xref: /linux-6.15/include/linux/crypto.h (revision dfd32cad)
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <[email protected]>
5  * Copyright (c) 2002 David S. Miller ([email protected])
6  * Copyright (c) 2005 Herbert Xu <[email protected]>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
9  * and Nettle, by Niels Möller.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19 
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
28 
29 /*
30  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31  * arbitrary modules to be loaded. Loading from userspace may still need the
32  * unprefixed names, so retains those aliases as well.
33  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35  * expands twice on the same line. Instead, use a separate base name for the
36  * alias.
37  */
38 #define MODULE_ALIAS_CRYPTO(name)	\
39 		__MODULE_INFO(alias, alias_userspace, name);	\
40 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
41 
42 /*
43  * Algorithm masks and types.
44  */
45 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
51 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
52 #define CRYPTO_ALG_TYPE_KPP		0x00000008
53 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
54 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
55 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
56 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
57 #define CRYPTO_ALG_TYPE_DIGEST		0x0000000e
58 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
59 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
60 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
61 
62 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
63 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
64 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
65 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
66 
67 #define CRYPTO_ALG_LARVAL		0x00000010
68 #define CRYPTO_ALG_DEAD			0x00000020
69 #define CRYPTO_ALG_DYING		0x00000040
70 #define CRYPTO_ALG_ASYNC		0x00000080
71 
72 /*
73  * Set this bit if and only if the algorithm requires another algorithm of
74  * the same type to handle corner cases.
75  */
76 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
77 
78 /*
79  * Set if the algorithm has passed automated run-time testing.  Note that
80  * if there is no run-time testing for a given algorithm it is considered
81  * to have passed.
82  */
83 
84 #define CRYPTO_ALG_TESTED		0x00000400
85 
86 /*
87  * Set if the algorithm is an instance that is built from templates.
88  */
89 #define CRYPTO_ALG_INSTANCE		0x00000800
90 
91 /* Set this bit if the algorithm provided is hardware accelerated but
92  * not available to userspace via instruction set or so.
93  */
94 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
95 
96 /*
97  * Mark a cipher as a service implementation only usable by another
98  * cipher and never by a normal user of the kernel crypto API
99  */
100 #define CRYPTO_ALG_INTERNAL		0x00002000
101 
102 /*
103  * Set if the algorithm has a ->setkey() method but can be used without
104  * calling it first, i.e. there is a default key.
105  */
106 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
107 
108 /*
109  * Don't trigger module loading
110  */
111 #define CRYPTO_NOLOAD			0x00008000
112 
113 /*
114  * Transform masks and values (for crt_flags).
115  */
116 #define CRYPTO_TFM_NEED_KEY		0x00000001
117 
118 #define CRYPTO_TFM_REQ_MASK		0x000fff00
119 #define CRYPTO_TFM_RES_MASK		0xfff00000
120 
121 #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
122 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
123 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
124 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
125 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
126 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
127 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
128 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
129 
130 /*
131  * Miscellaneous stuff.
132  */
133 #define CRYPTO_MAX_ALG_NAME		128
134 
135 /*
136  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
137  * declaration) is used to ensure that the crypto_tfm context structure is
138  * aligned correctly for the given architecture so that there are no alignment
139  * faults for C data types.  In particular, this is required on platforms such
140  * as arm where pointers are 32-bit aligned but there are data types such as
141  * u64 which require 64-bit alignment.
142  */
143 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
144 
145 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
146 
147 struct scatterlist;
148 struct crypto_ablkcipher;
149 struct crypto_async_request;
150 struct crypto_blkcipher;
151 struct crypto_tfm;
152 struct crypto_type;
153 
154 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
155 
156 /**
157  * DOC: Block Cipher Context Data Structures
158  *
159  * These data structures define the operating context for each block cipher
160  * type.
161  */
162 
163 struct crypto_async_request {
164 	struct list_head list;
165 	crypto_completion_t complete;
166 	void *data;
167 	struct crypto_tfm *tfm;
168 
169 	u32 flags;
170 };
171 
172 struct ablkcipher_request {
173 	struct crypto_async_request base;
174 
175 	unsigned int nbytes;
176 
177 	void *info;
178 
179 	struct scatterlist *src;
180 	struct scatterlist *dst;
181 
182 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
183 };
184 
185 struct blkcipher_desc {
186 	struct crypto_blkcipher *tfm;
187 	void *info;
188 	u32 flags;
189 };
190 
191 struct cipher_desc {
192 	struct crypto_tfm *tfm;
193 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
194 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
195 			     const u8 *src, unsigned int nbytes);
196 	void *info;
197 };
198 
199 /**
200  * DOC: Block Cipher Algorithm Definitions
201  *
202  * These data structures define modular crypto algorithm implementations,
203  * managed via crypto_register_alg() and crypto_unregister_alg().
204  */
205 
206 /**
207  * struct ablkcipher_alg - asynchronous block cipher definition
208  * @min_keysize: Minimum key size supported by the transformation. This is the
209  *		 smallest key length supported by this transformation algorithm.
210  *		 This must be set to one of the pre-defined values as this is
211  *		 not hardware specific. Possible values for this field can be
212  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
213  * @max_keysize: Maximum key size supported by the transformation. This is the
214  *		 largest key length supported by this transformation algorithm.
215  *		 This must be set to one of the pre-defined values as this is
216  *		 not hardware specific. Possible values for this field can be
217  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
218  * @setkey: Set key for the transformation. This function is used to either
219  *	    program a supplied key into the hardware or store the key in the
220  *	    transformation context for programming it later. Note that this
221  *	    function does modify the transformation context. This function can
222  *	    be called multiple times during the existence of the transformation
223  *	    object, so one must make sure the key is properly reprogrammed into
224  *	    the hardware. This function is also responsible for checking the key
225  *	    length for validity. In case a software fallback was put in place in
226  *	    the @cra_init call, this function might need to use the fallback if
227  *	    the algorithm doesn't support all of the key sizes.
228  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
229  *	     the supplied scatterlist containing the blocks of data. The crypto
230  *	     API consumer is responsible for aligning the entries of the
231  *	     scatterlist properly and making sure the chunks are correctly
232  *	     sized. In case a software fallback was put in place in the
233  *	     @cra_init call, this function might need to use the fallback if
234  *	     the algorithm doesn't support all of the key sizes. In case the
235  *	     key was stored in transformation context, the key might need to be
236  *	     re-programmed into the hardware in this function. This function
237  *	     shall not modify the transformation context, as this function may
238  *	     be called in parallel with the same transformation object.
239  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
240  *	     and the conditions are exactly the same.
241  * @ivsize: IV size applicable for transformation. The consumer must provide an
242  *	    IV of exactly that size to perform the encrypt or decrypt operation.
243  *
244  * All fields except @ivsize are mandatory and must be filled.
