1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Scatterlist Cryptographic API. 4 * 5 * Copyright (c) 2002 James Morris <[email protected]> 6 * Copyright (c) 2002 David S. Miller ([email protected]) 7 * Copyright (c) 2005 Herbert Xu <[email protected]> 8 * 9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]> 10 * and Nettle, by Niels Möller. 11 */ 12 #ifndef _LINUX_CRYPTO_H 13 #define _LINUX_CRYPTO_H 14 15 #include <linux/atomic.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/bug.h> 19 #include <linux/refcount.h> 20 #include <linux/slab.h> 21 #include <linux/completion.h> 22 23 /* 24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 25 * arbitrary modules to be loaded. Loading from userspace may still need the 26 * unprefixed names, so retains those aliases as well. 27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 29 * expands twice on the same line. Instead, use a separate base name for the 30 * alias. 31 */ 32 #define MODULE_ALIAS_CRYPTO(name) \ 33 __MODULE_INFO(alias, alias_userspace, name); \ 34 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 35 36 /* 37 * Algorithm masks and types. 38 */ 39 #define CRYPTO_ALG_TYPE_MASK 0x0000000f 40 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 41 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 42 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 43 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 44 #define CRYPTO_ALG_TYPE_KPP 0x00000008 45 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 46 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 47 #define CRYPTO_ALG_TYPE_RNG 0x0000000c 48 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 49 #define CRYPTO_ALG_TYPE_HASH 0x0000000e 50 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e 51 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f 52 53 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 54 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 56 57 #define CRYPTO_ALG_LARVAL 0x00000010 58 #define CRYPTO_ALG_DEAD 0x00000020 59 #define CRYPTO_ALG_DYING 0x00000040 60 #define CRYPTO_ALG_ASYNC 0x00000080 61 62 /* 63 * Set if the algorithm (or an algorithm which it uses) requires another 64 * algorithm of the same type to handle corner cases. 65 */ 66 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 67 68 /* 69 * Set if the algorithm has passed automated run-time testing. Note that 70 * if there is no run-time testing for a given algorithm it is considered 71 * to have passed. 72 */ 73 74 #define CRYPTO_ALG_TESTED 0x00000400 75 76 /* 77 * Set if the algorithm is an instance that is built from templates. 78 */ 79 #define CRYPTO_ALG_INSTANCE 0x00000800 80 81 /* Set this bit if the algorithm provided is hardware accelerated but 82 * not available to userspace via instruction set or so. 83 */ 84 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 85 86 /* 87 * Mark a cipher as a service implementation only usable by another 88 * cipher and never by a normal user of the kernel crypto API 89 */ 90 #define CRYPTO_ALG_INTERNAL 0x00002000 91 92 /* 93 * Set if the algorithm has a ->setkey() method but can be used without 94 * calling it first, i.e. there is a default key. 95 */ 96 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 97 98 /* 99 * Don't trigger module loading 100 */ 101 #define CRYPTO_NOLOAD 0x00008000 102 103 /* 104 * The algorithm may allocate memory during request processing, i.e. during 105 * encryption, decryption, or hashing. Users can request an algorithm with this 106 * flag unset if they can't handle memory allocation failures. 107 * 108 * This flag is currently only implemented for algorithms of type "skcipher", 109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not 110 * have this flag set even if they allocate memory. 111 * 112 * In some edge cases, algorithms can allocate memory regardless of this flag. 113 * To avoid these cases, users must obey the following usage constraints: 114 * skcipher: 115 * - The IV buffer and all scatterlist elements must be aligned to the 116 * algorithm's alignmask. 117 * - If the data were to be divided into chunks of size 118 * crypto_skcipher_walksize() (with any remainder going at the end), no 119 * chunk can cross a page boundary or a scatterlist element boundary. 120 * aead: 121 * - The IV buffer and all scatterlist elements must be aligned to the 122 * algorithm's alignmask. 123 * - The first scatterlist element must contain all the associated data, 124 * and its pages must be !PageHighMem. 125 * - If the plaintext/ciphertext were to be divided into chunks of size 126 * crypto_aead_walksize() (with the remainder going at the end), no chunk 127 * can cross a page boundary or a scatterlist element boundary. 