAS_DMA_OPS */
94 static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
95 {
96 	return NULL;
97 }
98 static inline void set_dma_ops(struct device *dev,
99 			       const struct dma_map_ops *dma_ops)
100 {
101 }
102 #endif /* CONFIG_ARCH_HAS_DMA_OPS */
103 
104 #ifdef CONFIG_DMA_CMA
105 extern struct cma *dma_contiguous_default_area;
106 
107 static inline struct cma *dev_get_cma_area(struct device *dev)
108 {
109 	if (dev && dev->cma_area)
110 		return dev->cma_area;
111 	return dma_contiguous_default_area;
112 }
113 
114 void dma_contiguous_reserve(phys_addr_t addr_limit);
115 int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base,
116 		phys_addr_t limit, struct cma **res_cma, bool fixed);
117 
118 struct page *dma_alloc_from_contiguous(struct device *dev, size_t count,
119 				       unsigned int order, bool no_warn);
120 bool dma_release_from_contiguous(struct device *dev, struct page *pages,
121 				 int count);
122 struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp);
123 void dma_free_contiguous(struct device *dev, struct page *page, size_t size);
124 
125 void dma_contiguous_early_fixup(phys_addr_t base, unsigned long size);
126 #else /* CONFIG_DMA_CMA */
127 static inline struct cma *dev_get_cma_area(struct device *dev)
128 {
129 	return NULL;
130 }
131 static inline void dma_contiguous_reserve(phys_addr_t limit)
132 {
133 }
134 static inline int dma_contiguous_reserve_area(phys_addr_t size,
135 		phys_addr_t base, phys_addr_t limit, struct cma **res_cma,
136 		bool fixed)
137 {
138 	return -ENOSYS;
139 }
140 static inline struct page *dma_alloc_from_contiguous(struct device *dev,
141 		size_t count, unsigned int order, bool no_warn)
142 {
143 	return NULL;
144 }
145 static inline bool dma_release_from_contiguous(struct device *dev,
146 		struct page *pages, int count)
147 {
148 	return false;
149 }
150 /* Use fallback alloc() and free() when CONFIG_DMA_CMA=n */
151 static inline struct page *dma_alloc_contiguous(struct device *dev, size_t size,
152 		gfp_t gfp)
153 {
154 	return NULL;
155 }
156 static inline void dma_free_contiguous(struct device *dev, struct page *page,
157 		size_t size)
158 {
159 	__free_pages(page, get_order(size));
160 }
161 #endif /* CONFIG_DMA_CMA*/
162 
163 #ifdef CONFIG_DMA_DECLARE_COHERENT
164 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
165 		dma_addr_t device_addr, size_t size);
166 void dma_release_coherent_memory(struct device *dev);
167 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
168 		dma_addr_t *dma_handle, void **ret);
169 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr);
170 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
171 		void *cpu_addr, size_t size, int *ret);
172 #else
173 static inline int dma_declare_coherent_memory(struct device *dev,
174 		phys_addr_t phys_addr, dma_addr_t device_addr, size_t size)
175 {
176 	return -ENOSYS;
177 }
178 
179 #define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0)
180 #define dma_release_from_dev_coherent(dev, order, vaddr) (0)
181 #define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0)
182 static inline void dma_release_coherent_memory(struct device *dev) { }
183 #endif /* CONFIG_DMA_DECLARE_COHERENT */
184 
185 #ifdef CONFIG_DMA_GLOBAL_POOL
186 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
187 		dma_addr_t *dma_handle);
188 int dma_release_from_global_coherent(int order, void *vaddr);
189 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr,
190 		size_t size, int *ret);
191 int dma_init_global_coherent(phys_addr_t phys_addr, size_t size);
192 #else
193 static inline void *dma_alloc_from_global_coherent(struct device *dev,
194 		ssize_t size, dma_addr_t *dma_handle)
195 {
196 	return NULL;
197 }
198 static inline int dma_release_from_global_coherent(int order, void *vaddr)
199 {
200 	return 0;
201 }
202 static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma,
203 		void *cpu_addr, size_t size, int *ret)
204 {
205 	return 0;
206 }
207 #endif /* CONFIG_DMA_GLOBAL_POOL */
208 
209 /*
210  * This is the actual return value from the ->alloc_noncontiguous method.
