xref: /linux-6.15/include/linux/crypto.h (revision e00a844a)
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <[email protected]>
5  * Copyright (c) 2002 David S. Miller ([email protected])
6  * Copyright (c) 2005 Herbert Xu <[email protected]>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
9  * and Nettle, by Niels Möller.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19 
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
28 
29 /*
30  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31  * arbitrary modules to be loaded. Loading from userspace may still need the
32  * unprefixed names, so retains those aliases as well.
33  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35  * expands twice on the same line. Instead, use a separate base name for the
36  * alias.
37  */
38 #define MODULE_ALIAS_CRYPTO(name)	\
39 		__MODULE_INFO(alias, alias_userspace, name);	\
40 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
41 
42 /*
43  * Algorithm masks and types.
44  */
45 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
51 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
52 #define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
53 #define CRYPTO_ALG_TYPE_KPP		0x00000008
54 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
55 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
56 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
57 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
58 #define CRYPTO_ALG_TYPE_DIGEST		0x0000000e
59 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
60 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
61 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
62 
63 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
64 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
65 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
66 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
67 
68 #define CRYPTO_ALG_LARVAL		0x00000010
69 #define CRYPTO_ALG_DEAD			0x00000020
70 #define CRYPTO_ALG_DYING		0x00000040
71 #define CRYPTO_ALG_ASYNC		0x00000080
72 
73 /*
74  * Set this bit if and only if the algorithm requires another algorithm of
75  * the same type to handle corner cases.
76  */
77 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
78 
79 /*
80  * This bit is set for symmetric key ciphers that have already been wrapped
81  * with a generic IV generator to prevent them from being wrapped again.
82  */
83 #define CRYPTO_ALG_GENIV		0x00000200
84 
85 /*
86  * Set if the algorithm has passed automated run-time testing.  Note that
87  * if there is no run-time testing for a given algorithm it is considered
88  * to have passed.
89  */
90 
91 #define CRYPTO_ALG_TESTED		0x00000400
92 
93 /*
94  * Set if the algorithm is an instance that is built from templates.
95  */
96 #define CRYPTO_ALG_INSTANCE		0x00000800
97 
98 /* Set this bit if the algorithm provided is hardware accelerated but
99  * not available to userspace via instruction set or so.
100  */
101 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
102 
103 /*
104  * Mark a cipher as a service implementation only usable by another
105  * cipher and never by a normal user of the kernel crypto API
106  */
107 #define CRYPTO_ALG_INTERNAL		0x00002000
108 
109 /*
110  * Transform masks and values (for crt_flags).
111  */
112 #define CRYPTO_TFM_REQ_MASK		0x000fff00
113 #define CRYPTO_TFM_RES_MASK		0xfff00000
114 
115 #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
116 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
117 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
118 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
119 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
120 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
121 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
122 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
123 
124 /*
125  * Miscellaneous stuff.
126  */
127 #define CRYPTO_MAX_ALG_NAME		128
128 
129 /*
130  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
131  * declaration) is used to ensure that the crypto_tfm context structure is
132  * aligned correctly for the given architecture so that there are no alignment
133  * faults for C data types.  In particular, this is required on platforms such
134  * as arm where pointers are 32-bit aligned but there are data types such as
135  * u64 which require 64-bit alignment.
136  */
137 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
138 
139 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
140 
141 struct scatterlist;
142 struct crypto_ablkcipher;
143 struct crypto_async_request;
144 struct crypto_blkcipher;
145 struct crypto_tfm;
146 struct crypto_type;
147 struct skcipher_givcrypt_request;
148 
149 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
150 
151 /**
152  * DOC: Block Cipher Context Data Structures
153  *
154  * These data structures define the operating context for each block cipher
155  * type.
156  */
157 
158 struct crypto_async_request {
159 	struct list_head list;
160 	crypto_completion_t complete;
161 	void *data;
162 	struct crypto_tfm *tfm;
163 
164 	u32 flags;
165 };
166 
167 struct ablkcipher_request {
168 	struct crypto_async_request base;
169 
170 	unsigned int nbytes;
171 
172 	void *info;
173 
174 	struct scatterlist *src;
175 	struct scatterlist *dst;
176 
177 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
178 };
179 
180 struct blkcipher_desc {
181 	struct crypto_blkcipher *tfm;
182 	void *info;
183 	u32 flags;
184 };
185 
186 struct cipher_desc {
187 	struct crypto_tfm *tfm;
188 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
189 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
190 			     const u8 *src, unsigned int nbytes);
191 	void *info;
192 };
193 
194 /**
195  * DOC: Block Cipher Algorithm Definitions
196  *
197  * These data structures define modular crypto algorithm implementations,
198  * managed via crypto_register_alg() and crypto_unregister_alg().
199  */
200 
201 /**
202  * struct ablkcipher_alg - asynchronous block cipher definition
203  * @min_keysize: Minimum key size supported by the transformation. This is the
204  *		 smallest key length supported by this transformation algorithm.
205  *		 This must be set to one of the pre-defined values as this is
206  *		 not hardware specific. Possible values for this field can be
207  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
208  * @max_keysize: Maximum key size supported by the transformation. This is the
209  *		 largest key length supported by this transformation algorithm.
210  *		 This must be set to one of the pre-defined values as this is
211  *		 not hardware specific. Possible values for this field can be
212  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
213  * @setkey: Set key for the transformation. This function is used to either
214  *	    program a supplied key into the hardware or store the key in the
215  *	    transformation context for programming it later. Note that this
216  *	    function does modify the transformation context. This function can
217  *	    be called multiple times during the existence of the transformation
218  *	    object, so one must make sure the key is properly reprogrammed into
219  *	    the hardware. This function is also responsible for checking the key
220  *	    length for validity. In case a software fallback was put in place in
221  *	    the @cra_init call, this function might need to use the fallback if
222  *	    the algorithm doesn't support all of the key sizes.
223  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
224  *	     the supplied scatterlist containing the blocks of data. The crypto
225  *	     API consumer is responsible for aligning the entries of the
226  *	     scatterlist properly and making sure the chunks are correctly
227  *	     sized. In case a software fallback was put in place in the
228  *	     @cra_init call, this function might need to use the fallback if
229  *	     the algorithm doesn't support all of the key sizes. In case the
230  *	     key was stored in transformation context, the key might need to be
231  *	     re-programmed into the hardware in this function. This function
232  *	     shall not modify the transformation context, as this function may
233  *	     be called in parallel with the same transformation object.