128 * ahash: 129 * - The result buffer must be aligned to the algorithm's alignmask. 130 * - crypto_ahash_finup() must not be used unless the algorithm implements 131 * ->finup() natively. 132 */ 133 #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 134 135 /* 136 * Mark an algorithm as a service implementation only usable by a 137 * template and never by a normal user of the kernel crypto API. 138 * This is intended to be used by algorithms that are themselves 139 * not FIPS-approved but may instead be used to implement parts of 140 * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)). 141 */ 142 #define CRYPTO_ALG_FIPS_INTERNAL 0x00020000 143 144 /* 145 * Transform masks and values (for crt_flags). 146 */ 147 #define CRYPTO_TFM_NEED_KEY 0x00000001 148 149 #define CRYPTO_TFM_REQ_MASK 0x000fff00 150 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 151 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 152 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 153 154 /* 155 * Miscellaneous stuff. 156 */ 157 #define CRYPTO_MAX_ALG_NAME 128 158 159 /* 160 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 161 * declaration) is used to ensure that the crypto_tfm context structure is 162 * aligned correctly for the given architecture so that there are no alignment 163 * faults for C data types. On architectures that support non-cache coherent 164 * DMA, such as ARM or arm64, it also takes into account the minimal alignment 165 * that is required to ensure that the context struct member does not share any 166 * cachelines with the rest of the struct. This is needed to ensure that cache 167 * maintenance for non-coherent DMA (cache invalidation in particular) does not 168 * affect data that may be accessed by the CPU concurrently. 169 */ 170 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 171 172 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 173 174 struct scatterlist; 175 struct crypto_async_request; 176 struct crypto_tfm; 177 struct crypto_type; 178 179 typedef void (*crypto_completion_t)(void *req, int err); 180 181 /** 182 * DOC: Block Cipher Context Data Structures 183 * 184 * These data structures define the operating context for each block cipher 185 * type. 186 */ 187 188 struct crypto_async_request { 189 struct list_head list; 190 crypto_completion_t complete; 191 void *data; 192 struct crypto_tfm *tfm; 193 194 u32 flags; 195 }; 196 197 /** 198 * DOC: Block Cipher Algorithm Definitions 199 * 200 * These data structures define modular crypto algorithm implementations, 201 * managed via crypto_register_alg() and crypto_unregister_alg(). 202 */ 203 204 /** 205 * struct cipher_alg - single-block symmetric ciphers definition 206 * @cia_min_keysize: Minimum key size supported by the transformation. This is 207 * the smallest key length supported by this transformation 208 * algorithm. This must be set to one of the pre-defined 209 * values as this is not hardware specific. Possible values 210 * for this field can be found via git grep "_MIN_KEY_SIZE" 211 * include/crypto/ 212 * @cia_max_keysize: Maximum key size supported by the transformation. This is 213 * the largest key length supported by this transformation 214 * algorithm. This must be set to one of the pre-defined values 215 * as this is not hardware specific. Possible values for this 216 * field can be found via git grep "_MAX_KEY_SIZE" 217 * include/crypto/ 218 * @cia_setkey: Set key for the transformation. This function is used to either 219 * program a supplied key into the hardware or store the key in the 220 * transformation context for programming it later. Note that this 221 * function does modify the transformation context. This function 222 * can be called multiple times during the existence of the 223 * transformation object, so one must make sure the key is properly 224 * reprogrammed into the hardware. This function is also 225 * responsible for checking the key length for validity. 226 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 227 * single block of data, which must be @cra_blocksize big. This 228 * always operates on a full @cra_blocksize and it is not possible 229 * to encrypt a block of smaller size. The supplied buffers must 230 * therefore also be at least of @cra_blocksize size. Both the 231 * input and output buffers are always aligned to @cra_alignmask. 