245  */
246 struct ablkcipher_alg {
247 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
248 	              unsigned int keylen);
249 	int (*encrypt)(struct ablkcipher_request *req);
250 	int (*decrypt)(struct ablkcipher_request *req);
251 
252 	unsigned int min_keysize;
253 	unsigned int max_keysize;
254 	unsigned int ivsize;
255 };
256 
257 /**
258  * struct blkcipher_alg - synchronous block cipher definition
259  * @min_keysize: see struct ablkcipher_alg
260  * @max_keysize: see struct ablkcipher_alg
261  * @setkey: see struct ablkcipher_alg
262  * @encrypt: see struct ablkcipher_alg
263  * @decrypt: see struct ablkcipher_alg
264  * @ivsize: see struct ablkcipher_alg
265  *
266  * All fields except @ivsize are mandatory and must be filled.
267  */
268 struct blkcipher_alg {
269 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
270 	              unsigned int keylen);
271 	int (*encrypt)(struct blkcipher_desc *desc,
272 		       struct scatterlist *dst, struct scatterlist *src,
273 		       unsigned int nbytes);
274 	int (*decrypt)(struct blkcipher_desc *desc,
275 		       struct scatterlist *dst, struct scatterlist *src,
276 		       unsigned int nbytes);
277 
278 	unsigned int min_keysize;
279 	unsigned int max_keysize;
280 	unsigned int ivsize;
281 };
282 
283 /**
284  * struct cipher_alg - single-block symmetric ciphers definition
285  * @cia_min_keysize: Minimum key size supported by the transformation. This is
286  *		     the smallest key length supported by this transformation
287  *		     algorithm. This must be set to one of the pre-defined
288  *		     values as this is not hardware specific. Possible values
289  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
290  *		     include/crypto/
291  * @cia_max_keysize: Maximum key size supported by the transformation. This is
292  *		    the largest key length supported by this transformation
293  *		    algorithm. This must be set to one of the pre-defined values
294  *		    as this is not hardware specific. Possible values for this
295  *		    field can be found via git grep "_MAX_KEY_SIZE"
296  *		    include/crypto/
297  * @cia_setkey: Set key for the transformation. This function is used to either
298  *	        program a supplied key into the hardware or store the key in the
299  *	        transformation context for programming it later. Note that this
300  *	        function does modify the transformation context. This function
301  *	        can be called multiple times during the existence of the
302  *	        transformation object, so one must make sure the key is properly
303  *	        reprogrammed into the hardware. This function is also
304  *	        responsible for checking the key length for validity.
305  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
306  *		 single block of data, which must be @cra_blocksize big. This
307  *		 always operates on a full @cra_blocksize and it is not possible
308  *		 to encrypt a block of smaller size. The supplied buffers must
309  *		 therefore also be at least of @cra_blocksize size. Both the
310  *		 input and output buffers are always aligned to @cra_alignmask.
311  *		 In case either of the input or output buffer supplied by user
312  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
313  *		 API will re-align the buffers. The re-alignment means that a
314  *		 new buffer will be allocated, the data will be copied into the
315  *		 new buffer, then the processing will happen on the new buffer,
316  *		 then the data will be copied back into the original buffer and
317  *		 finally the new buffer will be freed. In case a software
318  *		 fallback was put in place in the @cra_init call, this function
319  *		 might need to use the fallback if the algorithm doesn't support
320  *		 all of the key sizes. In case the key was stored in
321  *		 transformation context, the key might need to be re-programmed
322  *		 into the hardware in this function. This function shall not
323  *		 modify the transformation context, as this function may be
324  *		 called in parallel with the same transformation object.
325  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
326  *		 @cia_encrypt, and the conditions are exactly the same.
327  *
328  * All fields are mandatory and must be filled.
329  */
330 struct cipher_alg {
331 	unsigned int cia_min_keysize;
332 	unsigned int cia_max_keysize;
333 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
334 	                  unsigned int keylen);
335 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
336 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
337 };
338 
339 struct compress_alg {
340 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
341 			    unsigned int slen, u8 *dst, unsigned int *dlen);
342 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
343 			      unsigned int slen, u8 *dst, unsigned int *dlen);
344 };
345 
346 #ifdef CONFIG_CRYPTO_STATS
347 /*
348  * struct crypto_istat_aead - statistics for AEAD algorithm
349  * @encrypt_cnt:	number of encrypt requests
350  * @encrypt_tlen:	total data size handled by encrypt requests
351  * @decrypt_cnt:	number of decrypt requests
352  * @decrypt_tlen:	total data size handled by decrypt requests
353  * @err_cnt:		number of error for AEAD requests
354  */
355 struct crypto_istat_aead {
356 	atomic64_t encrypt_cnt;
357 	atomic64_t encrypt_tlen;
358 	atomic64_t decrypt_cnt;
359 	atomic64_t decrypt_tlen;
360 	atomic64_t err_cnt;
361 };
362 
363 /*
364  * struct crypto_istat_akcipher - statistics for akcipher algorithm
365  * @encrypt_cnt:	number of encrypt requests
366  * @encrypt_tlen:	total data size handled by encrypt requests
367  * @decrypt_cnt:	number of decrypt requests
368  * @decrypt_tlen:	total data size handled by decrypt requests
369  * @verify_cnt:		number of verify operation
370  * @sign_cnt:		number of sign requests
371  * @err_cnt:		number of error for akcipher requests
372  */
373 struct crypto_istat_akcipher {
374 	atomic64_t encrypt_cnt;
375 	atomic64_t encrypt_tlen;
376 	atomic64_t decrypt_cnt;
377 	atomic64_t decrypt_tlen;
378 	atomic64_t verify_cnt;
379 	atomic64_t sign_cnt;
380 	atomic64_t err_cnt;
381 };
382 
383 /*
384  * struct crypto_istat_cipher - statistics for cipher algorithm
385  * @encrypt_cnt:	number of encrypt requests
386  * @encrypt_tlen:	total data size handled by encrypt requests
387  * @decrypt_cnt:	number of decrypt requests
388  * @decrypt_tlen:	total data size handled by decrypt requests
389  * @err_cnt:		number of error for cipher requests
390  */
391 struct crypto_istat_cipher {
392 	atomic64_t encrypt_cnt;
393 	atomic64_t encrypt_tlen;
394 	atomic64_t decrypt_cnt;
395 	atomic64_t decrypt_tlen;
396 	atomic64_t err_cnt;
397 };
398 
399 /*
400  * struct crypto_istat_compress - statistics for compress algorithm
401  * @compress_cnt:	number of compress requests
402  * @compress_tlen:	total data size handled by compress requests
403  * @decompress_cnt:	number of decompress requests
404  * @decompress_tlen:	total data size handled by decompress requests
405  * @err_cnt:		number of error for compress requests
406  */
407 struct crypto_istat_compress {
408 	atomic64_t compress_cnt;
409 	atomic64_t compress_tlen;
410 	atomic64_t decompress_cnt;
411 	atomic64_t decompress_tlen;
412 	atomic64_t err_cnt;
413 };
414 
415 /*
416  * struct crypto_istat_hash - statistics for has algorithm
417  * @hash_cnt:		number of hash requests
418  * @hash_tlen:		total data size hashed
419  * @err_cnt:		number of error for hash requests
420  */
421 struct crypto_istat_hash {
422 	atomic64_t hash_cnt;
423 	atomic64_t hash_tlen;
424 	atomic64_t err_cnt;
425 };
426 
427 /*
428  * struct crypto_istat_kpp - statistics for KPP algorithm
429  * @setsecret_cnt:		number of setsecrey operation
430  * @generate_public_key_cnt:	number of generate_public_key operation
431  * @compute_shared_secret_cnt:	number of compute_shared_secret operation
432  * @err_cnt:			number of error for KPP requests
433  */
434 struct crypto_istat_kpp {
435 	atomic64_t setsecret_cnt;
436 	atomic64_t generate_public_key_cnt;
437 	atomic64_t compute_shared_secret_cnt;
438 	atomic64_t err_cnt;
439 };
440 
441 /*
442  * struct crypto_istat_rng: statistics for RNG algorithm
443  * @generate_cnt:	number of RNG generate requests
444  * @generate_tlen:	total data size of generated data by the RNG
445  * @seed_cnt:		number of times the RNG was seeded
446  * @err_cnt:		number of error for RNG requests
447  */
448 struct crypto_istat_rng {
449 	atomic64_t generate_cnt;
450 	atomic64_t generate_tlen;
451 	atomic64_t seed_cnt;
452 	atomic64_t err_cnt;
453 };
454 #endif /* CONFIG_CRYPTO_STATS */
455 
456 #define cra_ablkcipher	cra_u.ablkcipher
457 #define cra_blkcipher	cra_u.blkcipher
458 #define cra_cipher	cra_u.cipher
459 #define cra_compress	cra_u.compress
460 
461 /**
462  * struct crypto_alg - definition of a cryptograpic cipher algorithm
463  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
464  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
465  *	       used for fine-tuning the description of the transformation
466  *	       algorithm.
