1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Scatterlist Cryptographic API. 4 * 5 * Copyright (c) 2002 James Morris <[email protected]> 6 * Copyright (c) 2002 David S. Miller ([email protected]) 7 * Copyright (c) 2005 Herbert Xu <[email protected]> 8 * 9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]> 10 * and Nettle, by Niels Möller. 11 */ 12 #ifndef _LINUX_CRYPTO_H 13 #define _LINUX_CRYPTO_H 14 15 #include <linux/atomic.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/bug.h> 19 #include <linux/slab.h> 20 #include <linux/string.h> 21 #include <linux/uaccess.h> 22 #include <linux/completion.h> 23 24 /* 25 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 26 * arbitrary modules to be loaded. Loading from userspace may still need the 27 * unprefixed names, so retains those aliases as well. 28 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 29 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 30 * expands twice on the same line. Instead, use a separate base name for the 31 * alias. 32 */ 33 #define MODULE_ALIAS_CRYPTO(name) \ 34 __MODULE_INFO(alias, alias_userspace, name); \ 35 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 36 37 /* 38 * Algorithm masks and types. 39 */ 40 #define CRYPTO_ALG_TYPE_MASK 0x0000000f 41 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 42 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 43 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 44 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 45 #define CRYPTO_ALG_TYPE_KPP 0x00000008 46 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 47 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 48 #define CRYPTO_ALG_TYPE_RNG 0x0000000c 49 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 50 #define CRYPTO_ALG_TYPE_HASH 0x0000000e 51 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e 52 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f 53 54 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 55 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 56 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 57 58 #define CRYPTO_ALG_LARVAL 0x00000010 59 #define CRYPTO_ALG_DEAD 0x00000020 60 #define CRYPTO_ALG_DYING 0x00000040 61 #define CRYPTO_ALG_ASYNC 0x00000080 62 63 /* 64 * Set this bit if and only if the algorithm requires another algorithm of 65 * the same type to handle corner cases. 66 */ 67 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 68 69 /* 70 * Set if the algorithm has passed automated run-time testing. Note that 71 * if there is no run-time testing for a given algorithm it is considered 72 * to have passed. 73 */ 74 75 #define CRYPTO_ALG_TESTED 0x00000400 76 77 /* 78 * Set if the algorithm is an instance that is built from templates. 79 */ 80 #define CRYPTO_ALG_INSTANCE 0x00000800 81 82 /* Set this bit if the algorithm provided is hardware accelerated but 83 * not available to userspace via instruction set or so. 84 */ 85 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 86 87 /* 88 * Mark a cipher as a service implementation only usable by another 89 * cipher and never by a normal user of the kernel crypto API 90 */ 91 #define CRYPTO_ALG_INTERNAL 0x00002000 92 93 /* 94 * Set if the algorithm has a ->setkey() method but can be used without 95 * calling it first, i.e. there is a default key. 96 */ 97 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 98 99 /* 100 * Don't trigger module loading 101 */ 102 #define CRYPTO_NOLOAD 0x00008000 103 104 /* 105 * Transform masks and values (for crt_flags). 106 */ 107 #define CRYPTO_TFM_NEED_KEY 0x00000001 108 109 #define CRYPTO_TFM_REQ_MASK 0x000fff00 110 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 111 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 112 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 113 114 /* 115 * Miscellaneous stuff. 116 */ 117 #define CRYPTO_MAX_ALG_NAME 128 118 119 /* 120 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 121 * declaration) is used to ensure that the crypto_tfm context structure is 122 * aligned correctly for the given architecture so that there are no alignment 123 * faults for C data types. In particular, this is required on platforms such 124 * as arm where pointers are 32-bit aligned but there are data types such as 125 * u64 which require 64-bit alignment. 126 */ 127 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 128 129 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 130 131 struct scatterlist; 132 struct crypto_async_request; 133 struct crypto_tfm; 134 struct crypto_type; 135 136 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 137 138 /** 139 * DOC: Block Cipher Context Data Structures 140 * 141 * These data structures define the operating context for each block cipher 142 * type. 143 */ 144 145 struct crypto_async_request { 146 struct list_head list; 147 crypto_completion_t complete; 148 void *data; 149 struct crypto_tfm *tfm; 150 151 u32 flags; 152 }; 153 154 /** 155 * DOC: Block Cipher Algorithm Definitions 156 * 157 * These data structures define modular crypto algorithm implementations, 158 * managed via crypto_register_alg() and crypto_unregister_alg(). 