234  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
235  *	     and the conditions are exactly the same.
236  * @givencrypt: Update the IV for encryption. With this function, a cipher
237  *	        implementation may provide the function on how to update the IV
238  *	        for encryption.
239  * @givdecrypt: Update the IV for decryption. This is the reverse of
240  *	        @givencrypt .
241  * @geniv: The transformation implementation may use an "IV generator" provided
242  *	   by the kernel crypto API. Several use cases have a predefined
243  *	   approach how IVs are to be updated. For such use cases, the kernel
244  *	   crypto API provides ready-to-use implementations that can be
245  *	   referenced with this variable.
246  * @ivsize: IV size applicable for transformation. The consumer must provide an
247  *	    IV of exactly that size to perform the encrypt or decrypt operation.
248  *
249  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
250  * mandatory and must be filled.
251  */
252 struct ablkcipher_alg {
253 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
254 	              unsigned int keylen);
255 	int (*encrypt)(struct ablkcipher_request *req);
256 	int (*decrypt)(struct ablkcipher_request *req);
257 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
258 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
259 
260 	const char *geniv;
261 
262 	unsigned int min_keysize;
263 	unsigned int max_keysize;
264 	unsigned int ivsize;
265 };
266 
267 /**
268  * struct blkcipher_alg - synchronous block cipher definition
269  * @min_keysize: see struct ablkcipher_alg
270  * @max_keysize: see struct ablkcipher_alg
271  * @setkey: see struct ablkcipher_alg
272  * @encrypt: see struct ablkcipher_alg
273  * @decrypt: see struct ablkcipher_alg
274  * @geniv: see struct ablkcipher_alg
275  * @ivsize: see struct ablkcipher_alg
276  *
277  * All fields except @geniv and @ivsize are mandatory and must be filled.
278  */
279 struct blkcipher_alg {
280 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
281 	              unsigned int keylen);
282 	int (*encrypt)(struct blkcipher_desc *desc,
283 		       struct scatterlist *dst, struct scatterlist *src,
284 		       unsigned int nbytes);
285 	int (*decrypt)(struct blkcipher_desc *desc,
286 		       struct scatterlist *dst, struct scatterlist *src,
287 		       unsigned int nbytes);
288 
289 	const char *geniv;
290 
291 	unsigned int min_keysize;
292 	unsigned int max_keysize;
293 	unsigned int ivsize;
294 };
295 
296 /**
297  * struct cipher_alg - single-block symmetric ciphers definition
298  * @cia_min_keysize: Minimum key size supported by the transformation. This is
299  *		     the smallest key length supported by this transformation
300  *		     algorithm. This must be set to one of the pre-defined
301  *		     values as this is not hardware specific. Possible values
302  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
303  *		     include/crypto/
304  * @cia_max_keysize: Maximum key size supported by the transformation. This is
305  *		    the largest key length supported by this transformation
306  *		    algorithm. This must be set to one of the pre-defined values
307  *		    as this is not hardware specific. Possible values for this
308  *		    field can be found via git grep "_MAX_KEY_SIZE"
309  *		    include/crypto/
310  * @cia_setkey: Set key for the transformation. This function is used to either
311  *	        program a supplied key into the hardware or store the key in the
312  *	        transformation context for programming it later. Note that this
313  *	        function does modify the transformation context. This function
314  *	        can be called multiple times during the existence of the
315  *	        transformation object, so one must make sure the key is properly
316  *	        reprogrammed into the hardware. This function is also
317  *	        responsible for checking the key length for validity.
318  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
319  *		 single block of data, which must be @cra_blocksize big. This
320  *		 always operates on a full @cra_blocksize and it is not possible
321  *		 to encrypt a block of smaller size. The supplied buffers must
322  *		 therefore also be at least of @cra_blocksize size. Both the
323  *		 input and output buffers are always aligned to @cra_alignmask.
324  *		 In case either of the input or output buffer supplied by user
325  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
326  *		 API will re-align the buffers. The re-alignment means that a
327  *		 new buffer will be allocated, the data will be copied into the
328  *		 new buffer, then the processing will happen on the new buffer,
329  *		 then the data will be copied back into the original buffer and
330  *		 finally the new buffer will be freed. In case a software
331  *		 fallback was put in place in the @cra_init call, this function
332  *		 might need to use the fallback if the algorithm doesn't support
333  *		 all of the key sizes. In case the key was stored in
334  *		 transformation context, the key might need to be re-programmed
335  *		 into the hardware in this function. This function shall not
336  *		 modify the transformation context, as this function may be
337  *		 called in parallel with the same transformation object.
338  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
339  *		 @cia_encrypt, and the conditions are exactly the same.
340  *
341  * All fields are mandatory and must be filled.
342  */
343 struct cipher_alg {
344 	unsigned int cia_min_keysize;
345 	unsigned int cia_max_keysize;
346 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
347 	                  unsigned int keylen);
348 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
349 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
350 };
351 
352 struct compress_alg {
353 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
354 			    unsigned int slen, u8 *dst, unsigned int *dlen);
355 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
356 			      unsigned int slen, u8 *dst, unsigned int *dlen);
357 };
358 
359 
360 #define cra_ablkcipher	cra_u.ablkcipher
361 #define cra_blkcipher	cra_u.blkcipher
362 #define cra_cipher	cra_u.cipher
363 #define cra_compress	cra_u.compress
364 
365 /**
366  * struct crypto_alg - definition of a cryptograpic cipher algorithm
367  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
368  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
369  *	       used for fine-tuning the description of the transformation
370  *	       algorithm.
371  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
372  *		   of the smallest possible unit which can be transformed with
373  *		   this algorithm. The users must respect this value.
374  *		   In case of HASH transformation, it is possible for a smaller
375  *		   block than @cra_blocksize to be passed to the crypto API for
376  *		   transformation, in case of any other transformation type, an
377  * 		   error will be returned upon any attempt to transform smaller
378  *		   than @cra_blocksize chunks.
379  * @cra_ctxsize: Size of the operational context of the transformation. This
380  *		 value informs the kernel crypto API about the memory size
381  *		 needed to be allocated for the transformation context.
