xref: /linux-6.15/include/linux/crypto.h (revision f6bcbf2e)
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <[email protected]>
5  * Copyright (c) 2002 David S. Miller ([email protected])
6  * Copyright (c) 2005 Herbert Xu <[email protected]>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
9  * and Nettle, by Niels Möller.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19 
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
28 
29 /*
30  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31  * arbitrary modules to be loaded. Loading from userspace may still need the
32  * unprefixed names, so retains those aliases as well.
33  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35  * expands twice on the same line. Instead, use a separate base name for the
36  * alias.
37  */
38 #define MODULE_ALIAS_CRYPTO(name)	\
39 		__MODULE_INFO(alias, alias_userspace, name);	\
40 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
41 
42 /*
43  * Algorithm masks and types.
44  */
45 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
51 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
52 #define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
53 #define CRYPTO_ALG_TYPE_KPP		0x00000008
54 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
55 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
56 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
57 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
58 #define CRYPTO_ALG_TYPE_DIGEST		0x0000000e
59 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
60 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
61 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
62 
63 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
64 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
65 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
66 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
67 
68 #define CRYPTO_ALG_LARVAL		0x00000010
69 #define CRYPTO_ALG_DEAD			0x00000020
70 #define CRYPTO_ALG_DYING		0x00000040
71 #define CRYPTO_ALG_ASYNC		0x00000080
72 
73 /*
74  * Set this bit if and only if the algorithm requires another algorithm of
75  * the same type to handle corner cases.
76  */
77 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
78 
79 /*
80  * This bit is set for symmetric key ciphers that have already been wrapped
81  * with a generic IV generator to prevent them from being wrapped again.
82  */
83 #define CRYPTO_ALG_GENIV		0x00000200
84 
85 /*
86  * Set if the algorithm has passed automated run-time testing.  Note that
87  * if there is no run-time testing for a given algorithm it is considered
88  * to have passed.
89  */
90 
91 #define CRYPTO_ALG_TESTED		0x00000400
92 
93 /*
94  * Set if the algorithm is an instance that is built from templates.
95  */
96 #define CRYPTO_ALG_INSTANCE		0x00000800
97 
98 /* Set this bit if the algorithm provided is hardware accelerated but
99  * not available to userspace via instruction set or so.
100  */
101 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
102 
103 /*
104  * Mark a cipher as a service implementation only usable by another
105  * cipher and never by a normal user of the kernel crypto API
106  */
107 #define CRYPTO_ALG_INTERNAL		0x00002000
108 
109 /*
110  * Set if the algorithm has a ->setkey() method but can be used without
111  * calling it first, i.e. there is a default key.
112  */
113 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
114 
115 /*
116  * Transform masks and values (for crt_flags).
117  */
118 #define CRYPTO_TFM_NEED_KEY		0x00000001
119 
120 #define CRYPTO_TFM_REQ_MASK		0x000fff00
121 #define CRYPTO_TFM_RES_MASK		0xfff00000
122 
123 #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
124 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
125 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
126 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
127 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
128 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
129 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
130 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
131 
132 /*
133  * Miscellaneous stuff.
134  */
135 #define CRYPTO_MAX_ALG_NAME		128
136 
137 /*
138  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
139  * declaration) is used to ensure that the crypto_tfm context structure is
140  * aligned correctly for the given architecture so that there are no alignment
141  * faults for C data types.  In particular, this is required on platforms such
142  * as arm where pointers are 32-bit aligned but there are data types such as
143  * u64 which require 64-bit alignment.
144  */
145 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
146 
147 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
148 
149 struct scatterlist;
150 struct crypto_ablkcipher;
151 struct crypto_async_request;
152 struct crypto_blkcipher;
153 struct crypto_tfm;
154 struct crypto_type;
155 struct skcipher_givcrypt_request;
156 
157 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
158 
159 /**
160  * DOC: Block Cipher Context Data Structures
161  *
162  * These data structures define the operating context for each block cipher
163  * type.
164  */
165 
166 struct crypto_async_request {
167 	struct list_head list;
168 	crypto_completion_t complete;
169 	void *data;
170 	struct crypto_tfm *tfm;
171 
172 	u32 flags;
173 };
174 
175 struct ablkcipher_request {
176 	struct crypto_async_request base;
177 
178 	unsigned int nbytes;
179 
180 	void *info;
181 
182 	struct scatterlist *src;
183 	struct scatterlist *dst;
184 
185 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
186 };
187 
188 struct blkcipher_desc {
189 	struct crypto_blkcipher *tfm;
190 	void *info;
191 	u32 flags;
192 };
193 
194 struct cipher_desc {
195 	struct crypto_tfm *tfm;
196 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
197 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
198 			     const u8 *src, unsigned int nbytes);
199 	void *info;
200 };
201 
202 /**
203  * DOC: Block Cipher Algorithm Definitions
204  *
205  * These data structures define modular crypto algorithm implementations,
206  * managed via crypto_register_alg() and crypto_unregister_alg().
207  */
208 
209 /**
210  * struct ablkcipher_alg - asynchronous block cipher definition
211  * @min_keysize: Minimum key size supported by the transformation. This is the
212  *		 smallest key length supported by this transformation algorithm.
213  *		 This must be set to one of the pre-defined values as this is
214  *		 not hardware specific. Possible values for this field can be
215  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
216  * @max_keysize: Maximum key size supported by the transformation. This is the
217  *		 largest key length supported by this transformation algorithm.
218  *		 This must be set to one of the pre-defined values as this is
219  *		 not hardware specific. Possible values for this field can be
220  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
221  * @setkey: Set key for the transformation. This function is used to either
222  *	    program a supplied key into the hardware or store the key in the
223  *	    transformation context for programming it later. Note that this
224  *	    function does modify the transformation context. This function can
225  *	    be called multiple times during the existence of the transformation
226  *	    object, so one must make sure the key is properly reprogrammed into
227  *	    the hardware. This function is also responsible for checking the key
228  *	    length for validity. In case a software fallback was put in place in
229  *	    the @cra_init call, this function might need to use the fallback if
230  *	    the algorithm doesn't support all of the key sizes.