467  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
468  *		   of the smallest possible unit which can be transformed with
469  *		   this algorithm. The users must respect this value.
470  *		   In case of HASH transformation, it is possible for a smaller
471  *		   block than @cra_blocksize to be passed to the crypto API for
472  *		   transformation, in case of any other transformation type, an
473  * 		   error will be returned upon any attempt to transform smaller
474  *		   than @cra_blocksize chunks.
475  * @cra_ctxsize: Size of the operational context of the transformation. This
476  *		 value informs the kernel crypto API about the memory size
477  *		 needed to be allocated for the transformation context.
478  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
479  *		   buffer containing the input data for the algorithm must be
480  *		   aligned to this alignment mask. The data buffer for the
481  *		   output data must be aligned to this alignment mask. Note that
482  *		   the Crypto API will do the re-alignment in software, but
483  *		   only under special conditions and there is a performance hit.
484  *		   The re-alignment happens at these occasions for different
485  *		   @cra_u types: cipher -- For both input data and output data
486  *		   buffer; ahash -- For output hash destination buf; shash --
487  *		   For output hash destination buf.
488  *		   This is needed on hardware which is flawed by design and
489  *		   cannot pick data from arbitrary addresses.
490  * @cra_priority: Priority of this transformation implementation. In case
491  *		  multiple transformations with same @cra_name are available to
492  *		  the Crypto API, the kernel will use the one with highest
493  *		  @cra_priority.
494  * @cra_name: Generic name (usable by multiple implementations) of the
495  *	      transformation algorithm. This is the name of the transformation
496  *	      itself. This field is used by the kernel when looking up the
497  *	      providers of particular transformation.
498  * @cra_driver_name: Unique name of the transformation provider. This is the
499  *		     name of the provider of the transformation. This can be any
500  *		     arbitrary value, but in the usual case, this contains the
501  *		     name of the chip or provider and the name of the
502  *		     transformation algorithm.
503  * @cra_type: Type of the cryptographic transformation. This is a pointer to
504  *	      struct crypto_type, which implements callbacks common for all
505  *	      transformation types. There are multiple options:
506  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
507  *	      &crypto_ahash_type, &crypto_rng_type.
508  *	      This field might be empty. In that case, there are no common
509  *	      callbacks. This is the case for: cipher, compress, shash.
510  * @cra_u: Callbacks implementing the transformation. This is a union of
511  *	   multiple structures. Depending on the type of transformation selected
512  *	   by @cra_type and @cra_flags above, the associated structure must be
513  *	   filled with callbacks. This field might be empty. This is the case
514  *	   for ahash, shash.
515  * @cra_init: Initialize the cryptographic transformation object. This function
516  *	      is used to initialize the cryptographic transformation object.
517  *	      This function is called only once at the instantiation time, right
518  *	      after the transformation context was allocated. In case the
519  *	      cryptographic hardware has some special requirements which need to
520  *	      be handled by software, this function shall check for the precise
521  *	      requirement of the transformation and put any software fallbacks
522  *	      in place.
523  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
524  *	      counterpart to @cra_init, used to remove various changes set in
525  *	      @cra_init.
526  * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
527  *		      definition. See @struct @ablkcipher_alg.
528  * @cra_u.blkcipher: Union member which contains a synchronous block cipher
529  * 		     definition See @struct @blkcipher_alg.
530  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
531  *		  definition. See @struct @cipher_alg.
532  * @cra_u.compress: Union member which contains a (de)compression algorithm.
533  *		    See @struct @compress_alg.
534  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
535  * @cra_list: internally used
536  * @cra_users: internally used
537  * @cra_refcnt: internally used
538  * @cra_destroy: internally used
539  *
540  * @stats: union of all possible crypto_istat_xxx structures
541  * @stats.aead:		statistics for AEAD algorithm
542  * @stats.akcipher:	statistics for akcipher algorithm
543  * @stats.cipher:	statistics for cipher algorithm
544  * @stats.compress:	statistics for compress algorithm
545  * @stats.hash:		statistics for hash algorithm
546  * @stats.rng:		statistics for rng algorithm
547  * @stats.kpp:		statistics for KPP algorithm
548  *
549  * The struct crypto_alg describes a generic Crypto API algorithm and is common
550  * for all of the transformations. Any variable not documented here shall not
551  * be used by a cipher implementation as it is internal to the Crypto API.