159 */ 160 161 /** 162 * struct cipher_alg - single-block symmetric ciphers definition 163 * @cia_min_keysize: Minimum key size supported by the transformation. This is 164 * the smallest key length supported by this transformation 165 * algorithm. This must be set to one of the pre-defined 166 * values as this is not hardware specific. Possible values 167 * for this field can be found via git grep "_MIN_KEY_SIZE" 168 * include/crypto/ 169 * @cia_max_keysize: Maximum key size supported by the transformation. This is 170 * the largest key length supported by this transformation 171 * algorithm. This must be set to one of the pre-defined values 172 * as this is not hardware specific. Possible values for this 173 * field can be found via git grep "_MAX_KEY_SIZE" 174 * include/crypto/ 175 * @cia_setkey: Set key for the transformation. This function is used to either 176 * program a supplied key into the hardware or store the key in the 177 * transformation context for programming it later. Note that this 178 * function does modify the transformation context. This function 179 * can be called multiple times during the existence of the 180 * transformation object, so one must make sure the key is properly 181 * reprogrammed into the hardware. This function is also 182 * responsible for checking the key length for validity. 183 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 184 * single block of data, which must be @cra_blocksize big. This 185 * always operates on a full @cra_blocksize and it is not possible 186 * to encrypt a block of smaller size. The supplied buffers must 187 * therefore also be at least of @cra_blocksize size. Both the 188 * input and output buffers are always aligned to @cra_alignmask. 189 * In case either of the input or output buffer supplied by user 190 * of the crypto API is not aligned to @cra_alignmask, the crypto 191 * API will re-align the buffers. The re-alignment means that a 192 * new buffer will be allocated, the data will be copied into the 193 * new buffer, then the processing will happen on the new buffer, 194 * then the data will be copied back into the original buffer and 195 * finally the new buffer will be freed. In case a software 196 * fallback was put in place in the @cra_init call, this function 197 * might need to use the fallback if the algorithm doesn't support 198 * all of the key sizes. In case the key was stored in 199 * transformation context, the key might need to be re-programmed 200 * into the hardware in this function. This function shall not 201 * modify the transformation context, as this function may be 202 * called in parallel with the same transformation object. 203 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 204 * @cia_encrypt, and the conditions are exactly the same. 205 * 206 * All fields are mandatory and must be filled. 207 */ 208 struct cipher_alg { 209 unsigned int cia_min_keysize; 210 unsigned int cia_max_keysize; 211 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 212 unsigned int keylen); 213 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 214 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 215 }; 216 217 /** 218 * struct compress_alg - compression/decompression algorithm 219 * @coa_compress: Compress a buffer of specified length, storing the resulting 220 * data in the specified buffer. Return the length of the 221 * compressed data in dlen. 222 * @coa_decompress: Decompress the source buffer, storing the uncompressed 223 * data in the specified buffer. The length of the data is 224 * returned in dlen. 225 * 226 * All fields are mandatory. 227 */ 228 struct compress_alg { 229 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 230 unsigned int slen, u8 *dst, unsigned int *dlen); 231 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 232 unsigned int slen, u8 *dst, unsigned int *dlen); 233 }; 234 235 #ifdef CONFIG_CRYPTO_STATS 236 /* 237 * struct crypto_istat_aead - statistics for AEAD algorithm 238 * @encrypt_cnt: number of encrypt requests 239 * @encrypt_tlen: total data size handled by encrypt requests 240 * @decrypt_cnt: number of decrypt requests 241 * @decrypt_tlen: total data size handled by decrypt requests 242 * @err_cnt: number of error for AEAD requests 243 */ 244 struct crypto_istat_aead { 245 atomic64_t encrypt_cnt; 246 atomic64_t encrypt_tlen; 247 atomic64_t decrypt_cnt; 248 atomic64_t decrypt_tlen; 249 atomic64_t err_cnt; 