232 * In case either of the input or output buffer supplied by user 233 * of the crypto API is not aligned to @cra_alignmask, the crypto 234 * API will re-align the buffers. The re-alignment means that a 235 * new buffer will be allocated, the data will be copied into the 236 * new buffer, then the processing will happen on the new buffer, 237 * then the data will be copied back into the original buffer and 238 * finally the new buffer will be freed. In case a software 239 * fallback was put in place in the @cra_init call, this function 240 * might need to use the fallback if the algorithm doesn't support 241 * all of the key sizes. In case the key was stored in 242 * transformation context, the key might need to be re-programmed 243 * into the hardware in this function. This function shall not 244 * modify the transformation context, as this function may be 245 * called in parallel with the same transformation object. 246 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 247 * @cia_encrypt, and the conditions are exactly the same. 248 * 249 * All fields are mandatory and must be filled. 250 */ 251 struct cipher_alg { 252 unsigned int cia_min_keysize; 253 unsigned int cia_max_keysize; 254 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 255 unsigned int keylen); 256 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 257 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 258 }; 259 260 /** 261 * struct compress_alg - compression/decompression algorithm 262 * @coa_compress: Compress a buffer of specified length, storing the resulting 263 * data in the specified buffer. Return the length of the 264 * compressed data in dlen. 265 * @coa_decompress: Decompress the source buffer, storing the uncompressed 266 * data in the specified buffer. The length of the data is 267 * returned in dlen. 268 * 269 * All fields are mandatory. 270 */ 271 struct compress_alg { 272 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 273 unsigned int slen, u8 *dst, unsigned int *dlen); 274 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 275 unsigned int slen, u8 *dst, unsigned int *dlen); 276 }; 277 278 #ifdef CONFIG_CRYPTO_STATS 279 /* 280 * struct crypto_istat_cipher - statistics for cipher algorithm 281 * @encrypt_cnt: number of encrypt requests 282 * @encrypt_tlen: total data size handled by encrypt requests 283 * @decrypt_cnt: number of decrypt requests 284 * @decrypt_tlen: total data size handled by decrypt requests 285 * @err_cnt: number of error for cipher requests 286 */ 287 struct crypto_istat_cipher { 288 atomic64_t encrypt_cnt; 289 atomic64_t encrypt_tlen; 290 atomic64_t decrypt_cnt; 291 atomic64_t decrypt_tlen; 292 atomic64_t err_cnt; 293 }; 294 295 /* 296 * struct crypto_istat_rng: statistics for RNG algorithm 297 * @generate_cnt: number of RNG generate requests 298 * @generate_tlen: total data size of generated data by the RNG 299 * @seed_cnt: number of times the RNG was seeded 300 * @err_cnt: number of error for RNG requests 301 */ 302 struct crypto_istat_rng { 303 atomic64_t generate_cnt; 304 atomic64_t generate_tlen; 305 atomic64_t seed_cnt; 306 atomic64_t err_cnt; 307 }; 308 #endif /* CONFIG_CRYPTO_STATS */ 309 310 #define cra_cipher cra_u.cipher 311 #define cra_compress cra_u.compress 312 313 /** 314 * struct crypto_alg - definition of a cryptograpic cipher algorithm 315 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 316 * CRYPTO_ALG_* flags for the flags which go in here. Those are 317 * used for fine-tuning the description of the transformation 318 * algorithm. 319 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 320 * of the smallest possible unit which can be transformed with 321 * this algorithm. The users must respect this value. 322 * In case of HASH transformation, it is possible for a smaller 323 * block than @cra_blocksize to be passed to the crypto API for 324 * transformation, in case of any other transformation type, an 325 * error will be returned upon any attempt to transform smaller 326 * than @cra_blocksize chunks. 327 * @cra_ctxsize: Size of the operational context of the transformation. This 328 * value informs the kernel crypto API about the memory size 329 * needed to be allocated for the transformation context. 330 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 331 * buffer containing the input data for the algorithm must be 332 * aligned to this alignment mask. The data buffer for the 333 * output data must be aligned to this alignment mask. Note that 334 * the Crypto API will do the re-alignment in software, but 335 * only under special conditions and there is a performance hit. 336 * The re-alignment happens at these occasions for different 337 * @cra_u types: cipher -- For both input data and output data 338 * buffer; ahash -- For output hash destination buf; shash -- 339 * For output hash destination buf. 340 * This is needed on hardware which is flawed by design and 341 * cannot pick data from arbitrary addresses. 