382  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
383  *		   buffer containing the input data for the algorithm must be
384  *		   aligned to this alignment mask. The data buffer for the
385  *		   output data must be aligned to this alignment mask. Note that
386  *		   the Crypto API will do the re-alignment in software, but
387  *		   only under special conditions and there is a performance hit.
388  *		   The re-alignment happens at these occasions for different
389  *		   @cra_u types: cipher -- For both input data and output data
390  *		   buffer; ahash -- For output hash destination buf; shash --
391  *		   For output hash destination buf.
392  *		   This is needed on hardware which is flawed by design and
393  *		   cannot pick data from arbitrary addresses.
394  * @cra_priority: Priority of this transformation implementation. In case
395  *		  multiple transformations with same @cra_name are available to
396  *		  the Crypto API, the kernel will use the one with highest
397  *		  @cra_priority.
398  * @cra_name: Generic name (usable by multiple implementations) of the
399  *	      transformation algorithm. This is the name of the transformation
400  *	      itself. This field is used by the kernel when looking up the
401  *	      providers of particular transformation.
402  * @cra_driver_name: Unique name of the transformation provider. This is the
403  *		     name of the provider of the transformation. This can be any
404  *		     arbitrary value, but in the usual case, this contains the
405  *		     name of the chip or provider and the name of the
406  *		     transformation algorithm.
407  * @cra_type: Type of the cryptographic transformation. This is a pointer to
408  *	      struct crypto_type, which implements callbacks common for all
409  *	      transformation types. There are multiple options:
410  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
411  *	      &crypto_ahash_type, &crypto_rng_type.
412  *	      This field might be empty. In that case, there are no common
413  *	      callbacks. This is the case for: cipher, compress, shash.
414  * @cra_u: Callbacks implementing the transformation. This is a union of
415  *	   multiple structures. Depending on the type of transformation selected
416  *	   by @cra_type and @cra_flags above, the associated structure must be
417  *	   filled with callbacks. This field might be empty. This is the case
418  *	   for ahash, shash.
419  * @cra_init: Initialize the cryptographic transformation object. This function
420  *	      is used to initialize the cryptographic transformation object.
421  *	      This function is called only once at the instantiation time, right
422  *	      after the transformation context was allocated. In case the
423  *	      cryptographic hardware has some special requirements which need to
424  *	      be handled by software, this function shall check for the precise
425  *	      requirement of the transformation and put any software fallbacks
426  *	      in place.
427  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
428  *	      counterpart to @cra_init, used to remove various changes set in
429  *	      @cra_init.
430  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
431  * @cra_list: internally used
432  * @cra_users: internally used
433  * @cra_refcnt: internally used
434  * @cra_destroy: internally used
435  *
436  * The struct crypto_alg describes a generic Crypto API algorithm and is common
437  * for all of the transformations. Any variable not documented here shall not
438  * be used by a cipher implementation as it is internal to the Crypto API.
439  */
440 struct crypto_alg {
441 	struct list_head cra_list;
442 	struct list_head cra_users;
443 
444 	u32 cra_flags;
445 	unsigned int cra_blocksize;
446 	unsigned int cra_ctxsize;
447 	unsigned int cra_alignmask;
448 
449 	int cra_priority;
450 	atomic_t cra_refcnt;
451 
452 	char cra_name[CRYPTO_MAX_ALG_NAME];
453 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
454 
455 	const struct crypto_type *cra_type;
456 
457 	union {
458 		struct ablkcipher_alg ablkcipher;
459 		struct blkcipher_alg blkcipher;
460 		struct cipher_alg cipher;
461 		struct compress_alg compress;
462 	} cra_u;
463 
464 	int (*cra_init)(struct crypto_tfm *tfm);
465 	void (*cra_exit)(struct crypto_tfm *tfm);
466 	void (*cra_destroy)(struct crypto_alg *alg);
467 
468 	struct module *cra_module;
469 } CRYPTO_MINALIGN_ATTR;
470 
471 /*
472  * A helper struct for waiting for completion of async crypto ops
473  */
474 struct crypto_wait {
475 	struct completion completion;
476 	int err;
477 };
478 
479 /*
480  * Macro for declaring a crypto op async wait object on stack
481  */
482 #define DECLARE_CRYPTO_WAIT(_wait) \
483 	struct crypto_wait _wait = { \
484 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
485 
486 /*
487  * Async ops completion helper functioons
488  */
489 void crypto_req_done(struct crypto_async_request *req, int err);
490 
491 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
492 {
493 	switch (err) {
494 	case -EINPROGRESS:
495 	case -EBUSY:
496 		wait_for_completion(&wait->completion);
497 		reinit_completion(&wait->completion);
498 		err = wait->err;
499 		break;
500 	};
501 
502 	return err;
503 }
504 
505 static inline void crypto_init_wait(struct crypto_wait *wait)
506 {
507 	init_completion(&wait->completion);
508 }
509 
510 /*
511  * Algorithm registration interface.
512  */
513 int crypto_register_alg(struct crypto_alg *alg);
514 int crypto_unregister_alg(struct crypto_alg *alg);
515 int crypto_register_algs(struct crypto_alg *algs, int count);
516 int crypto_unregister_algs(struct crypto_alg *algs, int count);
517 
518 /*
519  * Algorithm query interface.
520  */
521 int crypto_has_alg(const char *name, u32 type, u32 mask);
522 
523 /*
524  * Transforms: user-instantiated objects which encapsulate algorithms
525  * and core processing logic.  Managed via crypto_alloc_*() and
526  * crypto_free_*(), as well as the various helpers below.