250 }; 251 252 /* 253 * struct crypto_istat_akcipher - statistics for akcipher algorithm 254 * @encrypt_cnt: number of encrypt requests 255 * @encrypt_tlen: total data size handled by encrypt requests 256 * @decrypt_cnt: number of decrypt requests 257 * @decrypt_tlen: total data size handled by decrypt requests 258 * @verify_cnt: number of verify operation 259 * @sign_cnt: number of sign requests 260 * @err_cnt: number of error for akcipher requests 261 */ 262 struct crypto_istat_akcipher { 263 atomic64_t encrypt_cnt; 264 atomic64_t encrypt_tlen; 265 atomic64_t decrypt_cnt; 266 atomic64_t decrypt_tlen; 267 atomic64_t verify_cnt; 268 atomic64_t sign_cnt; 269 atomic64_t err_cnt; 270 }; 271 272 /* 273 * struct crypto_istat_cipher - statistics for cipher algorithm 274 * @encrypt_cnt: number of encrypt requests 275 * @encrypt_tlen: total data size handled by encrypt requests 276 * @decrypt_cnt: number of decrypt requests 277 * @decrypt_tlen: total data size handled by decrypt requests 278 * @err_cnt: number of error for cipher requests 279 */ 280 struct crypto_istat_cipher { 281 atomic64_t encrypt_cnt; 282 atomic64_t encrypt_tlen; 283 atomic64_t decrypt_cnt; 284 atomic64_t decrypt_tlen; 285 atomic64_t err_cnt; 286 }; 287 288 /* 289 * struct crypto_istat_compress - statistics for compress algorithm 290 * @compress_cnt: number of compress requests 291 * @compress_tlen: total data size handled by compress requests 292 * @decompress_cnt: number of decompress requests 293 * @decompress_tlen: total data size handled by decompress requests 294 * @err_cnt: number of error for compress requests 295 */ 296 struct crypto_istat_compress { 297 atomic64_t compress_cnt; 298 atomic64_t compress_tlen; 299 atomic64_t decompress_cnt; 300 atomic64_t decompress_tlen; 301 atomic64_t err_cnt; 302 }; 303 304 /* 305 * struct crypto_istat_hash - statistics for has algorithm 306 * @hash_cnt: number of hash requests 307 * @hash_tlen: total data size hashed 308 * @err_cnt: number of error for hash requests 309 */ 310 struct crypto_istat_hash { 311 atomic64_t hash_cnt; 312 atomic64_t hash_tlen; 313 atomic64_t err_cnt; 314 }; 315 316 /* 317 * struct crypto_istat_kpp - statistics for KPP algorithm 318 * @setsecret_cnt: number of setsecrey operation 319 * @generate_public_key_cnt: number of generate_public_key operation 320 * @compute_shared_secret_cnt: number of compute_shared_secret operation 321 * @err_cnt: number of error for KPP requests 322 */ 323 struct crypto_istat_kpp { 324 atomic64_t setsecret_cnt; 325 atomic64_t generate_public_key_cnt; 326 atomic64_t compute_shared_secret_cnt; 327 atomic64_t err_cnt; 328 }; 329 330 /* 331 * struct crypto_istat_rng: statistics for RNG algorithm 332 * @generate_cnt: number of RNG generate requests 333 * @generate_tlen: total data size of generated data by the RNG 334 * @seed_cnt: number of times the RNG was seeded 335 * @err_cnt: number of error for RNG requests 336 */ 337 struct crypto_istat_rng { 338 atomic64_t generate_cnt; 339 atomic64_t generate_tlen; 340 atomic64_t seed_cnt; 341 atomic64_t err_cnt; 342 }; 343 #endif /* CONFIG_CRYPTO_STATS */ 344 345 #define cra_cipher cra_u.cipher 346 #define cra_compress cra_u.compress 347 348 /** 349 * struct crypto_alg - definition of a cryptograpic cipher algorithm 350 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 351 * CRYPTO_ALG_* flags for the flags which go in here. Those are 352 * used for fine-tuning the description of the transformation 353 * algorithm. 354 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 355 * of the smallest possible unit which can be transformed with 356 * this algorithm. The users must respect this value. 357 * In case of HASH transformation, it is possible for a smaller 358 * block than @cra_blocksize to be passed to the crypto API for 359 * transformation, in case of any other transformation type, an 360 * error will be returned upon any attempt to transform smaller 361 * than @cra_blocksize chunks. 362 * @cra_ctxsize: Size of the operational context of the transformation. This 363 * value informs the kernel crypto API about the memory size 364 * needed to be allocated for the transformation context. 365 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 366 * buffer containing the input data for the algorithm must be 367 * aligned to this alignment mask. The data buffer for the 368 * output data must be aligned to this alignment mask. Note that 369 * the Crypto API will do the re-alignment in software, but 370 * only under special conditions and there is a performance hit. 371 * The re-alignment happens at these occasions for different 372 * @cra_u types: cipher -- For both input data and output data 373 * buffer; ahash -- For output hash destination buf; shash -- 374 * For output hash destination buf. 375 * This is needed on hardware which is flawed by design and 376 * cannot pick data from arbitrary addresses. 