231  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
232  *	     the supplied scatterlist containing the blocks of data. The crypto
233  *	     API consumer is responsible for aligning the entries of the
234  *	     scatterlist properly and making sure the chunks are correctly
235  *	     sized. In case a software fallback was put in place in the
236  *	     @cra_init call, this function might need to use the fallback if
237  *	     the algorithm doesn't support all of the key sizes. In case the
238  *	     key was stored in transformation context, the key might need to be
239  *	     re-programmed into the hardware in this function. This function
240  *	     shall not modify the transformation context, as this function may
241  *	     be called in parallel with the same transformation object.
242  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
243  *	     and the conditions are exactly the same.
244  * @givencrypt: Update the IV for encryption. With this function, a cipher
245  *	        implementation may provide the function on how to update the IV
246  *	        for encryption.
247  * @givdecrypt: Update the IV for decryption. This is the reverse of
248  *	        @givencrypt .
249  * @geniv: The transformation implementation may use an "IV generator" provided
250  *	   by the kernel crypto API. Several use cases have a predefined
251  *	   approach how IVs are to be updated. For such use cases, the kernel
252  *	   crypto API provides ready-to-use implementations that can be
253  *	   referenced with this variable.
254  * @ivsize: IV size applicable for transformation. The consumer must provide an
255  *	    IV of exactly that size to perform the encrypt or decrypt operation.
256  *
257  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
258  * mandatory and must be filled.
259  */
260 struct ablkcipher_alg {
261 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
262 	              unsigned int keylen);
263 	int (*encrypt)(struct ablkcipher_request *req);
264 	int (*decrypt)(struct ablkcipher_request *req);
265 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
266 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
267 
268 	const char *geniv;
269 
270 	unsigned int min_keysize;
271 	unsigned int max_keysize;
272 	unsigned int ivsize;
273 };
274 
275 /**
276  * struct blkcipher_alg - synchronous block cipher definition
277  * @min_keysize: see struct ablkcipher_alg
278  * @max_keysize: see struct ablkcipher_alg
279  * @setkey: see struct ablkcipher_alg
280  * @encrypt: see struct ablkcipher_alg
281  * @decrypt: see struct ablkcipher_alg
282  * @geniv: see struct ablkcipher_alg
283  * @ivsize: see struct ablkcipher_alg
284  *
285  * All fields except @geniv and @ivsize are mandatory and must be filled.
286  */
287 struct blkcipher_alg {
288 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
289 	              unsigned int keylen);
290 	int (*encrypt)(struct blkcipher_desc *desc,
291 		       struct scatterlist *dst, struct scatterlist *src,
292 		       unsigned int nbytes);
293 	int (*decrypt)(struct blkcipher_desc *desc,
294 		       struct scatterlist *dst, struct scatterlist *src,
295 		       unsigned int nbytes);
296 
297 	const char *geniv;
298 
299 	unsigned int min_keysize;
300 	unsigned int max_keysize;
301 	unsigned int ivsize;
302 };
303 
304 /**
305  * struct cipher_alg - single-block symmetric ciphers definition
306  * @cia_min_keysize: Minimum key size supported by the transformation. This is
307  *		     the smallest key length supported by this transformation
308  *		     algorithm. This must be set to one of the pre-defined
309  *		     values as this is not hardware specific. Possible values
310  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
311  *		     include/crypto/
312  * @cia_max_keysize: Maximum key size supported by the transformation. This is
313  *		    the largest key length supported by this transformation
314  *		    algorithm. This must be set to one of the pre-defined values
315  *		    as this is not hardware specific. Possible values for this
316  *		    field can be found via git grep "_MAX_KEY_SIZE"
317  *		    include/crypto/
318  * @cia_setkey: Set key for the transformation. This function is used to either
319  *	        program a supplied key into the hardware or store the key in the
320  *	        transformation context for programming it later. Note that this
321  *	        function does modify the transformation context. This function
322  *	        can be called multiple times during the existence of the
323  *	        transformation object, so one must make sure the key is properly
324  *	        reprogrammed into the hardware. This function is also
325  *	        responsible for checking the key length for validity.
326  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
327  *		 single block of data, which must be @cra_blocksize big. This
328  *		 always operates on a full @cra_blocksize and it is not possible
329  *		 to encrypt a block of smaller size. The supplied buffers must
330  *		 therefore also be at least of @cra_blocksize size. Both the
331  *		 input and output buffers are always aligned to @cra_alignmask.
332  *		 In case either of the input or output buffer supplied by user
333  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
334  *		 API will re-align the buffers. The re-alignment means that a
335  *		 new buffer will be allocated, the data will be copied into the
336  *		 new buffer, then the processing will happen on the new buffer,
337  *		 then the data will be copied back into the original buffer and
338  *		 finally the new buffer will be freed. In case a software
339  *		 fallback was put in place in the @cra_init call, this function
340  *		 might need to use the fallback if the algorithm doesn't support
341  *		 all of the key sizes. In case the key was stored in
342  *		 transformation context, the key might need to be re-programmed
343  *		 into the hardware in this function. This function shall not
344  *		 modify the transformation context, as this function may be
345  *		 called in parallel with the same transformation object.
346  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
347  *		 @cia_encrypt, and the conditions are exactly the same.
348  *
349  * All fields are mandatory and must be filled.
350  */
351 struct cipher_alg {
352 	unsigned int cia_min_keysize;
353 	unsigned int cia_max_keysize;
354 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
355 	                  unsigned int keylen);
356 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
357 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
358 };
359 
360 struct compress_alg {
361 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
362 			    unsigned int slen, u8 *dst, unsigned int *dlen);
363 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
364 			      unsigned int slen, u8 *dst, unsigned int *dlen);
365 };
366 
367 
368 #define cra_ablkcipher	cra_u.ablkcipher
369 #define cra_blkcipher	cra_u.blkcipher
370 #define cra_cipher	cra_u.cipher
371 #define cra_compress	cra_u.compress
372 
373 /**
374  * struct crypto_alg - definition of a cryptograpic cipher algorithm
375  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
376  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
377  *	       used for fine-tuning the description of the transformation
378  *	       algorithm.
379  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
380  *		   of the smallest possible unit which can be transformed with
381  *		   this algorithm. The users must respect this value.
382  *		   In case of HASH transformation, it is possible for a smaller
383  *		   block than @cra_blocksize to be passed to the crypto API for
384  *		   transformation, in case of any other transformation type, an
385  * 		   error will be returned upon any attempt to transform smaller
386  *		   than @cra_blocksize chunks.