527  */
528 
529 struct ablkcipher_tfm {
530 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
531 	              unsigned int keylen);
532 	int (*encrypt)(struct ablkcipher_request *req);
533 	int (*decrypt)(struct ablkcipher_request *req);
534 
535 	struct crypto_ablkcipher *base;
536 
537 	unsigned int ivsize;
538 	unsigned int reqsize;
539 };
540 
541 struct blkcipher_tfm {
542 	void *iv;
543 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
544 		      unsigned int keylen);
545 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
546 		       struct scatterlist *src, unsigned int nbytes);
547 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
548 		       struct scatterlist *src, unsigned int nbytes);
549 };
550 
551 struct cipher_tfm {
552 	int (*cit_setkey)(struct crypto_tfm *tfm,
553 	                  const u8 *key, unsigned int keylen);
554 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
555 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
556 };
557 
558 struct compress_tfm {
559 	int (*cot_compress)(struct crypto_tfm *tfm,
560 	                    const u8 *src, unsigned int slen,
561 	                    u8 *dst, unsigned int *dlen);
562 	int (*cot_decompress)(struct crypto_tfm *tfm,
563 	                      const u8 *src, unsigned int slen,
564 	                      u8 *dst, unsigned int *dlen);
565 };
566 
567 #define crt_ablkcipher	crt_u.ablkcipher
568 #define crt_blkcipher	crt_u.blkcipher
569 #define crt_cipher	crt_u.cipher
570 #define crt_compress	crt_u.compress
571 
572 struct crypto_tfm {
573 
574 	u32 crt_flags;
575 
576 	union {
577 		struct ablkcipher_tfm ablkcipher;
578 		struct blkcipher_tfm blkcipher;
579 		struct cipher_tfm cipher;
580 		struct compress_tfm compress;
581 	} crt_u;
582 
583 	void (*exit)(struct crypto_tfm *tfm);
584 
585 	struct crypto_alg *__crt_alg;
586 
587 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
588 };
589 
590 struct crypto_ablkcipher {
591 	struct crypto_tfm base;
592 };
593 
594 struct crypto_blkcipher {
595 	struct crypto_tfm base;
596 };
597 
598 struct crypto_cipher {
599 	struct crypto_tfm base;
600 };
601 
602 struct crypto_comp {
603 	struct crypto_tfm base;
604 };
605 
606 enum {
607 	CRYPTOA_UNSPEC,
608 	CRYPTOA_ALG,
609 	CRYPTOA_TYPE,
610 	CRYPTOA_U32,
611 	__CRYPTOA_MAX,
612 };
613 
614 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
615 
616 /* Maximum number of (rtattr) parameters for each template. */
617 #define CRYPTO_MAX_ATTRS 32
618 
619 struct crypto_attr_alg {
620 	char name[CRYPTO_MAX_ALG_NAME];
621 };
622 
623 struct crypto_attr_type {
624 	u32 type;
625 	u32 mask;
626 };
627 
628 struct crypto_attr_u32 {
629 	u32 num;
630 };
631 
632 /*
633  * Transform user interface.
634  */
635 
636 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
637 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
638 
639 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
640 {
641 	return crypto_destroy_tfm(tfm, tfm);
642 }
643 
644 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
645 
646 /*
647  * Transform helpers which query the underlying algorithm.
648  */
649 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
650 {
651 	return tfm->__crt_alg->cra_name;
652 }
653 
654 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
655 {
656 	return tfm->__crt_alg->cra_driver_name;
657 }
658 
659 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
660 {
661 	return tfm->__crt_alg->cra_priority;
662 }
663 
664 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
665 {
666 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
667 }
668 
669 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
670 {
671 	return tfm->__crt_alg->cra_blocksize;
672 }
673 
674 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
675 {
676 	return tfm->__crt_alg->cra_alignmask;
677 }
678 
679 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
680 {
681 	return tfm->crt_flags;
682 }
683 
684 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
685 {
686 	tfm->crt_flags |= flags;
687 }
688 
689 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
690 {
691 	tfm->crt_flags &= ~flags;
692 }
693 
694 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
695 {
696 	return tfm->__crt_ctx;
697 }
698 
699 static inline unsigned int crypto_tfm_ctx_alignment(void)
700 {
701 	struct crypto_tfm *tfm;
702 	return __alignof__(tfm->__crt_ctx);
703 }
704 
705 /*
706  * API wrappers.
707  */
708 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
709 	struct crypto_tfm *tfm)
710 {
711 	return (struct crypto_ablkcipher *)tfm;
712 }
713 
714 static inline u32 crypto_skcipher_type(u32 type)
715 {
716 	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
717 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
718 	return type;
719 }
720 
721 static inline u32 crypto_skcipher_mask(u32 mask)
722 {
723 	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
724 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
725 	return mask;
726 }
727 
728 /**
729  * DOC: Asynchronous Block Cipher API
730  *
731  * Asynchronous block cipher API is used with the ciphers of type
732  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
733  *
734  * Asynchronous cipher operations imply that the function invocation for a
735  * cipher request returns immediately before the completion of the operation.
736  * The cipher request is scheduled as a separate kernel thread and therefore
737  * load-balanced on the different CPUs via the process scheduler. To allow
738  * the kernel crypto API to inform the caller about the completion of a cipher
739  * request, the caller must provide a callback function. That function is
740  * invoked with the cipher handle when the request completes.
741  *
742  * To support the asynchronous operation, additional information than just the
743  * cipher handle must be supplied to the kernel crypto API. That additional
744  * information is given by filling in the ablkcipher_request data structure.
745  *
746  * For the asynchronous block cipher API, the state is maintained with the tfm
747  * cipher handle. A single tfm can be used across multiple calls and in
748  * parallel. For asynchronous block cipher calls, context data supplied and
749  * only used by the caller can be referenced the request data structure in
750  * addition to the IV used for the cipher request. The maintenance of such
751  * state information would be important for a crypto driver implementer to
752  * have, because when calling the callback function upon completion of the
753  * cipher operation, that callback function may need some information about
754  * which operation just finished if it invoked multiple in parallel. This
755  * state information is unused by the kernel crypto API.
756  */
757 
758 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
759 	struct crypto_ablkcipher *tfm)
760 {
761 	return &tfm->base;
762 }
763 
764 /**
765  * crypto_free_ablkcipher() - zeroize and free cipher handle
766  * @tfm: cipher handle to be freed
767  */
768 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
769 {
770 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
771 }
772 
773 /**
774  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
775  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
776  *	      ablkcipher
777  * @type: specifies the type of the cipher
778  * @mask: specifies the mask for the cipher
779  *
780  * Return: true when the ablkcipher is known to the kernel crypto API; false
781  *	   otherwise
782  */
783 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
784 					u32 mask)
785 {
786 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
787 			      crypto_skcipher_mask(mask));
788 }
789 
790 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
791 	struct crypto_ablkcipher *tfm)
792 {
793 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
794 }
795 
796 /**
797  * crypto_ablkcipher_ivsize() - obtain IV size
798  * @tfm: cipher handle
799  *
800  * The size of the IV for the ablkcipher referenced by the cipher handle is
801  * returned. This IV size may be zero if the cipher does not need an IV.