552  */
553 struct crypto_alg {
554 	struct list_head cra_list;
555 	struct list_head cra_users;
556 
557 	u32 cra_flags;
558 	unsigned int cra_blocksize;
559 	unsigned int cra_ctxsize;
560 	unsigned int cra_alignmask;
561 
562 	int cra_priority;
563 	refcount_t cra_refcnt;
564 
565 	char cra_name[CRYPTO_MAX_ALG_NAME];
566 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
567 
568 	const struct crypto_type *cra_type;
569 
570 	union {
571 		struct ablkcipher_alg ablkcipher;
572 		struct blkcipher_alg blkcipher;
573 		struct cipher_alg cipher;
574 		struct compress_alg compress;
575 	} cra_u;
576 
577 	int (*cra_init)(struct crypto_tfm *tfm);
578 	void (*cra_exit)(struct crypto_tfm *tfm);
579 	void (*cra_destroy)(struct crypto_alg *alg);
580 
581 	struct module *cra_module;
582 
583 #ifdef CONFIG_CRYPTO_STATS
584 	union {
585 		struct crypto_istat_aead aead;
586 		struct crypto_istat_akcipher akcipher;
587 		struct crypto_istat_cipher cipher;
588 		struct crypto_istat_compress compress;
589 		struct crypto_istat_hash hash;
590 		struct crypto_istat_rng rng;
591 		struct crypto_istat_kpp kpp;
592 	} stats;
593 #endif /* CONFIG_CRYPTO_STATS */
594 
595 } CRYPTO_MINALIGN_ATTR;
596 
597 #ifdef CONFIG_CRYPTO_STATS
598 void crypto_stats_init(struct crypto_alg *alg);
599 void crypto_stats_get(struct crypto_alg *alg);
600 void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
601 void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
602 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
603 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
604 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
605 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
606 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
607 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
608 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
609 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
610 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
611 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
612 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
613 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
614 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
615 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
616 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
617 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
618 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
619 #else
620 static inline void crypto_stats_init(struct crypto_alg *alg)
621 {}
622 static inline void crypto_stats_get(struct crypto_alg *alg)
623 {}
624 static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
625 {}
626 static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
627 {}
628 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
629 {}
630 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
631 {}
632 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
633 {}
634 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
635 {}
636 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
637 {}
638 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
639 {}
640 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
641 {}
642 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
643 {}
644 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
645 {}
646 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
647 {}
648 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
649 {}
650 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
651 {}
652 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
653 {}
654 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
655 {}
656 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
657 {}
658 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
659 {}
660 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
661 {}
662 #endif
663 /*
664  * A helper struct for waiting for completion of async crypto ops
665  */
666 struct crypto_wait {
667 	struct completion completion;
668 	int err;
669 };
670 
671 /*
672  * Macro for declaring a crypto op async wait object on stack
673  */
674 #define DECLARE_CRYPTO_WAIT(_wait) \
675 	struct crypto_wait _wait = { \
676 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
677 
678 /*
679  * Async ops completion helper functioons
680  */
681 void crypto_req_done(struct crypto_async_request *req, int err);
682 
683 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
684 {
685 	switch (err) {
686 	case -EINPROGRESS:
687 	case -EBUSY:
688 		wait_for_completion(&wait->completion);
689 		reinit_completion(&wait->completion);
690 		err = wait->err;
691 		break;
692 	};
693 
694 	return err;
695 }
696 
697 static inline void crypto_init_wait(struct crypto_wait *wait)
698 {
699 	init_completion(&wait->completion);
700 }
701 
702 /*
703  * Algorithm registration interface.
704  */
705 int crypto_register_alg(struct crypto_alg *alg);
706 int crypto_unregister_alg(struct crypto_alg *alg);
707 int crypto_register_algs(struct crypto_alg *algs, int count);
708 int crypto_unregister_algs(struct crypto_alg *algs, int count);
709 
710 /*
711  * Algorithm query interface.
712  */
713 int crypto_has_alg(const char *name, u32 type, u32 mask);
714 
715 /*
716  * Transforms: user-instantiated objects which encapsulate algorithms
717  * and core processing logic.  Managed via crypto_alloc_*() and
718  * crypto_free_*(), as well as the various helpers below.
719  */
720 
721 struct ablkcipher_tfm {
722 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
723 	              unsigned int keylen);
724 	int (*encrypt)(struct ablkcipher_request *req);
725 	int (*decrypt)(struct ablkcipher_request *req);
726 
727 	struct crypto_ablkcipher *base;
728 
729 	unsigned int ivsize;
730 	unsigned int reqsize;
731 };
732 
733 struct blkcipher_tfm {
734 	void *iv;
735 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
736 		      unsigned int keylen);
737 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
738 		       struct scatterlist *src, unsigned int nbytes);
739 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
740 		       struct scatterlist *src, unsigned int nbytes);
741 };
742 
743 struct cipher_tfm {
744 	int (*cit_setkey)(struct crypto_tfm *tfm,
745 	                  const u8 *key, unsigned int keylen);
746 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
747 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
748 };
749 
750 struct compress_tfm {
751 	int (*cot_compress)(struct crypto_tfm *tfm,
752 	                    const u8 *src, unsigned int slen,
753 	                    u8 *dst, unsigned int *dlen);
754 	int (*cot_decompress)(struct crypto_tfm *tfm,
755 	                      const u8 *src, unsigned int slen,
756 	                      u8 *dst, unsigned int *dlen);
757 };
758 
759 #define crt_ablkcipher	crt_u.ablkcipher
760 #define crt_blkcipher	crt_u.blkcipher
761 #define crt_cipher	crt_u.cipher
762 #define crt_compress	crt_u.compress
763 
764 struct crypto_tfm {
765 
766 	u32 crt_flags;
767 
768 	union {
769 		struct ablkcipher_tfm ablkcipher;
770 		struct blkcipher_tfm blkcipher;
771 		struct cipher_tfm cipher;
772 		struct compress_tfm compress;
773 	} crt_u;
774 
775 	void (*exit)(struct crypto_tfm *tfm);
776 
777 	struct crypto_alg *__crt_alg;
778 
779 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
780 };
781 
782 struct crypto_ablkcipher {
783 	struct crypto_tfm base;
784 };
785 
786 struct crypto_blkcipher {
787 	struct crypto_tfm base;
788 };
789 
790 struct crypto_cipher {
791 	struct crypto_tfm base;
792 };
793 
794 struct crypto_comp {
795 	struct crypto_tfm base;
796 };
797 
798 enum {
799 	CRYPTOA_UNSPEC,
800 	CRYPTOA_ALG,
801 	CRYPTOA_TYPE,
802 	CRYPTOA_U32,
803 	__CRYPTOA_MAX,
804 };
805 
806 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
807 
808 /* Maximum number of (rtattr) parameters for each template. */
809 #define CRYPTO_MAX_ATTRS 32
810 
811 struct crypto_attr_alg {
812 	char name[CRYPTO_MAX_ALG_NAME];
813 };
814 
815 struct crypto_attr_type {
816 	u32 type;
817 	u32 mask;
818 };
819 
820 struct crypto_attr_u32 {
821 	u32 num;
822 };
823 
824 /*
825  * Transform user interface.
826  */
827 
828 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
829 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
830 
831 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
832 {
833 	return crypto_destroy_tfm(tfm, tfm);
834 }
835 
836 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
837 
838 /*
839  * Transform helpers which query the underlying algorithm.
840  */
841 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
842 {
843 	return tfm->__crt_alg->cra_name;
844 }
845 
846 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
847 {
848 	return tfm->__crt_alg->cra_driver_name;
849 }
850 
851 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
852 {
853 	return tfm->__crt_alg->cra_priority;
854 }
855 
856 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
857 {
858 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
859 }
860 
861 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
862 {
863 	return tfm->__crt_alg->cra_blocksize;
864 }
865 
866 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
867 {
868 	return tfm->__crt_alg->cra_alignmask;
869 }
870 
871 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
872 {
873 	return tfm->crt_flags;
874 }
875 
876 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
877 {
878 	tfm->crt_flags |= flags;
879 }
880 
881 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
882 {
883 	tfm->crt_flags &= ~flags;
884 }
885 
886 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
887 {
888 	return tfm->__crt_ctx;
889 }
890 
891 static inline unsigned int crypto_tfm_ctx_alignment(void)
892 {
893 	struct crypto_tfm *tfm;
894 	return __alignof__(tfm->__crt_ctx);
895 }
896 
897 /*
898  * API wrappers.