387  * @cra_ctxsize: Size of the operational context of the transformation. This
388  *		 value informs the kernel crypto API about the memory size
389  *		 needed to be allocated for the transformation context.
390  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
391  *		   buffer containing the input data for the algorithm must be
392  *		   aligned to this alignment mask. The data buffer for the
393  *		   output data must be aligned to this alignment mask. Note that
394  *		   the Crypto API will do the re-alignment in software, but
395  *		   only under special conditions and there is a performance hit.
396  *		   The re-alignment happens at these occasions for different
397  *		   @cra_u types: cipher -- For both input data and output data
398  *		   buffer; ahash -- For output hash destination buf; shash --
399  *		   For output hash destination buf.
400  *		   This is needed on hardware which is flawed by design and
401  *		   cannot pick data from arbitrary addresses.
402  * @cra_priority: Priority of this transformation implementation. In case
403  *		  multiple transformations with same @cra_name are available to
404  *		  the Crypto API, the kernel will use the one with highest
405  *		  @cra_priority.
406  * @cra_name: Generic name (usable by multiple implementations) of the
407  *	      transformation algorithm. This is the name of the transformation
408  *	      itself. This field is used by the kernel when looking up the
409  *	      providers of particular transformation.
410  * @cra_driver_name: Unique name of the transformation provider. This is the
411  *		     name of the provider of the transformation. This can be any
412  *		     arbitrary value, but in the usual case, this contains the
413  *		     name of the chip or provider and the name of the
414  *		     transformation algorithm.
415  * @cra_type: Type of the cryptographic transformation. This is a pointer to
416  *	      struct crypto_type, which implements callbacks common for all
417  *	      transformation types. There are multiple options:
418  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
419  *	      &crypto_ahash_type, &crypto_rng_type.
420  *	      This field might be empty. In that case, there are no common
421  *	      callbacks. This is the case for: cipher, compress, shash.
422  * @cra_u: Callbacks implementing the transformation. This is a union of
423  *	   multiple structures. Depending on the type of transformation selected
424  *	   by @cra_type and @cra_flags above, the associated structure must be
425  *	   filled with callbacks. This field might be empty. This is the case
426  *	   for ahash, shash.
427  * @cra_init: Initialize the cryptographic transformation object. This function
428  *	      is used to initialize the cryptographic transformation object.
429  *	      This function is called only once at the instantiation time, right
430  *	      after the transformation context was allocated. In case the
431  *	      cryptographic hardware has some special requirements which need to
432  *	      be handled by software, this function shall check for the precise
433  *	      requirement of the transformation and put any software fallbacks
434  *	      in place.
435  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
436  *	      counterpart to @cra_init, used to remove various changes set in
437  *	      @cra_init.
438  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
439  * @cra_list: internally used
440  * @cra_users: internally used
441  * @cra_refcnt: internally used
442  * @cra_destroy: internally used
443  *
444  * The struct crypto_alg describes a generic Crypto API algorithm and is common
445  * for all of the transformations. Any variable not documented here shall not
446  * be used by a cipher implementation as it is internal to the Crypto API.
447  */
448 struct crypto_alg {
449 	struct list_head cra_list;
450 	struct list_head cra_users;
451 
452 	u32 cra_flags;
453 	unsigned int cra_blocksize;
454 	unsigned int cra_ctxsize;
455 	unsigned int cra_alignmask;
456 
457 	int cra_priority;
458 	refcount_t cra_refcnt;
459 
460 	char cra_name[CRYPTO_MAX_ALG_NAME];
461 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
462 
463 	const struct crypto_type *cra_type;
464 
465 	union {
466 		struct ablkcipher_alg ablkcipher;
467 		struct blkcipher_alg blkcipher;
468 		struct cipher_alg cipher;
469 		struct compress_alg compress;
470 	} cra_u;
471 
472 	int (*cra_init)(struct crypto_tfm *tfm);
473 	void (*cra_exit)(struct crypto_tfm *tfm);
474 	void (*cra_destroy)(struct crypto_alg *alg);
475 
476 	struct module *cra_module;
477 } CRYPTO_MINALIGN_ATTR;
478 
479 /*
480  * A helper struct for waiting for completion of async crypto ops
481  */
482 struct crypto_wait {
483 	struct completion completion;
484 	int err;
485 };
486 
487 /*
488  * Macro for declaring a crypto op async wait object on stack
489  */
490 #define DECLARE_CRYPTO_WAIT(_wait) \
491 	struct crypto_wait _wait = { \
492 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
493 
494 /*
495  * Async ops completion helper functioons
496  */
497 void crypto_req_done(struct crypto_async_request *req, int err);
498 
499 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
500 {
501 	switch (err) {
502 	case -EINPROGRESS:
503 	case -EBUSY:
504 		wait_for_completion(&wait->completion);
505 		reinit_completion(&wait->completion);
506 		err = wait->err;
507 		break;
508 	};
509 
510 	return err;
511 }
512 
513 static inline void crypto_init_wait(struct crypto_wait *wait)
514 {
515 	init_completion(&wait->completion);
516 }
517 
518 /*
519  * Algorithm registration interface.
520  */
521 int crypto_register_alg(struct crypto_alg *alg);
522 int crypto_unregister_alg(struct crypto_alg *alg);
523 int crypto_register_algs(struct crypto_alg *algs, int count);
524 int crypto_unregister_algs(struct crypto_alg *algs, int count);
525 
526 /*
527  * Algorithm query interface.
528  */
529 int crypto_has_alg(const char *name, u32 type, u32 mask);
530 
531 /*
532  * Transforms: user-instantiated objects which encapsulate algorithms
533  * and core processing logic.  Managed via crypto_alloc_*() and
534  * crypto_free_*(), as well as the various helpers below.