342 * @cra_priority: Priority of this transformation implementation. In case 343 * multiple transformations with same @cra_name are available to 344 * the Crypto API, the kernel will use the one with highest 345 * @cra_priority. 346 * @cra_name: Generic name (usable by multiple implementations) of the 347 * transformation algorithm. This is the name of the transformation 348 * itself. This field is used by the kernel when looking up the 349 * providers of particular transformation. 350 * @cra_driver_name: Unique name of the transformation provider. This is the 351 * name of the provider of the transformation. This can be any 352 * arbitrary value, but in the usual case, this contains the 353 * name of the chip or provider and the name of the 354 * transformation algorithm. 355 * @cra_type: Type of the cryptographic transformation. This is a pointer to 356 * struct crypto_type, which implements callbacks common for all 357 * transformation types. There are multiple options, such as 358 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. 359 * This field might be empty. In that case, there are no common 360 * callbacks. This is the case for: cipher, compress, shash. 361 * @cra_u: Callbacks implementing the transformation. This is a union of 362 * multiple structures. Depending on the type of transformation selected 363 * by @cra_type and @cra_flags above, the associated structure must be 364 * filled with callbacks. This field might be empty. This is the case 365 * for ahash, shash. 366 * @cra_init: Initialize the cryptographic transformation object. This function 367 * is used to initialize the cryptographic transformation object. 368 * This function is called only once at the instantiation time, right 369 * after the transformation context was allocated. In case the 370 * cryptographic hardware has some special requirements which need to 371 * be handled by software, this function shall check for the precise 372 * requirement of the transformation and put any software fallbacks 373 * in place. 374 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 375 * counterpart to @cra_init, used to remove various changes set in 376 * @cra_init. 377 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 378 * definition. See @struct @cipher_alg. 379 * @cra_u.compress: Union member which contains a (de)compression algorithm. 380 * See @struct @compress_alg. 381 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 382 * @cra_list: internally used 383 * @cra_users: internally used 384 * @cra_refcnt: internally used 385 * @cra_destroy: internally used 386 * 387 * @stats: union of all possible crypto_istat_xxx structures 388 * @stats.cipher: statistics for cipher algorithm 389 * @stats.rng: statistics for rng algorithm 390 * 391 * The struct crypto_alg describes a generic Crypto API algorithm and is common 392 * for all of the transformations. Any variable not documented here shall not 393 * be used by a cipher implementation as it is internal to the Crypto API. 394 */ 395 struct crypto_alg { 396 struct list_head cra_list; 397 struct list_head cra_users; 398 399 u32 cra_flags; 400 unsigned int cra_blocksize; 401 unsigned int cra_ctxsize; 402 unsigned int cra_alignmask; 403 404 int cra_priority; 405 refcount_t cra_refcnt; 406 407 char cra_name[CRYPTO_MAX_ALG_NAME]; 408 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 409 410 const struct crypto_type *cra_type; 411 412 union { 413 struct cipher_alg cipher; 414 struct compress_alg compress; 415 } cra_u; 416 417 int (*cra_init)(struct crypto_tfm *tfm); 418 void (*cra_exit)(struct crypto_tfm *tfm); 419 void (*cra_destroy)(struct crypto_alg *alg); 420 421 struct module *cra_module; 422 423 #ifdef CONFIG_CRYPTO_STATS 424 union { 425 struct crypto_istat_cipher cipher; 426 struct crypto_istat_rng rng; 427 } stats; 428 #endif /* CONFIG_CRYPTO_STATS */ 429 430 } CRYPTO_MINALIGN_ATTR; 431 432 #ifdef CONFIG_CRYPTO_STATS 433 void crypto_stats_init(struct crypto_alg *alg); 434 void crypto_stats_get(struct crypto_alg *alg); 435 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 436 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 437 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 438 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 439 #else 440 static inline void crypto_stats_init(struct crypto_alg *alg) 441 {} 442 static inline void crypto_stats_get(struct crypto_alg *alg) 443 {} 444 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 445 {} 446 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 447 {} 448 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 449 {} 450 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 451 {} 452 #endif 453 /* 454 * A