899  */
900 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
901 	struct crypto_tfm *tfm)
902 {
903 	return (struct crypto_ablkcipher *)tfm;
904 }
905 
906 static inline u32 crypto_skcipher_type(u32 type)
907 {
908 	type &= ~CRYPTO_ALG_TYPE_MASK;
909 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
910 	return type;
911 }
912 
913 static inline u32 crypto_skcipher_mask(u32 mask)
914 {
915 	mask &= ~CRYPTO_ALG_TYPE_MASK;
916 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
917 	return mask;
918 }
919 
920 /**
921  * DOC: Asynchronous Block Cipher API
922  *
923  * Asynchronous block cipher API is used with the ciphers of type
924  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
925  *
926  * Asynchronous cipher operations imply that the function invocation for a
927  * cipher request returns immediately before the completion of the operation.
928  * The cipher request is scheduled as a separate kernel thread and therefore
929  * load-balanced on the different CPUs via the process scheduler. To allow
930  * the kernel crypto API to inform the caller about the completion of a cipher
931  * request, the caller must provide a callback function. That function is
932  * invoked with the cipher handle when the request completes.
933  *
934  * To support the asynchronous operation, additional information than just the
935  * cipher handle must be supplied to the kernel crypto API. That additional
936  * information is given by filling in the ablkcipher_request data structure.
937  *
938  * For the asynchronous block cipher API, the state is maintained with the tfm
939  * cipher handle. A single tfm can be used across multiple calls and in
940  * parallel. For asynchronous block cipher calls, context data supplied and
941  * only used by the caller can be referenced the request data structure in
942  * addition to the IV used for the cipher request. The maintenance of such
943  * state information would be important for a crypto driver implementer to
944  * have, because when calling the callback function upon completion of the
945  * cipher operation, that callback function may need some information about
946  * which operation just finished if it invoked multiple in parallel. This
947  * state information is unused by the kernel crypto API.
948  */
949 
950 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
951 	struct crypto_ablkcipher *tfm)
952 {
953 	return &tfm->base;
954 }
955 
956 /**
957  * crypto_free_ablkcipher() - zeroize and free cipher handle
958  * @tfm: cipher handle to be freed
959  */
960 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
961 {
962 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
963 }
964 
965 /**
966  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
967  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
968  *	      ablkcipher
969  * @type: specifies the type of the cipher
970  * @mask: specifies the mask for the cipher
971  *
972  * Return: true when the ablkcipher is known to the kernel crypto API; false
973  *	   otherwise
974  */
975 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
976 					u32 mask)
977 {
978 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
979 			      crypto_skcipher_mask(mask));
980 }
981 
982 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
983 	struct crypto_ablkcipher *tfm)
984 {
985 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
986 }
987 
988 /**
989  * crypto_ablkcipher_ivsize() - obtain IV size
990  * @tfm: cipher handle
991  *
992  * The size of the IV for the ablkcipher referenced by the cipher handle is
993  * returned. This IV size may be zero if the cipher does not need an IV.
994  *
995  * Return: IV size in bytes
996  */
997 static inline unsigned int crypto_ablkcipher_ivsize(
998 	struct crypto_ablkcipher *tfm)
999 {
1000 	return crypto_ablkcipher_crt(tfm)->ivsize;
1001 }
1002 
1003 /**
1004  * crypto_ablkcipher_blocksize() - obtain block size of cipher
1005  * @tfm: cipher handle
1006  *
1007  * The block size for the ablkcipher referenced with the cipher handle is
1008  * returned. The caller may use that information to allocate appropriate
1009  * memory for the data returned by the encryption or decryption operation
1010  *
1011  * Return: block size of cipher
1012  */
1013 static inline unsigned int crypto_ablkcipher_blocksize(
1014 	struct crypto_ablkcipher *tfm)
1015 {
1016 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
1017 }
1018 
1019 static inline unsigned int crypto_ablkcipher_alignmask(
1020 	struct crypto_ablkcipher *tfm)
1021 {
1022 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
1023 }
1024 
1025 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
1026 {
1027 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
1028 }
1029 
1030 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
1031 					       u32 flags)
1032 {
1033 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
1034 }
1035 
1036 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
1037 						 u32 flags)
1038 {
1039 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
1040 }
1041 
1042 /**
1043  * crypto_ablkcipher_setkey() - set key for cipher
1044  * @tfm: cipher handle
1045  * @key: buffer holding the key
1046  * @keylen: length of the key in bytes
1047  *
1048  * The caller provided key is set for the ablkcipher referenced by the cipher
1049  * handle.
1050  *
1051  * Note, the key length determines the cipher type. Many block ciphers implement
1052  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1053  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1054  * is performed.
1055  *
1056  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1057  */
1058 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
1059 					   const u8 *key, unsigned int keylen)
1060 {
1061 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
1062 
1063 	return crt->setkey(crt->base, key, keylen);
1064 }
1065 
1066 /**
1067  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1068  * @req: ablkcipher_request out of which the cipher handle is to be obtained
1069  *
1070  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1071  * data structure.
1072  *
1073  * Return: crypto_ablkcipher handle
1074  */
1075 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1076 	struct ablkcipher_request *req)
1077 {
1078 	return __crypto_ablkcipher_cast(req->base.tfm);
1079 }
1080 
1081 /**
1082  * crypto_ablkcipher_encrypt() - encrypt plaintext
1083  * @req: reference to the ablkcipher_request handle that holds all information
1084  *	 needed to perform the cipher operation
1085  *
1086  * Encrypt plaintext data using the ablkcipher_request handle. That data
1087  * structure and how it is filled with data is discussed with the
1088  * ablkcipher_request_* functions.
1089  *
1090  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1091  */
1092 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1093 {
1094 	struct ablkcipher_tfm *crt =
1095 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1096 	struct crypto_alg *alg = crt->base->base.__crt_alg;
1097 	unsigned int nbytes = req->nbytes;
1098 	int ret;
1099 
1100 	crypto_stats_get(alg);
1101 	ret = crt->encrypt(req);
1102 	crypto_stats_ablkcipher_encrypt(nbytes, ret, alg);
1103 	return ret;
1104 }
1105 
1106 /**
1107  * crypto_ablkcipher_decrypt() - decrypt ciphertext
1108  * @req: reference to the ablkcipher_request handle that holds all information
1109  *	 needed to perform the cipher operation
1110  *
1111  * Decrypt ciphertext data using the ablkcipher_request handle. That data
1112  * structure and how it is filled with data is discussed with the
1113  * ablkcipher_request_* functions.
1114  *
1115  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1116  */
1117 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1118 {
1119 	struct ablkcipher_tfm *crt =
1120 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1121 	struct crypto_alg *alg = crt->base->base.__crt_alg;
1122 	unsigned int nbytes = req->nbytes;
1123 	int ret;
1124 
1125 	crypto_stats_get(alg);
1126 	ret = crt->decrypt(req);
1127 	crypto_stats_ablkcipher_decrypt(nbytes, ret, alg);
1128 	return ret;
1129 }
1130 
1131 /**
1132  * DOC: Asynchronous Cipher Request Handle
1133  *
1134  * The ablkcipher_request data structure contains all pointers to data
1135  * required for the asynchronous cipher operation. This includes the cipher
1136  * handle (which can be used by multiple ablkcipher_request instances), pointer
1137  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1138  * as a handle to the ablkcipher_request_* API calls in a similar way as
1139  * ablkcipher handle to the crypto_ablkcipher_* API calls.