535  */
536 
537 struct ablkcipher_tfm {
538 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
539 	              unsigned int keylen);
540 	int (*encrypt)(struct ablkcipher_request *req);
541 	int (*decrypt)(struct ablkcipher_request *req);
542 
543 	struct crypto_ablkcipher *base;
544 
545 	unsigned int ivsize;
546 	unsigned int reqsize;
547 };
548 
549 struct blkcipher_tfm {
550 	void *iv;
551 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
552 		      unsigned int keylen);
553 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
554 		       struct scatterlist *src, unsigned int nbytes);
555 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
556 		       struct scatterlist *src, unsigned int nbytes);
557 };
558 
559 struct cipher_tfm {
560 	int (*cit_setkey)(struct crypto_tfm *tfm,
561 	                  const u8 *key, unsigned int keylen);
562 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
563 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
564 };
565 
566 struct compress_tfm {
567 	int (*cot_compress)(struct crypto_tfm *tfm,
568 	                    const u8 *src, unsigned int slen,
569 	                    u8 *dst, unsigned int *dlen);
570 	int (*cot_decompress)(struct crypto_tfm *tfm,
571 	                      const u8 *src, unsigned int slen,
572 	                      u8 *dst, unsigned int *dlen);
573 };
574 
575 #define crt_ablkcipher	crt_u.ablkcipher
576 #define crt_blkcipher	crt_u.blkcipher
577 #define crt_cipher	crt_u.cipher
578 #define crt_compress	crt_u.compress
579 
580 struct crypto_tfm {
581 
582 	u32 crt_flags;
583 
584 	union {
585 		struct ablkcipher_tfm ablkcipher;
586 		struct blkcipher_tfm blkcipher;
587 		struct cipher_tfm cipher;
588 		struct compress_tfm compress;
589 	} crt_u;
590 
591 	void (*exit)(struct crypto_tfm *tfm);
592 
593 	struct crypto_alg *__crt_alg;
594 
595 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
596 };
597 
598 struct crypto_ablkcipher {
599 	struct crypto_tfm base;
600 };
601 
602 struct crypto_blkcipher {
603 	struct crypto_tfm base;
604 };
605 
606 struct crypto_cipher {
607 	struct crypto_tfm base;
608 };
609 
610 struct crypto_comp {
611 	struct crypto_tfm base;
612 };
613 
614 enum {
615 	CRYPTOA_UNSPEC,
616 	CRYPTOA_ALG,
617 	CRYPTOA_TYPE,
618 	CRYPTOA_U32,
619 	__CRYPTOA_MAX,
620 };
621 
622 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
623 
624 /* Maximum number of (rtattr) parameters for each template. */
625 #define CRYPTO_MAX_ATTRS 32
626 
627 struct crypto_attr_alg {
628 	char name[CRYPTO_MAX_ALG_NAME];
629 };
630 
631 struct crypto_attr_type {
632 	u32 type;
633 	u32 mask;
634 };
635 
636 struct crypto_attr_u32 {
637 	u32 num;
638 };
639 
640 /*
641  * Transform user interface.
642  */
643 
644 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
645 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
646 
647 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
648 {
649 	return crypto_destroy_tfm(tfm, tfm);
650 }
651 
652 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
653 
654 /*
655  * Transform helpers which query the underlying algorithm.
656  */
657 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
658 {
659 	return tfm->__crt_alg->cra_name;
660 }
661 
662 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
663 {
664 	return tfm->__crt_alg->cra_driver_name;
665 }
666 
667 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
668 {
669 	return tfm->__crt_alg->cra_priority;
670 }
671 
672 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
673 {
674 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
675 }
676 
677 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
678 {
679 	return tfm->__crt_alg->cra_blocksize;
680 }
681 
682 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
683 {
684 	return tfm->__crt_alg->cra_alignmask;
685 }
686 
687 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
688 {
689 	return tfm->crt_flags;
690 }
691 
692 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
693 {
694 	tfm->crt_flags |= flags;
695 }
696 
697 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
698 {
699 	tfm->crt_flags &= ~flags;
700 }
701 
702 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
703 {
704 	return tfm->__crt_ctx;
705 }
706 
707 static inline unsigned int crypto_tfm_ctx_alignment(void)
708 {
709 	struct crypto_tfm *tfm;
710 	return __alignof__(tfm->__crt_ctx);
711 }
712 
713 /*
714  * API wrappers.
715  */
716 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
717 	struct crypto_tfm *tfm)
718 {
719 	return (struct crypto_ablkcipher *)tfm;
720 }
721 
722 static inline u32 crypto_skcipher_type(u32 type)
723 {
724 	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
725 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
726 	return type;
727 }
728 
729 static inline u32 crypto_skcipher_mask(u32 mask)
730 {
731 	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
732 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
733 	return mask;
734 }
735 
736 /**
737  * DOC: Asynchronous Block Cipher API
738  *
739  * Asynchronous block cipher API is used with the ciphers of type
740  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
741  *
742  * Asynchronous cipher operations imply that the function invocation for a
743  * cipher request returns immediately before the completion of the operation.
744  * The cipher request is scheduled as a separate kernel thread and therefore
745  * load-balanced on the different CPUs via the process scheduler. To allow
746  * the kernel crypto API to inform the caller about the completion of a cipher
747  * request, the caller must provide a callback function. That function is
748  * invoked with the cipher handle when the request completes.
749  *
750  * To support the asynchronous operation, additional information than just the
751  * cipher handle must be supplied to the kernel crypto API. That additional
752  * information is given by filling in the ablkcipher_request data structure.
753  *
754  * For the asynchronous block cipher API, the state is maintained with the tfm
755  * cipher handle. A single tfm can be used across multiple calls and in
756  * parallel. For asynchronous block cipher calls, context data supplied and
757  * only used by the caller can be referenced the request data structure in
758  * addition to the IV used for the cipher request. The maintenance of such
759  * state information would be important for a crypto driver implementer to
760  * have, because when calling the callback function upon completion of the
761  * cipher operation, that callback function may need some information about
762  * which operation just finished if it invoked multiple in parallel. This
763  * state information is unused by the kernel crypto API.
764  */
765 
766 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
767 	struct crypto_ablkcipher *tfm)
768 {
769 	return &tfm->base;
770 }
771 
772 /**
773  * crypto_free_ablkcipher() - zeroize and free cipher handle
774  * @tfm: cipher handle to be freed
775  */
776 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
777 {
778 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
779 }
780 
781 /**
782  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
783  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
784  *	      ablkcipher
785  * @type: specifies the type of the cipher
786  * @mask: specifies the mask for the cipher
787  *
788  * Return: true when the ablkcipher is known to the kernel crypto API; false
789  *	   otherwise
790  */
791 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
792 					u32 mask)
793 {
794 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
795 			      crypto_skcipher_mask(mask));
796 }
797 
798 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
799 	struct crypto_ablkcipher *tfm)
800 {
801 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
802 }
803 
804 /**
805  * crypto_ablkcipher_ivsize() - obtain IV size
806  * @tfm: cipher handle
807  *
808  * The size of the IV for the ablkcipher referenced by the cipher handle is
809  * returned. This IV size may be zero if the cipher does not need an IV.