211  * The users of the DMA API should only care about the sg_table, but to make
212  * the DMA-API internal vmaping and freeing easier we stash away the page
213  * array as well (except for the fallback case).  This can go away any time,
214  * e.g. when a vmap-variant that takes a scatterlist comes along.
215  */
216 struct dma_sgt_handle {
217 	struct sg_table sgt;
218 	struct page **pages;
219 };
220 #define sgt_handle(sgt) \
221 	container_of((sgt), struct dma_sgt_handle, sgt)
222 
223 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
224 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
225 		unsigned long attrs);
226 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
227 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
228 		unsigned long attrs);
229 struct page *dma_common_alloc_pages(struct device *dev, size_t size,
230 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
231 void dma_common_free_pages(struct device *dev, size_t size, struct page *vaddr,
232 		dma_addr_t dma_handle, enum dma_data_direction dir);
233 
234 struct page **dma_common_find_pages(void *cpu_addr);
235 void *dma_common_contiguous_remap(struct page *page, size_t size, pgprot_t prot,
236 		const void *caller);
237 void *dma_common_pages_remap(struct page **pages, size_t size, pgprot_t prot,
238 		const void *caller);
239 void dma_common_free_remap(void *cpu_addr, size_t size);
240 
241 struct page *dma_alloc_from_pool(struct device *dev, size_t size,
242 		void **cpu_addr, gfp_t flags,
243 		bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t));
244 bool dma_free_from_pool(struct device *dev, void *start, size_t size);
245 
246 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
247 		dma_addr_t dma_start, u64 size);
248 
249 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
250 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
251 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
252 extern bool dma_default_coherent;
253 static inline bool dev_is_dma_coherent(struct device *dev)
254 {
255 	return dev->dma_coherent;
256 }
257 #else
258 #define dma_default_coherent true
259 
260 static inline bool dev_is_dma_coherent(struct device *dev)
261 {
262 	return true;
263 }
264 #endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */
265 
266 static inline void dma_reset_need_sync(struct device *dev)
267 {
268 #ifdef CONFIG_DMA_NEED_SYNC
269 	/* Reset it only once so that the function can be called on hotpath */
270 	if (unlikely(dev->dma_skip_sync))
271 		dev->dma_skip_sync = false;
272 #endif
273 }
274 
275 /*
276  * Check whether potential kmalloc() buffers are safe for non-coherent DMA.
277  */
278 static inline bool dma_kmalloc_safe(struct device *dev,
279 				    enum dma_data_direction dir)
280 {
281 	/*
282 	 * If DMA bouncing of kmalloc() buffers is disabled, the kmalloc()
283 	 * caches have already been aligned to a DMA-safe size.
284 	 */
285 	if (!IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC))
286 		return true;
287 
288 	/*
289 	 * kmalloc() buffers are DMA-safe irrespective of size if the device
290 	 * is coherent or the direction is DMA_TO_DEVICE (non-desctructive
291 	 * cache maintenance and benign cache line evictions).
292 	 */
293 	if (dev_is_dma_coherent(dev) || dir == DMA_TO_DEVICE)
294 		return true;
295 
296 	return false;
297 }
298 
299 /*
300  * Check whether the given size, assuming it is for a kmalloc()'ed buffer, is
301  * sufficiently aligned for non-coherent DMA.
302  */
303 static inline bool dma_kmalloc_size_aligned(size_t size)
304 {
305 	/*
306 	 * Larger kmalloc() sizes are guaranteed to be aligned to
307 	 * ARCH_DMA_MINALIGN.