802  *
803  * Return: IV size in bytes
804  */
805 static inline unsigned int crypto_ablkcipher_ivsize(
806 	struct crypto_ablkcipher *tfm)
807 {
808 	return crypto_ablkcipher_crt(tfm)->ivsize;
809 }
810 
811 /**
812  * crypto_ablkcipher_blocksize() - obtain block size of cipher
813  * @tfm: cipher handle
814  *
815  * The block size for the ablkcipher referenced with the cipher handle is
816  * returned. The caller may use that information to allocate appropriate
817  * memory for the data returned by the encryption or decryption operation
818  *
819  * Return: block size of cipher
820  */
821 static inline unsigned int crypto_ablkcipher_blocksize(
822 	struct crypto_ablkcipher *tfm)
823 {
824 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
825 }
826 
827 static inline unsigned int crypto_ablkcipher_alignmask(
828 	struct crypto_ablkcipher *tfm)
829 {
830 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
831 }
832 
833 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
834 {
835 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
836 }
837 
838 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
839 					       u32 flags)
840 {
841 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
842 }
843 
844 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
845 						 u32 flags)
846 {
847 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
848 }
849 
850 /**
851  * crypto_ablkcipher_setkey() - set key for cipher
852  * @tfm: cipher handle
853  * @key: buffer holding the key
854  * @keylen: length of the key in bytes
855  *
856  * The caller provided key is set for the ablkcipher referenced by the cipher
857  * handle.
858  *
859  * Note, the key length determines the cipher type. Many block ciphers implement
860  * different cipher modes depending on the key size, such as AES-128 vs AES-192
861  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
862  * is performed.
863  *
864  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
865  */
866 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
867 					   const u8 *key, unsigned int keylen)
868 {
869 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
870 
871 	return crt->setkey(crt->base, key, keylen);
872 }
873 
874 /**
875  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
876  * @req: ablkcipher_request out of which the cipher handle is to be obtained
877  *
878  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
879  * data structure.
880  *
881  * Return: crypto_ablkcipher handle
882  */
883 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
884 	struct ablkcipher_request *req)
885 {
886 	return __crypto_ablkcipher_cast(req->base.tfm);
887 }
888 
889 /**
890  * crypto_ablkcipher_encrypt() - encrypt plaintext
891  * @req: reference to the ablkcipher_request handle that holds all information
892  *	 needed to perform the cipher operation
893  *
894  * Encrypt plaintext data using the ablkcipher_request handle. That data
895  * structure and how it is filled with data is discussed with the
896  * ablkcipher_request_* functions.
897  *
898  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
899  */
900 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
901 {
902 	struct ablkcipher_tfm *crt =
903 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
904 	return crt->encrypt(req);
905 }
906 
907 /**
908  * crypto_ablkcipher_decrypt() - decrypt ciphertext
909  * @req: reference to the ablkcipher_request handle that holds all information
910  *	 needed to perform the cipher operation
911  *
912  * Decrypt ciphertext data using the ablkcipher_request handle. That data
913  * structure and how it is filled with data is discussed with the
914  * ablkcipher_request_* functions.
915  *
916  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
917  */
918 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
919 {
920 	struct ablkcipher_tfm *crt =
921 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
922 	return crt->decrypt(req);
923 }
924 
925 /**
926  * DOC: Asynchronous Cipher Request Handle
927  *
928  * The ablkcipher_request data structure contains all pointers to data
929  * required for the asynchronous cipher operation. This includes the cipher
930  * handle (which can be used by multiple ablkcipher_request instances), pointer
931  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
932  * as a handle to the ablkcipher_request_* API calls in a similar way as
933  * ablkcipher handle to the crypto_ablkcipher_* API calls.
934  */
935 
936 /**
937  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
938  * @tfm: cipher handle
939  *
940  * Return: number of bytes
941  */
942 static inline unsigned int crypto_ablkcipher_reqsize(
943 	struct crypto_ablkcipher *tfm)
944 {
945 	return crypto_ablkcipher_crt(tfm)->reqsize;
946 }
947 
948 /**
949  * ablkcipher_request_set_tfm() - update cipher handle reference in request
950  * @req: request handle to be modified
951  * @tfm: cipher handle that shall be added to the request handle
952  *
953  * Allow the caller to replace the existing ablkcipher handle in the request
954  * data structure with a different one.
955  */
956 static inline void ablkcipher_request_set_tfm(
957 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
958 {
959 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
960 }
961 
962 static inline struct ablkcipher_request *ablkcipher_request_cast(
963 	struct crypto_async_request *req)
964 {
965 	return container_of(req, struct ablkcipher_request, base);
966 }
967 
968 /**
969  * ablkcipher_request_alloc() - allocate request data structure
970  * @tfm: cipher handle to be registered with the request
971  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
972  *
973  * Allocate the request data structure that must be used with the ablkcipher
974  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
975  * handle is registered in the request data structure.
976  *
977  * Return: allocated request handle in case of success, or NULL if out of memory
978  */
979 static inline struct ablkcipher_request *ablkcipher_request_alloc(
980 	struct crypto_ablkcipher *tfm, gfp_t gfp)
981 {
982 	struct ablkcipher_request *req;
983 
984 	req = kmalloc(sizeof(struct ablkcipher_request) +
985 		      crypto_ablkcipher_reqsize(tfm), gfp);
986 
987 	if (likely(req))
988 		ablkcipher_request_set_tfm(req, tfm);
989 
990 	return req;
991 }
992 
993 /**
994  * ablkcipher_request_free() - zeroize and free request data structure
995  * @req: request data structure cipher handle to be freed
996  */
997 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
998 {
999 	kzfree(req);
1000 }
1001 
1002 /**
1003  * ablkcipher_request_set_callback() - set asynchronous callback function
1004  * @req: request handle
1005  * @flags: specify zero or an ORing of the flags
1006  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1007  *	   increase the wait queue beyond the initial maximum size;
1008  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1009  * @compl: callback function pointer to be registered with the request handle
1010  * @data: The data pointer refers to memory that is not used by the kernel
1011  *	  crypto API, but provided to the callback function for it to use. Here,
1012  *	  the caller can provide a reference to memory the callback function can
1013  *	  operate on. As the callback function is invoked asynchronously to the
1014  *	  related functionality, it may need to access data structures of the
1015  *	  related functionality which can be referenced using this pointer. The
1016  *	  callback function can access the memory via the "data" field in the
1017  *	  crypto_async_request data structure provided to the callback function.