810  *
811  * Return: IV size in bytes
812  */
813 static inline unsigned int crypto_ablkcipher_ivsize(
814 	struct crypto_ablkcipher *tfm)
815 {
816 	return crypto_ablkcipher_crt(tfm)->ivsize;
817 }
818 
819 /**
820  * crypto_ablkcipher_blocksize() - obtain block size of cipher
821  * @tfm: cipher handle
822  *
823  * The block size for the ablkcipher referenced with the cipher handle is
824  * returned. The caller may use that information to allocate appropriate
825  * memory for the data returned by the encryption or decryption operation
826  *
827  * Return: block size of cipher
828  */
829 static inline unsigned int crypto_ablkcipher_blocksize(
830 	struct crypto_ablkcipher *tfm)
831 {
832 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
833 }
834 
835 static inline unsigned int crypto_ablkcipher_alignmask(
836 	struct crypto_ablkcipher *tfm)
837 {
838 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
839 }
840 
841 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
842 {
843 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
844 }
845 
846 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
847 					       u32 flags)
848 {
849 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
850 }
851 
852 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
853 						 u32 flags)
854 {
855 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
856 }
857 
858 /**
859  * crypto_ablkcipher_setkey() - set key for cipher
860  * @tfm: cipher handle
861  * @key: buffer holding the key
862  * @keylen: length of the key in bytes
863  *
864  * The caller provided key is set for the ablkcipher referenced by the cipher
865  * handle.
866  *
867  * Note, the key length determines the cipher type. Many block ciphers implement
868  * different cipher modes depending on the key size, such as AES-128 vs AES-192
869  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
870  * is performed.
871  *
872  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
873  */
874 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
875 					   const u8 *key, unsigned int keylen)
876 {
877 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
878 
879 	return crt->setkey(crt->base, key, keylen);
880 }
881 
882 /**
883  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
884  * @req: ablkcipher_request out of which the cipher handle is to be obtained
885  *
886  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
887  * data structure.
888  *
889  * Return: crypto_ablkcipher handle
890  */
891 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
892 	struct ablkcipher_request *req)
893 {
894 	return __crypto_ablkcipher_cast(req->base.tfm);
895 }
896 
897 /**
898  * crypto_ablkcipher_encrypt() - encrypt plaintext
899  * @req: reference to the ablkcipher_request handle that holds all information
900  *	 needed to perform the cipher operation
901  *
902  * Encrypt plaintext data using the ablkcipher_request handle. That data
903  * structure and how it is filled with data is discussed with the
904  * ablkcipher_request_* functions.
905  *
906  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
907  */
908 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
909 {
910 	struct ablkcipher_tfm *crt =
911 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
912 	return crt->encrypt(req);
913 }
914 
915 /**
916  * crypto_ablkcipher_decrypt() - decrypt ciphertext
917  * @req: reference to the ablkcipher_request handle that holds all information
918  *	 needed to perform the cipher operation
919  *
920  * Decrypt ciphertext data using the ablkcipher_request handle. That data
921  * structure and how it is filled with data is discussed with the
922  * ablkcipher_request_* functions.
923  *
924  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
925  */
926 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
927 {
928 	struct ablkcipher_tfm *crt =
929 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
930 	return crt->decrypt(req);
931 }
932 
933 /**
934  * DOC: Asynchronous Cipher Request Handle
935  *
936  * The ablkcipher_request data structure contains all pointers to data
937  * required for the asynchronous cipher operation. This includes the cipher
938  * handle (which can be used by multiple ablkcipher_request instances), pointer
939  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
940  * as a handle to the ablkcipher_request_* API calls in a similar way as
941  * ablkcipher handle to the crypto_ablkcipher_* API calls.
942  */
943 
944 /**
945  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
946  * @tfm: cipher handle
947  *
948  * Return: number of bytes
949  */
950 static inline unsigned int crypto_ablkcipher_reqsize(
951 	struct crypto_ablkcipher *tfm)
952 {
953 	return crypto_ablkcipher_crt(tfm)->reqsize;
954 }
955 
956 /**
957  * ablkcipher_request_set_tfm() - update cipher handle reference in request
958  * @req: request handle to be modified
959  * @tfm: cipher handle that shall be added to the request handle
960  *
961  * Allow the caller to replace the existing ablkcipher handle in the request
962  * data structure with a different one.
963  */
964 static inline void ablkcipher_request_set_tfm(
965 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
966 {
967 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
968 }
969 
970 static inline struct ablkcipher_request *ablkcipher_request_cast(
971 	struct crypto_async_request *req)
972 {
973 	return container_of(req, struct ablkcipher_request, base);
974 }
975 
976 /**
977  * ablkcipher_request_alloc() - allocate request data structure
978  * @tfm: cipher handle to be registered with the request
979  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
980  *
981  * Allocate the request data structure that must be used with the ablkcipher
982  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
983  * handle is registered in the request data structure.
984  *
985  * Return: allocated request handle in case of success, or NULL if out of memory
986  */
987 static inline struct ablkcipher_request *ablkcipher_request_alloc(
988 	struct crypto_ablkcipher *tfm, gfp_t gfp)
989 {
990 	struct ablkcipher_request *req;
991 
992 	req = kmalloc(sizeof(struct ablkcipher_request) +
993 		      crypto_ablkcipher_reqsize(tfm), gfp);
994 
995 	if (likely(req))
996 		ablkcipher_request_set_tfm(req, tfm);
997 
998 	return req;
999 }
1000 
1001 /**
1002  * ablkcipher_request_free() - zeroize and free request data structure
1003  * @req: request data structure cipher handle to be freed
1004  */
1005 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1006 {
1007 	kzfree(req);
1008 }
1009 
1010 /**
1011  * ablkcipher_request_set_callback() - set asynchronous callback function
1012  * @req: request handle
1013  * @flags: specify zero or an ORing of the flags
1014  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1015  *	   increase the wait queue beyond the initial maximum size;
1016  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1017  * @compl: callback function pointer to be registered with the request handle
1018  * @data: The data pointer refers to memory that is not used by the kernel
1019  *	  crypto API, but provided to the callback function for it to use. Here,
1020  *	  the caller can provide a reference to memory the callback function can
1021  *	  operate on. As the callback function is invoked asynchronously to the
1022  *	  related functionality, it may need to access data structures of the
1023  *	  related functionality which can be referenced using this pointer. The
1024  *	  callback function can access the memory via the "data" field in the
1025  *	  crypto_async_request data structure provided to the callback function.