308 	 */
309 	if (size >= 2 * ARCH_DMA_MINALIGN ||
310 	    IS_ALIGNED(kmalloc_size_roundup(size), dma_get_cache_alignment()))
311 		return true;
312 
313 	return false;
314 }
315 
316 /*
317  * Check whether the given object size may have originated from a kmalloc()
318  * buffer with a slab alignment below the DMA-safe alignment and needs
319  * bouncing for non-coherent DMA. The pointer alignment is not considered and
320  * in-structure DMA-safe offsets are the responsibility of the caller. Such
321  * code should use the static ARCH_DMA_MINALIGN for compiler annotations.
322  *
323  * The heuristics can have false positives, bouncing unnecessarily, though the
324  * buffers would be small. False negatives are theoretically possible if, for
325  * example, multiple small kmalloc() buffers are coalesced into a larger
326  * buffer that passes the alignment check. There are no such known constructs
327  * in the kernel.
328  */
329 static inline bool dma_kmalloc_needs_bounce(struct device *dev, size_t size,
330 					    enum dma_data_direction dir)
331 {
332 	return !dma_kmalloc_safe(dev, dir) && !dma_kmalloc_size_aligned(size);
333 }
334 
335 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
336 		gfp_t gfp, unsigned long attrs);
337 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
338 		dma_addr_t dma_addr, unsigned long attrs);
339 
340 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
341 void arch_dma_set_mask(struct device *dev, u64 mask);
342 #else
343 #define arch_dma_set_mask(dev, mask)	do { } while (0)
344 #endif
345 
346 #ifdef CONFIG_MMU
347 /*
348  * Page protection so that devices that can't snoop CPU caches can use the
349  * memory coherently.  We default to pgprot_noncached which is usually used
350  * for ioremap as a safe bet, but architectures can override this with less
351  * strict semantics if possible.
352  */
353 #ifndef pgprot_dmacoherent
354 #define pgprot_dmacoherent(prot)	pgprot_noncached(prot)
355 #endif
356 
357 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs);
358 #else
359 static inline pgprot_t dma_pgprot(struct device *dev, pgprot_t prot,
360 		unsigned long attrs)
361 {
362 	return prot;	/* no protection bits supported without page tables */
363 }
364 #endif /* CONFIG_MMU */
365 
366 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE
367 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
368 		enum dma_data_direction dir);
369 #else
370 static inline void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
371 		enum dma_data_direction dir)
372 {
373 }
374 #endif /* ARCH_HAS_SYNC_DMA_FOR_DEVICE */
375 
376 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
377 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
378 		enum dma_data_direction dir);
379 #else
380 static inline void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
381 		enum dma_data_direction dir)
382 {
383 }
384 #endif /* ARCH_HAS_SYNC_DMA_FOR_CPU */
385 
386 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL
387 void arch_sync_dma_for_cpu_all(void);
388 #else
389 static inline void arch_sync_dma_for_cpu_all(void)
390 {
391 }
392 #endif /* CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL */
393 
394 #ifdef CONFIG_ARCH_HAS_DMA_PREP_COHERENT
395 void arch_dma_prep_coherent(struct page *page, size_t size);
396 #else
397 static inline void arch_dma_prep_coherent(struct page *page, size_t size)
398 {
399 }
400 #endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */
401 
402 #ifdef CONFIG_ARCH_HAS_DMA_MARK_CLEAN
403 void arch_dma_mark_clean(phys_addr_t paddr, size_t size);
404 #else
405 static inline void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