1018  *
1019  * This function allows setting the callback function that is triggered once the
1020  * cipher operation completes.
1021  *
1022  * The callback function is registered with the ablkcipher_request handle and
1023  * must comply with the following template::
1024  *
1025  *	void callback_function(struct crypto_async_request *req, int error)
1026  */
1027 static inline void ablkcipher_request_set_callback(
1028 	struct ablkcipher_request *req,
1029 	u32 flags, crypto_completion_t compl, void *data)
1030 {
1031 	req->base.complete = compl;
1032 	req->base.data = data;
1033 	req->base.flags = flags;
1034 }
1035 
1036 /**
1037  * ablkcipher_request_set_crypt() - set data buffers
1038  * @req: request handle
1039  * @src: source scatter / gather list
1040  * @dst: destination scatter / gather list
1041  * @nbytes: number of bytes to process from @src
1042  * @iv: IV for the cipher operation which must comply with the IV size defined
1043  *      by crypto_ablkcipher_ivsize
1044  *
1045  * This function allows setting of the source data and destination data
1046  * scatter / gather lists.
1047  *
1048  * For encryption, the source is treated as the plaintext and the
1049  * destination is the ciphertext. For a decryption operation, the use is
1050  * reversed - the source is the ciphertext and the destination is the plaintext.
1051  */
1052 static inline void ablkcipher_request_set_crypt(
1053 	struct ablkcipher_request *req,
1054 	struct scatterlist *src, struct scatterlist *dst,
1055 	unsigned int nbytes, void *iv)
1056 {
1057 	req->src = src;
1058 	req->dst = dst;
1059 	req->nbytes = nbytes;
1060 	req->info = iv;
1061 }
1062 
1063 /**
1064  * DOC: Synchronous Block Cipher API
1065  *
1066  * The synchronous block cipher API is used with the ciphers of type
1067  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1068  *
1069  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1070  * used in multiple calls and in parallel, this info should not be changeable
1071  * (unless a lock is used). This applies, for example, to the symmetric key.
1072  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1073  * structure for synchronous blkcipher api. So, its the only state info that can
1074  * be kept for synchronous calls without using a big lock across a tfm.
1075  *
1076  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1077  * consisting of a template (a block chaining mode) and a single block cipher
1078  * primitive (e.g. AES).
1079  *
1080  * The plaintext data buffer and the ciphertext data buffer are pointed to
1081  * by using scatter/gather lists. The cipher operation is performed
1082  * on all segments of the provided scatter/gather lists.
1083  *
1084  * The kernel crypto API supports a cipher operation "in-place" which means that
1085  * the caller may provide the same scatter/gather list for the plaintext and
1086  * cipher text. After the completion of the cipher operation, the plaintext
1087  * data is replaced with the ciphertext data in case of an encryption and vice
1088  * versa for a decryption. The caller must ensure that the scatter/gather lists
1089  * for the output data point to sufficiently large buffers, i.e. multiples of
1090  * the block size of the cipher.
1091  */
1092 
1093 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1094 	struct crypto_tfm *tfm)
1095 {
1096 	return (struct crypto_blkcipher *)tfm;
1097 }
1098 
1099 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1100 	struct crypto_tfm *tfm)
1101 {
1102 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1103 	return __crypto_blkcipher_cast(tfm);
1104 }
1105 
1106 /**
1107  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1108  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1109  *	      blkcipher cipher
1110  * @type: specifies the type of the cipher
1111  * @mask: specifies the mask for the cipher
1112  *
1113  * Allocate a cipher handle for a block cipher. The returned struct
1114  * crypto_blkcipher is the cipher handle that is required for any subsequent
1115  * API invocation for that block cipher.
1116  *
1117  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1118  *	   of an error, PTR_ERR() returns the error code.
1119  */
1120 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1121 	const char *alg_name, u32 type, u32 mask)
1122 {
1123 	type &= ~CRYPTO_ALG_TYPE_MASK;
1124 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1125 	mask |= CRYPTO_ALG_TYPE_MASK;
1126 
1127 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1128 }
1129 
1130 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1131 	struct crypto_blkcipher *tfm)
1132 {
1133 	return &tfm->base;
1134 }
1135 
1136 /**
1137  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1138  * @tfm: cipher handle to be freed
1139  */
1140 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1141 {
1142 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1143 }
1144 
1145 /**
1146  * crypto_has_blkcipher() - Search for the availability of a block cipher
1147  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1148  *	      block cipher
1149  * @type: specifies the type of the cipher
1150  * @mask: specifies the mask for the cipher
1151  *
1152  * Return: true when the block cipher is known to the kernel crypto API; false
1153  *	   otherwise
1154  */
1155 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1156 {
1157 	type &= ~CRYPTO_ALG_TYPE_MASK;
1158 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1159 	mask |= CRYPTO_ALG_TYPE_MASK;
1160 
1161 	return crypto_has_alg(alg_name, type, mask);
1162 }
1163 
1164 /**
1165  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1166  * @tfm: cipher handle
1167  *
1168  * Return: The character string holding the name of the cipher
1169  */
1170 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1171 {
1172 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1173 }
1174 
1175 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1176 	struct crypto_blkcipher *tfm)
1177 {
1178 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1179 }
1180 
1181 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1182 	struct crypto_blkcipher *tfm)
1183 {
1184 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1185 }
1186 
1187 /**
1188  * crypto_blkcipher_ivsize() - obtain IV size
1189  * @tfm: cipher handle
1190  *
1191  * The size of the IV for the block cipher referenced by the cipher handle is
1192  * returned. This IV size may be zero if the cipher does not need an IV.
1193  *
1194  * Return: IV size in bytes
1195  */
1196 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1197 {
1198 	return crypto_blkcipher_alg(tfm)->ivsize;
1199 }
1200 
1201 /**
1202  * crypto_blkcipher_blocksize() - obtain block size of cipher
1203  * @tfm: cipher handle
1204  *
1205  * The block size for the block cipher referenced with the cipher handle is
1206  * returned. The caller may use that information to allocate appropriate
1207  * memory for the data returned by the encryption or decryption operation.