377 * @cra_priority: Priority of this transformation implementation. In case 378 * multiple transformations with same @cra_name are available to 379 * the Crypto API, the kernel will use the one with highest 380 * @cra_priority. 381 * @cra_name: Generic name (usable by multiple implementations) of the 382 * transformation algorithm. This is the name of the transformation 383 * itself. This field is used by the kernel when looking up the 384 * providers of particular transformation. 385 * @cra_driver_name: Unique name of the transformation provider. This is the 386 * name of the provider of the transformation. This can be any 387 * arbitrary value, but in the usual case, this contains the 388 * name of the chip or provider and the name of the 389 * transformation algorithm. 390 * @cra_type: Type of the cryptographic transformation. This is a pointer to 391 * struct crypto_type, which implements callbacks common for all 392 * transformation types. There are multiple options, such as 393 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. 394 * This field might be empty. In that case, there are no common 395 * callbacks. This is the case for: cipher, compress, shash. 396 * @cra_u: Callbacks implementing the transformation. This is a union of 397 * multiple structures. Depending on the type of transformation selected 398 * by @cra_type and @cra_flags above, the associated structure must be 399 * filled with callbacks. This field might be empty. This is the case 400 * for ahash, shash. 401 * @cra_init: Initialize the cryptographic transformation object. This function 402 * is used to initialize the cryptographic transformation object. 403 * This function is called only once at the instantiation time, right 404 * after the transformation context was allocated. In case the 405 * cryptographic hardware has some special requirements which need to 406 * be handled by software, this function shall check for the precise 407 * requirement of the transformation and put any software fallbacks 408 * in place. 409 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 410 * counterpart to @cra_init, used to remove various changes set in 411 * @cra_init. 412 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 413 * definition. See @struct @cipher_alg. 414 * @cra_u.compress: Union member which contains a (de)compression algorithm. 415 * See @struct @compress_alg. 416 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 417 * @cra_list: internally used 418 * @cra_users: internally used 419 * @cra_refcnt: internally used 420 * @cra_destroy: internally used 421 * 422 * @stats: union of all possible crypto_istat_xxx structures 423 * @stats.aead: statistics for AEAD algorithm 424 * @stats.akcipher: statistics for akcipher algorithm 425 * @stats.cipher: statistics for cipher algorithm 426 * @stats.compress: statistics for compress algorithm 427 * @stats.hash: statistics for hash algorithm 428 * @stats.rng: statistics for rng algorithm 429 * @stats.kpp: statistics for KPP algorithm 430 * 431 * The struct crypto_alg describes a generic Crypto API algorithm and is common 432 * for all of the transformations. Any variable not documented here shall not 433 * be used by a cipher implementation as it is internal to the Crypto API. 434 */ 435 struct crypto_alg { 436 struct list_head cra_list; 437 struct list_head cra_users; 438 439 u32 cra_flags; 440 unsigned int cra_blocksize; 441 unsigned int cra_ctxsize; 442 unsigned int cra_alignmask; 443 444 int cra_priority; 445 refcount_t cra_refcnt; 446 447 char cra_name[CRYPTO_MAX_ALG_NAME]; 448 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 449 450 const struct crypto_type *cra_type; 451 452 union { 453 struct cipher_alg cipher; 454 struct compress_alg compress; 455 } cra_u; 456 457 int (*cra_init)(struct crypto_tfm *tfm); 458 void (*cra_exit)(struct crypto_tfm *tfm); 459 void (*cra_destroy)(struct crypto_alg *alg); 460 461 struct module *cra_module; 462 463 #ifdef CONFIG_CRYPTO_STATS 464 union { 465 struct crypto_istat_aead aead; 466 struct crypto_istat_akcipher akcipher; 467 struct crypto_istat_cipher cipher; 468 struct crypto_istat_compress compress; 469 struct crypto_istat_hash hash; 470 struct crypto_istat_rng rng; 471 struct crypto_istat_kpp kpp; 472 } stats; 473 #endif /* CONFIG_CRYPTO_STATS */ 474 475 } CRYPTO_MINALIGN_ATTR; 476 477 #ifdef CONFIG_CRYPTO_STATS 478 void crypto_stats_init(struct crypto_alg *alg); 479 void crypto_stats_get(struct crypto_alg *alg); 480 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 481 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 482 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 483 