1026  *
1027  * This function allows setting the callback function that is triggered once the
1028  * cipher operation completes.
1029  *
1030  * The callback function is registered with the ablkcipher_request handle and
1031  * must comply with the following template::
1032  *
1033  *	void callback_function(struct crypto_async_request *req, int error)
1034  */
1035 static inline void ablkcipher_request_set_callback(
1036 	struct ablkcipher_request *req,
1037 	u32 flags, crypto_completion_t compl, void *data)
1038 {
1039 	req->base.complete = compl;
1040 	req->base.data = data;
1041 	req->base.flags = flags;
1042 }
1043 
1044 /**
1045  * ablkcipher_request_set_crypt() - set data buffers
1046  * @req: request handle
1047  * @src: source scatter / gather list
1048  * @dst: destination scatter / gather list
1049  * @nbytes: number of bytes to process from @src
1050  * @iv: IV for the cipher operation which must comply with the IV size defined
1051  *      by crypto_ablkcipher_ivsize
1052  *
1053  * This function allows setting of the source data and destination data
1054  * scatter / gather lists.
1055  *
1056  * For encryption, the source is treated as the plaintext and the
1057  * destination is the ciphertext. For a decryption operation, the use is
1058  * reversed - the source is the ciphertext and the destination is the plaintext.
1059  */
1060 static inline void ablkcipher_request_set_crypt(
1061 	struct ablkcipher_request *req,
1062 	struct scatterlist *src, struct scatterlist *dst,
1063 	unsigned int nbytes, void *iv)
1064 {
1065 	req->src = src;
1066 	req->dst = dst;
1067 	req->nbytes = nbytes;
1068 	req->info = iv;
1069 }
1070 
1071 /**
1072  * DOC: Synchronous Block Cipher API
1073  *
1074  * The synchronous block cipher API is used with the ciphers of type
1075  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1076  *
1077  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1078  * used in multiple calls and in parallel, this info should not be changeable
1079  * (unless a lock is used). This applies, for example, to the symmetric key.
1080  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1081  * structure for synchronous blkcipher api. So, its the only state info that can
1082  * be kept for synchronous calls without using a big lock across a tfm.
1083  *
1084  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1085  * consisting of a template (a block chaining mode) and a single block cipher
1086  * primitive (e.g. AES).
1087  *
1088  * The plaintext data buffer and the ciphertext data buffer are pointed to
1089  * by using scatter/gather lists. The cipher operation is performed
1090  * on all segments of the provided scatter/gather lists.
1091  *
1092  * The kernel crypto API supports a cipher operation "in-place" which means that
1093  * the caller may provide the same scatter/gather list for the plaintext and
1094  * cipher text. After the completion of the cipher operation, the plaintext
1095  * data is replaced with the ciphertext data in case of an encryption and vice
1096  * versa for a decryption. The caller must ensure that the scatter/gather lists
1097  * for the output data point to sufficiently large buffers, i.e. multiples of
1098  * the block size of the cipher.
1099  */
1100 
1101 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1102 	struct crypto_tfm *tfm)
1103 {
1104 	return (struct crypto_blkcipher *)tfm;
1105 }
1106 
1107 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1108 	struct crypto_tfm *tfm)
1109 {
1110 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1111 	return __crypto_blkcipher_cast(tfm);
1112 }
1113 
1114 /**
1115  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1116  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1117  *	      blkcipher cipher
1118  * @type: specifies the type of the cipher
1119  * @mask: specifies the mask for the cipher
1120  *
1121  * Allocate a cipher handle for a block cipher. The returned struct
1122  * crypto_blkcipher is the cipher handle that is required for any subsequent
1123  * API invocation for that block cipher.
1124  *
1125  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1126  *	   of an error, PTR_ERR() returns the error code.
1127  */
1128 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1129 	const char *alg_name, u32 type, u32 mask)
1130 {
1131 	type &= ~CRYPTO_ALG_TYPE_MASK;
1132 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1133 	mask |= CRYPTO_ALG_TYPE_MASK;
1134 
1135 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1136 }
1137 
1138 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1139 	struct crypto_blkcipher *tfm)
1140 {
1141 	return &tfm->base;
1142 }
1143 
1144 /**
1145  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1146  * @tfm: cipher handle to be freed
1147  */
1148 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1149 {
1150 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1151 }
1152 
1153 /**
1154  * crypto_has_blkcipher() - Search for the availability of a block cipher
1155  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1156  *	      block cipher
1157  * @type: specifies the type of the cipher
1158  * @mask: specifies the mask for the cipher
1159  *
1160  * Return: true when the block cipher is known to the kernel crypto API; false
1161  *	   otherwise
1162  */
1163 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1164 {
1165 	type &= ~CRYPTO_ALG_TYPE_MASK;
1166 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1167 	mask |= CRYPTO_ALG_TYPE_MASK;
1168 
1169 	return crypto_has_alg(alg_name, type, mask);
1170 }
1171 
1172 /**
1173  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1174  * @tfm: cipher handle
1175  *
1176  * Return: The character string holding the name of the cipher
1177  */
1178 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1179 {
1180 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1181 }
1182 
1183 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1184 	struct crypto_blkcipher *tfm)
1185 {
1186 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1187 }
1188 
1189 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1190 	struct crypto_blkcipher *tfm)
1191 {
1192 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1193 }
1194 
1195 /**
1196  * crypto_blkcipher_ivsize() - obtain IV size
1197  * @tfm: cipher handle
1198  *
1199  * The size of the IV for the block cipher referenced by the cipher handle is
1200  * returned. This IV size may be zero if the cipher does not need an IV.