1208  *
1209  * Return: block size of cipher
1210  */
1211 static inline unsigned int crypto_blkcipher_blocksize(
1212 	struct crypto_blkcipher *tfm)
1213 {
1214 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1215 }
1216 
1217 static inline unsigned int crypto_blkcipher_alignmask(
1218 	struct crypto_blkcipher *tfm)
1219 {
1220 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1221 }
1222 
1223 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1224 {
1225 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1226 }
1227 
1228 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1229 					      u32 flags)
1230 {
1231 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1232 }
1233 
1234 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1235 						u32 flags)
1236 {
1237 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1238 }
1239 
1240 /**
1241  * crypto_blkcipher_setkey() - set key for cipher
1242  * @tfm: cipher handle
1243  * @key: buffer holding the key
1244  * @keylen: length of the key in bytes
1245  *
1246  * The caller provided key is set for the block cipher referenced by the cipher
1247  * handle.
1248  *
1249  * Note, the key length determines the cipher type. Many block ciphers implement
1250  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1251  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1252  * is performed.
1253  *
1254  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1255  */
1256 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1257 					  const u8 *key, unsigned int keylen)
1258 {
1259 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1260 						 key, keylen);
1261 }
1262 
1263 /**
1264  * crypto_blkcipher_encrypt() - encrypt plaintext
1265  * @desc: reference to the block cipher handle with meta data
1266  * @dst: scatter/gather list that is filled by the cipher operation with the
1267  *	ciphertext
1268  * @src: scatter/gather list that holds the plaintext
1269  * @nbytes: number of bytes of the plaintext to encrypt.
1270  *
1271  * Encrypt plaintext data using the IV set by the caller with a preceding
1272  * call of crypto_blkcipher_set_iv.
1273  *
1274  * The blkcipher_desc data structure must be filled by the caller and can
1275  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1276  * with the block cipher handle; desc.flags is filled with either
1277  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1278  *
1279  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1280  */
1281 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1282 					   struct scatterlist *dst,
1283 					   struct scatterlist *src,
1284 					   unsigned int nbytes)
1285 {
1286 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1287 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1288 }
1289 
1290 /**
1291  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1292  * @desc: reference to the block cipher handle with meta data
1293  * @dst: scatter/gather list that is filled by the cipher operation with the
1294  *	ciphertext
1295  * @src: scatter/gather list that holds the plaintext
1296  * @nbytes: number of bytes of the plaintext to encrypt.
1297  *
1298  * Encrypt plaintext data with the use of an IV that is solely used for this
1299  * cipher operation. Any previously set IV is not used.
1300  *
1301  * The blkcipher_desc data structure must be filled by the caller and can
1302  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1303  * with the block cipher handle; desc.info is filled with the IV to be used for
1304  * the current operation; desc.flags is filled with either
1305  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1306  *
1307  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1308  */
1309 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1310 					      struct scatterlist *dst,
1311 					      struct scatterlist *src,
1312 					      unsigned int nbytes)
1313 {
1314 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1315 }
1316 
1317 /**
1318  * crypto_blkcipher_decrypt() - decrypt ciphertext
1319  * @desc: reference to the block cipher handle with meta data
1320  * @dst: scatter/gather list that is filled by the cipher operation with the
1321  *	plaintext
1322  * @src: scatter/gather list that holds the ciphertext
1323  * @nbytes: number of bytes of the ciphertext to decrypt.
1324  *
1325  * Decrypt ciphertext data using the IV set by the caller with a preceding
1326  * call of crypto_blkcipher_set_iv.
1327  *
1328  * The blkcipher_desc data structure must be filled by the caller as documented
1329  * for the crypto_blkcipher_encrypt call above.
1330  *
1331  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1332  *
1333  */
1334 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1335 					   struct scatterlist *dst,
1336 					   struct scatterlist *src,
1337 					   unsigned int nbytes)
1338 {
1339 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1340 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1341 }
1342 
1343 /**
1344  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1345  * @desc: reference to the block cipher handle with meta data
1346  * @dst: scatter/gather list that is filled by the cipher operation with the
1347  *	plaintext
1348  * @src: scatter/gather list that holds the ciphertext
1349  * @nbytes: number of bytes of the ciphertext to decrypt.
1350  *
1351  * Decrypt ciphertext data with the use of an IV that is solely used for this
1352  * cipher operation. Any previously set IV is not used.
1353  *
1354  * The blkcipher_desc data structure must be filled by the caller as documented
1355  * for the crypto_blkcipher_encrypt_iv call above.
1356  *
1357  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1358  */
1359 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1360 					      struct scatterlist *dst,
1361 					      struct scatterlist *src,
1362 					      unsigned int nbytes)
1363 {
1364 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1365 }
1366 
1367 /**
1368  * crypto_blkcipher_set_iv() - set IV for cipher
1369  * @tfm: cipher handle
1370  * @src: buffer holding the IV
1371  * @len: length of the IV in bytes
1372  *
1373  * The caller provided IV is set for the block cipher referenced by the cipher
1374  * handle.
1375  */
1376 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1377 					   const u8 *src, unsigned int len)
1378 {
1379 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1380 }
1381 
1382 /**
1383  * crypto_blkcipher_get_iv() - obtain IV from cipher
1384  * @tfm: cipher handle
1385  * @dst: buffer filled with the IV
1386  * @len: length of the buffer dst
1387  *
1388  * The caller can obtain the IV set for the block cipher referenced by the
1389  * cipher handle and store it into the user-provided buffer. If the buffer
1390  * has an insufficient space, the IV is truncated to fit the buffer.
1391  */
1392 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1393 					   u8 *dst, unsigned int len)
1394 {
1395 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1396 }
1397 
1398 /**
1399  * DOC: Single Block Cipher API
1400  *
1401  * The single block cipher API is used with the ciphers of type
1402  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1403  *
1404  * Using the single block cipher API calls, operations with the basic cipher
1405  * primitive can be implemented. These cipher primitives exclude any block
1406  * chaining operations including IV handling.