406 {
407 }
408 #endif /* ARCH_HAS_DMA_MARK_CLEAN */
409 
410 void *arch_dma_set_uncached(void *addr, size_t size);
411 void arch_dma_clear_uncached(void *addr, size_t size);
412 
413 #ifdef CONFIG_ARCH_HAS_DMA_MAP_DIRECT
414 bool arch_dma_map_page_direct(struct device *dev, phys_addr_t addr);
415 bool arch_dma_unmap_page_direct(struct device *dev, dma_addr_t dma_handle);
416 bool arch_dma_map_sg_direct(struct device *dev, struct scatterlist *sg,
417 		int nents);
418 bool arch_dma_unmap_sg_direct(struct device *dev, struct scatterlist *sg,
419 		int nents);
420 #else
421 #define arch_dma_map_page_direct(d, a)		(false)
422 #define arch_dma_unmap_page_direct(d, a)	(false)
423 #define arch_dma_map_sg_direct(d, s, n)		(false)
424 #define arch_dma_unmap_sg_direct(d, s, n)	(false)
425 #endif
426 
427 #ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS
428 void arch_setup_dma_ops(struct device *dev, bool coherent);
429 #else
430 static inline void arch_setup_dma_ops(struct device *dev, bool coherent)
431 {
432 }
433 #endif /* CONFIG_ARCH_HAS_SETUP_DMA_OPS */
434 
435 #ifdef CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS
436 void arch_teardown_dma_ops(struct device *dev);
437 #else
438 static inline void arch_teardown_dma_ops(struct device *dev)
439 {
440 }
441 #endif /* CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS */
442 
443 #ifdef CONFIG_DMA_API_DEBUG
444 void dma_debug_add_bus(const struct bus_type *bus);
445 void debug_dma_dump_mappings(struct device *dev);
446 #else
447 static inline void dma_debug_add_bus(const struct bus_type *bus)
448 {
449 }
450 static inline void debug_dma_dump_mappings(struct device *dev)
451 {
452 }
453 #endif /* CONFIG_DMA_API_DEBUG */
454 
455 extern const struct dma_map_ops dma_dummy_ops;
456 
457 enum pci_p2pdma_map_type {
458 	/*
459 	 * PCI_P2PDMA_MAP_UNKNOWN: Used internally for indicating the mapping
460 	 * type hasn't been calculated yet. Functions that return this enum
461 	 * never return this value.
462 	 */
463 	PCI_P2PDMA_MAP_UNKNOWN = 0,
464 
465 	/*
466 	 * PCI_P2PDMA_MAP_NOT_SUPPORTED: Indicates the transaction will
467 	 * traverse the host bridge and the host bridge is not in the
468 	 * allowlist. DMA Mapping routines should return an error when
469 	 * this is returned.
470 	 */
471 	PCI_P2PDMA_MAP_NOT_SUPPORTED,
472 
473 	/*
474 	 * PCI_P2PDMA_BUS_ADDR: Indicates that two devices can talk to
475 	 * each other directly through a PCI switch and the transaction will
476 	 * not traverse the host bridge. Such a mapping should program
477 	 * the DMA engine with PCI bus addresses.
478 	 */
479 	PCI_P2PDMA_MAP_BUS_ADDR,
480 
481 	/*
482 	 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: Indicates two devices can talk
483 	 * to each other, but the transaction traverses a host bridge on the
484 	 * allowlist. In this case, a normal mapping either with CPU physical
485 	 * addresses (in the case of dma-direct) or IOVA addresses (in the
486 	 * case of IOMMUs) should be used to program the DMA engine.
487 	 */
488 	PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
489 };
490 
491 struct pci_p2pdma_map_state {
492 	struct dev_pagemap *pgmap;
493 	int map;
494 	u64 bus_off;
495 };
496 
497 #ifdef CONFIG_PCI_P2PDMA
498 enum pci_p2pdma_map_type
499 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
500 		       struct scatterlist *sg);
501 #else /* CONFIG_PCI_P2PDMA */
502 static inline enum pci_p2pdma_map_type
503 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
504 		       struct scatterlist *sg)
505 {
506 	return PCI_P2PDMA_MAP_NOT_SUPPORTED;
507 }
508 #endif /* CONFIG_PCI_P2PDMA */
509 
510 #endif /* _LINUX_DMA_MAP_OPS_H */
511