1201  *
1202  * Return: IV size in bytes
1203  */
1204 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1205 {
1206 	return crypto_blkcipher_alg(tfm)->ivsize;
1207 }
1208 
1209 /**
1210  * crypto_blkcipher_blocksize() - obtain block size of cipher
1211  * @tfm: cipher handle
1212  *
1213  * The block size for the block cipher referenced with the cipher handle is
1214  * returned. The caller may use that information to allocate appropriate
1215  * memory for the data returned by the encryption or decryption operation.
1216  *
1217  * Return: block size of cipher
1218  */
1219 static inline unsigned int crypto_blkcipher_blocksize(
1220 	struct crypto_blkcipher *tfm)
1221 {
1222 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1223 }
1224 
1225 static inline unsigned int crypto_blkcipher_alignmask(
1226 	struct crypto_blkcipher *tfm)
1227 {
1228 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1229 }
1230 
1231 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1232 {
1233 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1234 }
1235 
1236 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1237 					      u32 flags)
1238 {
1239 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1240 }
1241 
1242 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1243 						u32 flags)
1244 {
1245 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1246 }
1247 
1248 /**
1249  * crypto_blkcipher_setkey() - set key for cipher
1250  * @tfm: cipher handle
1251  * @key: buffer holding the key
1252  * @keylen: length of the key in bytes
1253  *
1254  * The caller provided key is set for the block cipher referenced by the cipher
1255  * handle.
1256  *
1257  * Note, the key length determines the cipher type. Many block ciphers implement
1258  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1259  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1260  * is performed.
1261  *
1262  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1263  */
1264 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1265 					  const u8 *key, unsigned int keylen)
1266 {
1267 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1268 						 key, keylen);
1269 }
1270 
1271 /**
1272  * crypto_blkcipher_encrypt() - encrypt plaintext
1273  * @desc: reference to the block cipher handle with meta data
1274  * @dst: scatter/gather list that is filled by the cipher operation with the
1275  *	ciphertext
1276  * @src: scatter/gather list that holds the plaintext
1277  * @nbytes: number of bytes of the plaintext to encrypt.
1278  *
1279  * Encrypt plaintext data using the IV set by the caller with a preceding
1280  * call of crypto_blkcipher_set_iv.
1281  *
1282  * The blkcipher_desc data structure must be filled by the caller and can
1283  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1284  * with the block cipher handle; desc.flags is filled with either
1285  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1286  *
1287  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1288  */
1289 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1290 					   struct scatterlist *dst,
1291 					   struct scatterlist *src,
1292 					   unsigned int nbytes)
1293 {
1294 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1295 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1296 }
1297 
1298 /**
1299  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1300  * @desc: reference to the block cipher handle with meta data
1301  * @dst: scatter/gather list that is filled by the cipher operation with the
1302  *	ciphertext
1303  * @src: scatter/gather list that holds the plaintext
1304  * @nbytes: number of bytes of the plaintext to encrypt.
1305  *
1306  * Encrypt plaintext data with the use of an IV that is solely used for this
1307  * cipher operation. Any previously set IV is not used.
1308  *
1309  * The blkcipher_desc data structure must be filled by the caller and can
1310  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1311  * with the block cipher handle; desc.info is filled with the IV to be used for
1312  * the current operation; desc.flags is filled with either
1313  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1314  *
1315  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1316  */
1317 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1318 					      struct scatterlist *dst,
1319 					      struct scatterlist *src,
1320 					      unsigned int nbytes)
1321 {
1322 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1323 }
1324 
1325 /**
1326  * crypto_blkcipher_decrypt() - decrypt ciphertext
1327  * @desc: reference to the block cipher handle with meta data
1328  * @dst: scatter/gather list that is filled by the cipher operation with the
1329  *	plaintext
1330  * @src: scatter/gather list that holds the ciphertext
1331  * @nbytes: number of bytes of the ciphertext to decrypt.
1332  *
1333  * Decrypt ciphertext data using the IV set by the caller with a preceding
1334  * call of crypto_blkcipher_set_iv.
1335  *
1336  * The blkcipher_desc data structure must be filled by the caller as documented
1337  * for the crypto_blkcipher_encrypt call above.
1338  *
1339  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1340  *
1341  */
1342 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1343 					   struct scatterlist *dst,
1344 					   struct scatterlist *src,
1345 					   unsigned int nbytes)
1346 {
1347 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1348 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1349 }
1350 
1351 /**
1352  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1353  * @desc: reference to the block cipher handle with meta data
1354  * @dst: scatter/gather list that is filled by the cipher operation with the
1355  *	plaintext
1356  * @src: scatter/gather list that holds the ciphertext
1357  * @nbytes: number of bytes of the ciphertext to decrypt.
1358  *
1359  * Decrypt ciphertext data with the use of an IV that is solely used for this
1360  * cipher operation. Any previously set IV is not used.
1361  *
1362  * The blkcipher_desc data structure must be filled by the caller as documented
1363  * for the crypto_blkcipher_encrypt_iv call above.
1364  *
1365  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1366  */
1367 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1368 					      struct scatterlist *dst,
1369 					      struct scatterlist *src,
1370 					      unsigned int nbytes)
1371 {
1372 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1373 }
1374 
1375 /**
1376  * crypto_blkcipher_set_iv() - set IV for cipher
1377  * @tfm: cipher handle
1378  * @src: buffer holding the IV
1379  * @len: length of the IV in bytes
1380  *
1381  * The caller provided IV is set for the block cipher referenced by the cipher
1382  * handle.
1383  */
1384 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1385 					   const u8 *src, unsigned int len)
1386 {
1387 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1388 }
1389 
1390 /**
1391  * crypto_blkcipher_get_iv() - obtain IV from cipher
1392  * @tfm: cipher handle
1393  * @dst: buffer filled with the IV
1394  * @len: length of the buffer dst
1395  *
1396  * The caller can obtain the IV set for the block cipher referenced by the
1397  * cipher handle and store it into the user-provided buffer. If the buffer
1398  * has an insufficient space, the IV is truncated to fit the buffer.
1399  */
1400 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1401 					   u8 *dst, unsigned int len)
1402 {
1403 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1404 }
1405 
1406 /**
1407  * DOC: Single Block Cipher API
1408  *
1409  * The single block cipher API is used with the ciphers of type
1410  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1411  *
1412  * Using the single block cipher API calls, operations with the basic cipher
1413  * primitive can be implemented. These cipher primitives exclude any block
1414  * chaining operations including IV handling.