1140  */
1141 
1142 /**
1143  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1144  * @tfm: cipher handle
1145  *
1146  * Return: number of bytes
1147  */
1148 static inline unsigned int crypto_ablkcipher_reqsize(
1149 	struct crypto_ablkcipher *tfm)
1150 {
1151 	return crypto_ablkcipher_crt(tfm)->reqsize;
1152 }
1153 
1154 /**
1155  * ablkcipher_request_set_tfm() - update cipher handle reference in request
1156  * @req: request handle to be modified
1157  * @tfm: cipher handle that shall be added to the request handle
1158  *
1159  * Allow the caller to replace the existing ablkcipher handle in the request
1160  * data structure with a different one.
1161  */
1162 static inline void ablkcipher_request_set_tfm(
1163 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1164 {
1165 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1166 }
1167 
1168 static inline struct ablkcipher_request *ablkcipher_request_cast(
1169 	struct crypto_async_request *req)
1170 {
1171 	return container_of(req, struct ablkcipher_request, base);
1172 }
1173 
1174 /**
1175  * ablkcipher_request_alloc() - allocate request data structure
1176  * @tfm: cipher handle to be registered with the request
1177  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1178  *
1179  * Allocate the request data structure that must be used with the ablkcipher
1180  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1181  * handle is registered in the request data structure.
1182  *
1183  * Return: allocated request handle in case of success, or NULL if out of memory
1184  */
1185 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1186 	struct crypto_ablkcipher *tfm, gfp_t gfp)
1187 {
1188 	struct ablkcipher_request *req;
1189 
1190 	req = kmalloc(sizeof(struct ablkcipher_request) +
1191 		      crypto_ablkcipher_reqsize(tfm), gfp);
1192 
1193 	if (likely(req))
1194 		ablkcipher_request_set_tfm(req, tfm);
1195 
1196 	return req;
1197 }
1198 
1199 /**
1200  * ablkcipher_request_free() - zeroize and free request data structure
1201  * @req: request data structure cipher handle to be freed
1202  */
1203 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1204 {
1205 	kzfree(req);
1206 }
1207 
1208 /**
1209  * ablkcipher_request_set_callback() - set asynchronous callback function
1210  * @req: request handle
1211  * @flags: specify zero or an ORing of the flags
1212  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1213  *	   increase the wait queue beyond the initial maximum size;
1214  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1215  * @compl: callback function pointer to be registered with the request handle
1216  * @data: The data pointer refers to memory that is not used by the kernel
1217  *	  crypto API, but provided to the callback function for it to use. Here,
1218  *	  the caller can provide a reference to memory the callback function can
1219  *	  operate on. As the callback function is invoked asynchronously to the
1220  *	  related functionality, it may need to access data structures of the
1221  *	  related functionality which can be referenced using this pointer. The
1222  *	  callback function can access the memory via the "data" field in the
1223  *	  crypto_async_request data structure provided to the callback function.
1224  *
1225  * This function allows setting the callback function that is triggered once the
1226  * cipher operation completes.
1227  *
1228  * The callback function is registered with the ablkcipher_request handle and
1229  * must comply with the following template::
1230  *
1231  *	void callback_function(struct crypto_async_request *req, int error)
1232  */
1233 static inline void ablkcipher_request_set_callback(
1234 	struct ablkcipher_request *req,
1235 	u32 flags, crypto_completion_t compl, void *data)
1236 {
1237 	req->base.complete = compl;
1238 	req->base.data = data;
1239 	req->base.flags = flags;
1240 }
1241 
1242 /**
1243  * ablkcipher_request_set_crypt() - set data buffers
1244  * @req: request handle
1245  * @src: source scatter / gather list
1246  * @dst: destination scatter / gather list
1247  * @nbytes: number of bytes to process from @src
1248  * @iv: IV for the cipher operation which must comply with the IV size defined
1249  *      by crypto_ablkcipher_ivsize
1250  *
1251  * This function allows setting of the source data and destination data
1252  * scatter / gather lists.
1253  *
1254  * For encryption, the source is treated as the plaintext and the
1255  * destination is the ciphertext. For a decryption operation, the use is
1256  * reversed - the source is the ciphertext and the destination is the plaintext.
1257  */
1258 static inline void ablkcipher_request_set_crypt(
1259 	struct ablkcipher_request *req,
1260 	struct scatterlist *src, struct scatterlist *dst,
1261 	unsigned int nbytes, void *iv)
1262 {
1263 	req->src = src;
1264 	req->dst = dst;
1265 	req->nbytes = nbytes;
1266 	req->info = iv;
1267 }
1268 
1269 /**
1270  * DOC: Synchronous Block Cipher API
1271  *
1272  * The synchronous block cipher API is used with the ciphers of type
1273  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1274  *
1275  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1276  * used in multiple calls and in parallel, this info should not be changeable
1277  * (unless a lock is used). This applies, for example, to the symmetric key.
1278  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1279  * structure for synchronous blkcipher api. So, its the only state info that can
1280  * be kept for synchronous calls without using a big lock across a tfm.
1281  *
1282  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1283  * consisting of a template (a block chaining mode) and a single block cipher
1284  * primitive (e.g. AES).
1285  *
1286  * The plaintext data buffer and the ciphertext data buffer are pointed to
1287  * by using scatter/gather lists. The cipher operation is performed
1288  * on all segments of the provided scatter/gather lists.
1289  *
1290  * The kernel crypto API supports a cipher operation "in-place" which means that
1291  * the caller may provide the same scatter/gather list for the plaintext and
1292  * cipher text. After the completion of the cipher operation, the plaintext
1293  * data is replaced with the ciphertext data in case of an encryption and vice
1294  * versa for a decryption. The caller must ensure that the scatter/gather lists
1295  * for the output data point to sufficiently large buffers, i.e. multiples of
1296  * the block size of the cipher.
1297  */
1298 
1299 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1300 	struct crypto_tfm *tfm)
1301 {
1302 	return (struct crypto_blkcipher *)tfm;
1303 }
1304 
1305 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1306 	struct crypto_tfm *tfm)
1307 {
1308 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1309 	return __crypto_blkcipher_cast(tfm);
1310 }
1311 
1312 /**
1313  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1314  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1315  *	      blkcipher cipher
1316  * @type: specifies the type of the cipher
1317  * @mask: specifies the mask for the cipher
1318  *
1319  * Allocate a cipher handle for a block cipher. The returned struct
1320  * crypto_blkcipher is the cipher handle that is required for any subsequent
1321  * API invocation for that block cipher.
1322  *
1323  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1324  *	   of an error, PTR_ERR() returns the error code.