helper struct for waiting for completion of async crypto ops 455 */ 456 struct crypto_wait { 457 struct completion completion; 458 int err; 459 }; 460 461 /* 462 * Macro for declaring a crypto op async wait object on stack 463 */ 464 #define DECLARE_CRYPTO_WAIT(_wait) \ 465 struct crypto_wait _wait = { \ 466 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 467 468 /* 469 * Async ops completion helper functioons 470 */ 471 void crypto_req_done(void *req, int err); 472 473 static inline int crypto_wait_req(int err, struct crypto_wait *wait) 474 { 475 switch (err) { 476 case -EINPROGRESS: 477 case -EBUSY: 478 wait_for_completion(&wait->completion); 479 reinit_completion(&wait->completion); 480 err = wait->err; 481 break; 482 } 483 484 return err; 485 } 486 487 static inline void crypto_init_wait(struct crypto_wait *wait) 488 { 489 init_completion(&wait->completion); 490 } 491 492 /* 493 * Algorithm registration interface. 494 */ 495 int crypto_register_alg(struct crypto_alg *alg); 496 void crypto_unregister_alg(struct crypto_alg *alg); 497 int crypto_register_algs(struct crypto_alg *algs, int count); 498 void crypto_unregister_algs(struct crypto_alg *algs, int count); 499 500 /* 501 * Algorithm query interface. 502 */ 503 int crypto_has_alg(const char *name, u32 type, u32 mask); 504 505 /* 506 * Transforms: user-instantiated objects which encapsulate algorithms 507 * and core processing logic. Managed via crypto_alloc_*() and 508 * crypto_free_*(), as well as the various helpers below. 509 */ 510 511 struct crypto_tfm { 512 513 u32 crt_flags; 514 515 int node; 516 517 void (*exit)(struct crypto_tfm *tfm); 518 519 struct crypto_alg *__crt_alg; 520 521 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 522 }; 523 524 struct crypto_comp { 525 struct crypto_tfm base; 526 }; 527 528 /* 529 * Transform user interface. 530 */ 531 532 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 533 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 534 535 static inline void crypto_free_tfm(struct crypto_tfm *tfm) 536 { 537 return crypto_destroy_tfm(tfm, tfm); 538 } 539 540 int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 541 542 /* 543 * Transform helpers which query the underlying algorithm. 544 */ 545 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 546 { 547 return tfm->__crt_alg->cra_name; 548 } 549 550 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 551 { 552 return tfm->__crt_alg->cra_driver_name; 553 } 554 555 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 556 { 557 return tfm->__crt_alg->cra_priority; 558 } 559 560 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 561 { 562 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 563 } 564 565 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 566 { 567 return tfm->__crt_alg->cra_blocksize; 568 } 569 570 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 571 { 572 return tfm->__crt_alg->cra_alignmask; 573 } 574 575 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 576 { 577 return tfm->crt_flags; 578 } 579 580 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 581 { 582 tfm->crt_flags |= flags; 583 } 584 585 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 586 { 587 tfm->crt_flags &= ~flags; 588 } 589 590 static inline unsigned int crypto_tfm_ctx_alignment(void) 591 { 592 struct crypto_tfm *tfm; 593 return __alignof__(tfm->__crt_ctx); 594 } 595 596 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 597 { 598 return (struct crypto_comp *)tfm; 599 } 600 601 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 602 u32 type, u32 mask) 603 { 604 type &= ~CRYPTO_ALG_TYPE_MASK; 605 type |= CRYPTO_ALG_TYPE_COMPRESS; 606 mask |= CRYPTO_ALG_TYPE_MASK; 607 608 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 609 } 610 611 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 612 { 613 return &tfm->base; 614 } 615 616 static inline void crypto_free_comp(struct crypto_comp *tfm) 617 { 618 crypto_free_tfm(crypto_comp_tfm(tfm)); 619 } 620 621 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 622 { 623 type &= ~CRYPTO_ALG_TYPE_MASK; 624 type |= CRYPTO_ALG_TYPE_COMPRESS; 625 mask |= CRYPTO_ALG_TYPE_MASK; 626 627 return crypto_has_alg(alg_name, type, mask); 628 } 629 630 static inline const char *crypto_comp_name(struct crypto_comp *tfm) 631 { 632 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 633 } 634 635 int crypto_comp_compress(struct crypto_comp *tfm, 636 const u8 *src, unsigned int slen, 637 u8 *dst, unsigned int *dlen); 638 639 int crypto_comp_decompress(struct crypto_comp *tfm, 640 const u8 *src, unsigned int slen, 641 u8 *dst, unsigned int *dlen); 642 643 #endif /* _LINUX_CRYPTO_H */ 644 645