1415  *
1416  * The purpose of this single block cipher API is to support the implementation
1417  * of templates or other concepts that only need to perform the cipher operation
1418  * on one block at a time. Templates invoke the underlying cipher primitive
1419  * block-wise and process either the input or the output data of these cipher
1420  * operations.
1421  */
1422 
1423 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1424 {
1425 	return (struct crypto_cipher *)tfm;
1426 }
1427 
1428 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1429 {
1430 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1431 	return __crypto_cipher_cast(tfm);
1432 }
1433 
1434 /**
1435  * crypto_alloc_cipher() - allocate single block cipher handle
1436  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1437  *	     single block cipher
1438  * @type: specifies the type of the cipher
1439  * @mask: specifies the mask for the cipher
1440  *
1441  * Allocate a cipher handle for a single block cipher. The returned struct
1442  * crypto_cipher is the cipher handle that is required for any subsequent API
1443  * invocation for that single block cipher.
1444  *
1445  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1446  *	   of an error, PTR_ERR() returns the error code.
1447  */
1448 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1449 							u32 type, u32 mask)
1450 {
1451 	type &= ~CRYPTO_ALG_TYPE_MASK;
1452 	type |= CRYPTO_ALG_TYPE_CIPHER;
1453 	mask |= CRYPTO_ALG_TYPE_MASK;
1454 
1455 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1456 }
1457 
1458 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1459 {
1460 	return &tfm->base;
1461 }
1462 
1463 /**
1464  * crypto_free_cipher() - zeroize and free the single block cipher handle
1465  * @tfm: cipher handle to be freed
1466  */
1467 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1468 {
1469 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1470 }
1471 
1472 /**
1473  * crypto_has_cipher() - Search for the availability of a single block cipher
1474  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1475  *	     single block cipher
1476  * @type: specifies the type of the cipher
1477  * @mask: specifies the mask for the cipher
1478  *
1479  * Return: true when the single block cipher is known to the kernel crypto API;
1480  *	   false otherwise
1481  */
1482 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1483 {
1484 	type &= ~CRYPTO_ALG_TYPE_MASK;
1485 	type |= CRYPTO_ALG_TYPE_CIPHER;
1486 	mask |= CRYPTO_ALG_TYPE_MASK;
1487 
1488 	return crypto_has_alg(alg_name, type, mask);
1489 }
1490 
1491 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1492 {
1493 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1494 }
1495 
1496 /**
1497  * crypto_cipher_blocksize() - obtain block size for cipher
1498  * @tfm: cipher handle
1499  *
1500  * The block size for the single block cipher referenced with the cipher handle
1501  * tfm is returned. The caller may use that information to allocate appropriate
1502  * memory for the data returned by the encryption or decryption operation
1503  *
1504  * Return: block size of cipher
1505  */
1506 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1507 {
1508 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1509 }
1510 
1511 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1512 {
1513 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1514 }
1515 
1516 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1517 {
1518 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1519 }
1520 
1521 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1522 					   u32 flags)
1523 {
1524 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1525 }
1526 
1527 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1528 					     u32 flags)
1529 {
1530 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1531 }
1532 
1533 /**
1534  * crypto_cipher_setkey() - set key for cipher
1535  * @tfm: cipher handle
1536  * @key: buffer holding the key
1537  * @keylen: length of the key in bytes
1538  *
1539  * The caller provided key is set for the single block cipher referenced by the
1540  * cipher handle.
1541  *
1542  * Note, the key length determines the cipher type. Many block ciphers implement
1543  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1544  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1545  * is performed.
1546  *
1547  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1548  */
1549 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1550                                        const u8 *key, unsigned int keylen)
1551 {
1552 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1553 						  key, keylen);
1554 }
1555 
1556 /**
1557  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1558  * @tfm: cipher handle
1559  * @dst: points to the buffer that will be filled with the ciphertext
1560  * @src: buffer holding the plaintext to be encrypted
1561  *
1562  * Invoke the encryption operation of one block. The caller must ensure that
1563  * the plaintext and ciphertext buffers are at least one block in size.
1564  */
1565 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1566 					     u8 *dst, const u8 *src)
1567 {
1568 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1569 						dst, src);
1570 }
1571 
1572 /**
1573  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1574  * @tfm: cipher handle
1575  * @dst: points to the buffer that will be filled with the plaintext
1576  * @src: buffer holding the ciphertext to be decrypted
1577  *
1578  * Invoke the decryption operation of one block. The caller must ensure that
1579  * the plaintext and ciphertext buffers are at least one block in size.
1580  */
1581 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1582 					     u8 *dst, const u8 *src)
1583 {
1584 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1585 						dst, src);
1586 }
1587 
1588 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1589 {
1590 	return (struct crypto_comp *)tfm;
1591 }
1592 
1593 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1594 {
1595 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1596 	       CRYPTO_ALG_TYPE_MASK);
1597 	return __crypto_comp_cast(tfm);
1598 }
1599 
1600 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1601 						    u32 type, u32 mask)
1602 {
1603 	type &= ~CRYPTO_ALG_TYPE_MASK;
1604 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1605 	mask |= CRYPTO_ALG_TYPE_MASK;
1606 
1607 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1608 }
1609 
1610 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1611 {
1612 	return &tfm->base;
1613 }
1614 
1615 static inline void crypto_free_comp(struct crypto_comp *tfm)
1616 {
1617 	crypto_free_tfm(crypto_comp_tfm(tfm));
1618 }
1619 
1620 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1621 {
1622 	type &= ~CRYPTO_ALG_TYPE_MASK;
1623 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1624 	mask |= CRYPTO_ALG_TYPE_MASK;
1625 
1626 	return crypto_has_alg(alg_name, type, mask);
1627 }
1628 
1629 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1630 {
1631 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1632 }
1633 
1634 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1635 {
1636 	return &crypto_comp_tfm(tfm)->crt_compress;
1637 }
1638 
1639 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1640                                        const u8 *src, unsigned int slen,
1641                                        u8 *dst, unsigned int *dlen)
1642 {
1643 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1644 						  src, slen, dst, dlen);
1645 }
1646 
1647 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1648                                          const u8 *src, unsigned int slen,
1649                                          u8 *dst, unsigned int *dlen)
1650 {
1651 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1652 						    src, slen, dst, dlen);
1653 }
1654 
1655 #endif	/* _LINUX_CRYPTO_H */
1656 
1657