1325  */
1326 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1327 	const char *alg_name, u32 type, u32 mask)
1328 {
1329 	type &= ~CRYPTO_ALG_TYPE_MASK;
1330 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1331 	mask |= CRYPTO_ALG_TYPE_MASK;
1332 
1333 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1334 }
1335 
1336 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1337 	struct crypto_blkcipher *tfm)
1338 {
1339 	return &tfm->base;
1340 }
1341 
1342 /**
1343  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1344  * @tfm: cipher handle to be freed
1345  */
1346 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1347 {
1348 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1349 }
1350 
1351 /**
1352  * crypto_has_blkcipher() - Search for the availability of a block cipher
1353  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1354  *	      block cipher
1355  * @type: specifies the type of the cipher
1356  * @mask: specifies the mask for the cipher
1357  *
1358  * Return: true when the block cipher is known to the kernel crypto API; false
1359  *	   otherwise
1360  */
1361 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1362 {
1363 	type &= ~CRYPTO_ALG_TYPE_MASK;
1364 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1365 	mask |= CRYPTO_ALG_TYPE_MASK;
1366 
1367 	return crypto_has_alg(alg_name, type, mask);
1368 }
1369 
1370 /**
1371  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1372  * @tfm: cipher handle
1373  *
1374  * Return: The character string holding the name of the cipher
1375  */
1376 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1377 {
1378 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1379 }
1380 
1381 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1382 	struct crypto_blkcipher *tfm)
1383 {
1384 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1385 }
1386 
1387 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1388 	struct crypto_blkcipher *tfm)
1389 {
1390 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1391 }
1392 
1393 /**
1394  * crypto_blkcipher_ivsize() - obtain IV size
1395  * @tfm: cipher handle
1396  *
1397  * The size of the IV for the block cipher referenced by the cipher handle is
1398  * returned. This IV size may be zero if the cipher does not need an IV.
1399  *
1400  * Return: IV size in bytes
1401  */
1402 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1403 {
1404 	return crypto_blkcipher_alg(tfm)->ivsize;
1405 }
1406 
1407 /**
1408  * crypto_blkcipher_blocksize() - obtain block size of cipher
1409  * @tfm: cipher handle
1410  *
1411  * The block size for the block cipher referenced with the cipher handle is
1412  * returned. The caller may use that information to allocate appropriate
1413  * memory for the data returned by the encryption or decryption operation.
1414  *
1415  * Return: block size of cipher
1416  */
1417 static inline unsigned int crypto_blkcipher_blocksize(
1418 	struct crypto_blkcipher *tfm)
1419 {
1420 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1421 }
1422 
1423 static inline unsigned int crypto_blkcipher_alignmask(
1424 	struct crypto_blkcipher *tfm)
1425 {
1426 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1427 }
1428 
1429 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1430 {
1431 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1432 }
1433 
1434 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1435 					      u32 flags)
1436 {
1437 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1438 }
1439 
1440 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1441 						u32 flags)
1442 {
1443 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1444 }
1445 
1446 /**
1447  * crypto_blkcipher_setkey() - set key for cipher
1448  * @tfm: cipher handle
1449  * @key: buffer holding the key
1450  * @keylen: length of the key in bytes
1451  *
1452  * The caller provided key is set for the block cipher referenced by the cipher
1453  * handle.
1454  *
1455  * Note, the key length determines the cipher type. Many block ciphers implement
1456  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1457  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1458  * is performed.
1459  *
1460  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1461  */
1462 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1463 					  const u8 *key, unsigned int keylen)
1464 {
1465 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1466 						 key, keylen);
1467 }
1468 
1469 /**
1470  * crypto_blkcipher_encrypt() - encrypt plaintext
1471  * @desc: reference to the block cipher handle with meta data
1472  * @dst: scatter/gather list that is filled by the cipher operation with the
1473  *	ciphertext
1474  * @src: scatter/gather list that holds the plaintext
1475  * @nbytes: number of bytes of the plaintext to encrypt.
1476  *
1477  * Encrypt plaintext data using the IV set by the caller with a preceding
1478  * call of crypto_blkcipher_set_iv.
1479  *
1480  * The blkcipher_desc data structure must be filled by the caller and can
1481  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1482  * with the block cipher handle; desc.flags is filled with either
1483  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1484  *
1485  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1486  */
1487 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1488 					   struct scatterlist *dst,
1489 					   struct scatterlist *src,
1490 					   unsigned int nbytes)
1491 {
1492 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1493 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1494 }
1495 
1496 /**
1497  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1498  * @desc: reference to the block cipher handle with meta data
1499  * @dst: scatter/gather list that is filled by the cipher operation with the
1500  *	ciphertext
1501  * @src: scatter/gather list that holds the plaintext
1502  * @nbytes: number of bytes of the plaintext to encrypt.
1503  *
1504  * Encrypt plaintext data with the use of an IV that is solely used for this
1505  * cipher operation. Any previously set IV is not used.
1506  *
1507  * The blkcipher_desc data structure must be filled by the caller and can
1508  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1509  * with the block cipher handle; desc.info is filled with the IV to be used for
1510  * the current operation; desc.flags is filled with either
1511  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1512  *
1513  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1514  */
1515 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1516 					      struct scatterlist *dst,
1517 					      struct scatterlist *src,
1518 					      unsigned int nbytes)
1519 {
1520 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1521 }
1522 
1523 /**
1524  * crypto_blkcipher_decrypt() - decrypt ciphertext
1525  * @desc: reference to the block cipher handle with meta data
1526  * @dst: scatter/gather list that is filled by the cipher operation with the
1527  *	plaintext
1528  * @src: scatter/gather list that holds the ciphertext
1529  * @nbytes: number of bytes of the ciphertext to decrypt.
1530  *
1531  * Decrypt ciphertext data using the IV set by the caller with a preceding
1532  * call of crypto_blkcipher_set_iv.
1533  *
1534  * The blkcipher_desc data structure must be filled by the caller as documented
1535  * for the crypto_blkcipher_encrypt call above.
1536  *
1537  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1538  *
1539  */
1540 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1541 					   struct scatterlist *dst,
1542 					   struct scatterlist *src,
1543 					   unsigned int nbytes)
1544 {
1545 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1546 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1547 }
1548 
1549 /**
1550  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1551  * @desc: reference to the block cipher handle with meta data
1552  * @dst: scatter/gather list that is filled by the cipher operation with the
1553  *	plaintext
1554  * @src: scatter/gather list that holds the ciphertext
1555  * @nbytes: number of bytes of the ciphertext to decrypt.
1556  *
1557  * Decrypt ciphertext data with the use of an IV that is solely used for this
1558  * cipher operation. Any previously set IV is not used.
1559  *
1560  * The blkcipher_desc data structure must be filled by the caller as documented
1561  * for the crypto_blkcipher_encrypt_iv call above.
1562  *
1563  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1564  */
1565 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1566 					      struct scatterlist *dst,
1567 					      struct scatterlist *src,
1568 					      unsigned int nbytes)
1569 {
1570 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1571 }
1572 
1573 /**
1574  * crypto_blkcipher_set_iv() - set IV for cipher
1575  * @tfm: cipher handle
1576  * @src: buffer holding the IV
1577  * @len: length of the IV in bytes
1578  *
1579  * The caller provided IV is set for the block cipher referenced by the cipher
1580  * handle.