1407  *
1408  * The purpose of this single block cipher API is to support the implementation
1409  * of templates or other concepts that only need to perform the cipher operation
1410  * on one block at a time. Templates invoke the underlying cipher primitive
1411  * block-wise and process either the input or the output data of these cipher
1412  * operations.
1413  */
1414 
1415 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1416 {
1417 	return (struct crypto_cipher *)tfm;
1418 }
1419 
1420 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1421 {
1422 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1423 	return __crypto_cipher_cast(tfm);
1424 }
1425 
1426 /**
1427  * crypto_alloc_cipher() - allocate single block cipher handle
1428  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1429  *	     single block cipher
1430  * @type: specifies the type of the cipher
1431  * @mask: specifies the mask for the cipher
1432  *
1433  * Allocate a cipher handle for a single block cipher. The returned struct
1434  * crypto_cipher is the cipher handle that is required for any subsequent API
1435  * invocation for that single block cipher.
1436  *
1437  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1438  *	   of an error, PTR_ERR() returns the error code.
1439  */
1440 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1441 							u32 type, u32 mask)
1442 {
1443 	type &= ~CRYPTO_ALG_TYPE_MASK;
1444 	type |= CRYPTO_ALG_TYPE_CIPHER;
1445 	mask |= CRYPTO_ALG_TYPE_MASK;
1446 
1447 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1448 }
1449 
1450 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1451 {
1452 	return &tfm->base;
1453 }
1454 
1455 /**
1456  * crypto_free_cipher() - zeroize and free the single block cipher handle
1457  * @tfm: cipher handle to be freed
1458  */
1459 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1460 {
1461 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1462 }
1463 
1464 /**
1465  * crypto_has_cipher() - Search for the availability of a single block cipher
1466  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1467  *	     single block cipher
1468  * @type: specifies the type of the cipher
1469  * @mask: specifies the mask for the cipher
1470  *
1471  * Return: true when the single block cipher is known to the kernel crypto API;
1472  *	   false otherwise
1473  */
1474 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1475 {
1476 	type &= ~CRYPTO_ALG_TYPE_MASK;
1477 	type |= CRYPTO_ALG_TYPE_CIPHER;
1478 	mask |= CRYPTO_ALG_TYPE_MASK;
1479 
1480 	return crypto_has_alg(alg_name, type, mask);
1481 }
1482 
1483 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1484 {
1485 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1486 }
1487 
1488 /**
1489  * crypto_cipher_blocksize() - obtain block size for cipher
1490  * @tfm: cipher handle
1491  *
1492  * The block size for the single block cipher referenced with the cipher handle
1493  * tfm is returned. The caller may use that information to allocate appropriate
1494  * memory for the data returned by the encryption or decryption operation
1495  *
1496  * Return: block size of cipher
1497  */
1498 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1499 {
1500 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1501 }
1502 
1503 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1504 {
1505 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1506 }
1507 
1508 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1509 {
1510 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1511 }
1512 
1513 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1514 					   u32 flags)
1515 {
1516 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1517 }
1518 
1519 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1520 					     u32 flags)
1521 {
1522 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1523 }
1524 
1525 /**
1526  * crypto_cipher_setkey() - set key for cipher
1527  * @tfm: cipher handle
1528  * @key: buffer holding the key
1529  * @keylen: length of the key in bytes
1530  *
1531  * The caller provided key is set for the single block cipher referenced by the
1532  * cipher handle.
1533  *
1534  * Note, the key length determines the cipher type. Many block ciphers implement
1535  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1536  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1537  * is performed.
1538  *
1539  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1540  */
1541 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1542                                        const u8 *key, unsigned int keylen)
1543 {
1544 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1545 						  key, keylen);
1546 }
1547 
1548 /**
1549  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1550  * @tfm: cipher handle
1551  * @dst: points to the buffer that will be filled with the ciphertext
1552  * @src: buffer holding the plaintext to be encrypted
1553  *
1554  * Invoke the encryption operation of one block. The caller must ensure that
1555  * the plaintext and ciphertext buffers are at least one block in size.
1556  */
1557 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1558 					     u8 *dst, const u8 *src)
1559 {
1560 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1561 						dst, src);
1562 }
1563 
1564 /**
1565  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1566  * @tfm: cipher handle
1567  * @dst: points to the buffer that will be filled with the plaintext
1568  * @src: buffer holding the ciphertext to be decrypted
1569  *
1570  * Invoke the decryption operation of one block. The caller must ensure that
1571  * the plaintext and ciphertext buffers are at least one block in size.
1572  */
1573 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1574 					     u8 *dst, const u8 *src)
1575 {
1576 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1577 						dst, src);
1578 }
1579 
1580 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1581 {
1582 	return (struct crypto_comp *)tfm;
1583 }
1584 
1585 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1586 {
1587 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1588 	       CRYPTO_ALG_TYPE_MASK);
1589 	return __crypto_comp_cast(tfm);
1590 }
1591 
1592 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1593 						    u32 type, u32 mask)
1594 {
1595 	type &= ~CRYPTO_ALG_TYPE_MASK;
1596 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1597 	mask |= CRYPTO_ALG_TYPE_MASK;
1598 
1599 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1600 }
1601 
1602 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1603 {
1604 	return &tfm->base;
1605 }
1606 
1607 static inline void crypto_free_comp(struct crypto_comp *tfm)
1608 {
1609 	crypto_free_tfm(crypto_comp_tfm(tfm));
1610 }
1611 
1612 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1613 {
1614 	type &= ~CRYPTO_ALG_TYPE_MASK;
1615 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1616 	mask |= CRYPTO_ALG_TYPE_MASK;
1617 
1618 	return crypto_has_alg(alg_name, type, mask);
1619 }
1620 
1621 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1622 {
1623 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1624 }
1625 
1626 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1627 {
1628 	return &crypto_comp_tfm(tfm)->crt_compress;
1629 }
1630 
1631 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1632                                        const u8 *src, unsigned int slen,
1633                                        u8 *dst, unsigned int *dlen)
1634 {
1635 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1636 						  src, slen, dst, dlen);
1637 }
1638 
1639 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1640                                          const u8 *src, unsigned int slen,
1641                                          u8 *dst, unsigned int *dlen)
1642 {
1643 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1644 						    src, slen, dst, dlen);
1645 }
1646 
1647 #endif	/* _LINUX_CRYPTO_H */
1648 
1649