1581  */
1582 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1583 					   const u8 *src, unsigned int len)
1584 {
1585 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1586 }
1587 
1588 /**
1589  * crypto_blkcipher_get_iv() - obtain IV from cipher
1590  * @tfm: cipher handle
1591  * @dst: buffer filled with the IV
1592  * @len: length of the buffer dst
1593  *
1594  * The caller can obtain the IV set for the block cipher referenced by the
1595  * cipher handle and store it into the user-provided buffer. If the buffer
1596  * has an insufficient space, the IV is truncated to fit the buffer.
1597  */
1598 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1599 					   u8 *dst, unsigned int len)
1600 {
1601 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1602 }
1603 
1604 /**
1605  * DOC: Single Block Cipher API
1606  *
1607  * The single block cipher API is used with the ciphers of type
1608  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1609  *
1610  * Using the single block cipher API calls, operations with the basic cipher
1611  * primitive can be implemented. These cipher primitives exclude any block
1612  * chaining operations including IV handling.
1613  *
1614  * The purpose of this single block cipher API is to support the implementation
1615  * of templates or other concepts that only need to perform the cipher operation
1616  * on one block at a time. Templates invoke the underlying cipher primitive
1617  * block-wise and process either the input or the output data of these cipher
1618  * operations.
1619  */
1620 
1621 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1622 {
1623 	return (struct crypto_cipher *)tfm;
1624 }
1625 
1626 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1627 {
1628 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1629 	return __crypto_cipher_cast(tfm);
1630 }
1631 
1632 /**
1633  * crypto_alloc_cipher() - allocate single block cipher handle
1634  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1635  *	     single block cipher
1636  * @type: specifies the type of the cipher
1637  * @mask: specifies the mask for the cipher
1638  *
1639  * Allocate a cipher handle for a single block cipher. The returned struct
1640  * crypto_cipher is the cipher handle that is required for any subsequent API
1641  * invocation for that single block cipher.
1642  *
1643  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1644  *	   of an error, PTR_ERR() returns the error code.
1645  */
1646 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1647 							u32 type, u32 mask)
1648 {
1649 	type &= ~CRYPTO_ALG_TYPE_MASK;
1650 	type |= CRYPTO_ALG_TYPE_CIPHER;
1651 	mask |= CRYPTO_ALG_TYPE_MASK;
1652 
1653 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1654 }
1655 
1656 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1657 {
1658 	return &tfm->base;
1659 }
1660 
1661 /**
1662  * crypto_free_cipher() - zeroize and free the single block cipher handle
1663  * @tfm: cipher handle to be freed
1664  */
1665 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1666 {
1667 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1668 }
1669 
1670 /**
1671  * crypto_has_cipher() - Search for the availability of a single block cipher
1672  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1673  *	     single block cipher
1674  * @type: specifies the type of the cipher
1675  * @mask: specifies the mask for the cipher
1676  *
1677  * Return: true when the single block cipher is known to the kernel crypto API;
1678  *	   false otherwise
1679  */
1680 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1681 {
1682 	type &= ~CRYPTO_ALG_TYPE_MASK;
1683 	type |= CRYPTO_ALG_TYPE_CIPHER;
1684 	mask |= CRYPTO_ALG_TYPE_MASK;
1685 
1686 	return crypto_has_alg(alg_name, type, mask);
1687 }
1688 
1689 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1690 {
1691 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1692 }
1693 
1694 /**
1695  * crypto_cipher_blocksize() - obtain block size for cipher
1696  * @tfm: cipher handle
1697  *
1698  * The block size for the single block cipher referenced with the cipher handle
1699  * tfm is returned. The caller may use that information to allocate appropriate
1700  * memory for the data returned by the encryption or decryption operation
1701  *
1702  * Return: block size of cipher
1703  */
1704 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1705 {
1706 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1707 }
1708 
1709 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1710 {
1711 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1712 }
1713 
1714 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1715 {
1716 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1717 }
1718 
1719 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1720 					   u32 flags)
1721 {
1722 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1723 }
1724 
1725 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1726 					     u32 flags)
1727 {
1728 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1729 }
1730 
1731 /**
1732  * crypto_cipher_setkey() - set key for cipher
1733  * @tfm: cipher handle
1734  * @key: buffer holding the key
1735  * @keylen: length of the key in bytes
1736  *
1737  * The caller provided key is set for the single block cipher referenced by the
1738  * cipher handle.
1739  *
1740  * Note, the key length determines the cipher type. Many block ciphers implement
1741  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1742  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1743  * is performed.
1744  *
1745  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1746  */
1747 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1748                                        const u8 *key, unsigned int keylen)
1749 {
1750 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1751 						  key, keylen);
1752 }
1753 
1754 /**
1755  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1756  * @tfm: cipher handle
1757  * @dst: points to the buffer that will be filled with the ciphertext
1758  * @src: buffer holding the plaintext to be encrypted
1759  *
1760  * Invoke the encryption operation of one block. The caller must ensure that
1761  * the plaintext and ciphertext buffers are at least one block in size.
1762  */
1763 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1764 					     u8 *dst, const u8 *src)
1765 {
1766 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1767 						dst, src);
1768 }
1769 
1770 /**
1771  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1772  * @tfm: cipher handle
1773  * @dst: points to the buffer that will be filled with the plaintext
1774  * @src: buffer holding the ciphertext to be decrypted
1775  *
1776  * Invoke the decryption operation of one block. The caller must ensure that
1777  * the plaintext and ciphertext buffers are at least one block in size.
1778  */
1779 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1780 					     u8 *dst, const u8 *src)
1781 {
1782 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1783 						dst, src);
1784 }
1785 
1786 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1787 {
1788 	return (struct crypto_comp *)tfm;
1789 }
1790 
1791 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1792 {
1793 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1794 	       CRYPTO_ALG_TYPE_MASK);
1795 	return __crypto_comp_cast(tfm);
1796 }
1797 
1798 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1799 						    u32 type, u32 mask)
1800 {
1801 	type &= ~CRYPTO_ALG_TYPE_MASK;
1802 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1803 	mask |= CRYPTO_ALG_TYPE_MASK;
1804 
1805 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1806 }
1807 
1808 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1809 {
1810 	return &tfm->base;
1811 }
1812 
1813 static inline void crypto_free_comp(struct crypto_comp *tfm)
1814 {
1815 	crypto_free_tfm(crypto_comp_tfm(tfm));
1816 }
1817 
1818 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1819 {
1820 	type &= ~CRYPTO_ALG_TYPE_MASK;
1821 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1822 	mask |= CRYPTO_ALG_TYPE_MASK;
1823 
1824 	return crypto_has_alg(alg_name, type, mask);
1825 }
1826 
1827 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1828 {
1829 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1830 }
1831 
1832 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1833 {
1834 	return &crypto_comp_tfm(tfm)->crt_compress;
1835 }
1836 
1837 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1838                                        const u8 *src, unsigned int slen,
1839                                        u8 *dst, unsigned int *dlen)
1840 {
1841 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1842 						  src, slen, dst, dlen);
1843 }
1844 
1845 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1846                                          const u8 *src, unsigned int slen,
1847                                          u8 *dst, unsigned int *dlen)
1848 {
1849 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1850 						    src, slen, dst, dlen);
1851 }
1852 
1853 #endif	/* _LINUX_CRYPTO_H */
1854 
1855