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 484 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 485 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 486 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 487 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 488 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 489 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 490 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 491 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 492 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 493 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 494 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 495 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 496 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 497 #else 498 static inline void crypto_stats_init(struct crypto_alg *alg) 499 {} 500 static inline void crypto_stats_get(struct crypto_alg *alg) 501 {} 502 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 503 {} 504 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 505 {} 506 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 507 {} 508 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 509 {} 510 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 511 {} 512 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 513 {} 514 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 515 {} 516 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 517 {} 518 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 519 {} 520 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 521 {} 522 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 523 {} 524 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 525 {} 526 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 527 {} 528 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 529 {} 530 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 531 {} 532 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 533 {} 534 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 535 {} 536 #endif 537 /* 538 * A helper struct for waiting for completion of async crypto ops 539 */ 540 struct crypto_wait { 541 struct completion completion; 542 int err; 543 }; 544 545 /* 546 * Macro for declaring a crypto op async wait object on stack 547 */ 548 #define DECLARE_CRYPTO_WAIT(_wait) \ 549 struct crypto_wait _wait = { \ 550 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 551 552 /* 553 * Async ops completion helper functioons 554 */ 555 void crypto_req_done(struct crypto_async_request *req, int err); 556 557 static inline int crypto_wait_req(int err, struct crypto_wait *wait) 558 { 559 switch (err) { 560 case -EINPROGRESS: 561 case -EBUSY: 562 wait_for_completion(&wait->completion); 563 reinit_completion(&wait->completion); 564 err = wait->err; 565 break; 566 } 567 568 return err; 569 } 570 571 static inline void crypto_init_wait(struct crypto_wait *wait) 572 { 573 init_completion(&wait->completion); 574 } 575 576 /* 577 * Algorithm registration interface. 578 */ 579 int crypto_register_alg(struct crypto_alg *alg); 580 void crypto_unregister_alg(struct crypto_alg *alg); 581 int crypto_register_algs(struct crypto_alg *algs, int count); 582 void crypto_unregister_algs(struct crypto_alg *algs, int count); 583 584 /* 585 * Algorithm query interface. 586 */ 587 int crypto_has_alg(const char *name, u32 type, u32 mask); 588 589 /* 590 * Transforms: user-instantiated objects which encapsulate algorithms 591 * and core processing logic. Managed via crypto_alloc_*() and 592 * crypto_free_*(), as well as the various helpers below. 593 */ 594 595 struct crypto_tfm { 596 597 u32 crt_flags; 598 599 void (*exit)(struct crypto_tfm *tfm); 600 601 struct crypto_alg *__crt_alg; 602 603 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 604 }; 605 606 struct crypto_cipher { 607 struct crypto_tfm base; 608 }; 609 610 struct crypto_comp { 611 struct crypto_tfm base; 612 }; 613 614 enum { 615 CRYPTOA_UNSPEC, 616 CRYPTOA_ALG, 617 CRYPTOA_TYPE, 618 CRYPTOA_U32, 619 __CRYPTOA_MAX, 620 }; 621 622 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 623 624 /* Maximum number of (rtattr) parameters for each template. */ 625 #define CRYPTO_MAX_ATTRS 32 626 627 struct crypto_attr_alg { 628 char name[CRYPTO_MAX_ALG_NAME]; 629 }; 630 631 struct crypto_attr_type { 632 u32 type; 633 u32 mask; 634 }; 635 636 struct crypto_attr_u32 { 637 u32 num; 638 }; 639 640 /* 641 * Transform user interface. 642 */ 643 644 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 645 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 646 647 static inline void crypto_free_tfm(struct crypto_tfm *tfm) 648 { 649 return crypto_destroy_tfm(tfm, tfm); 650 } 651 652 int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 653 654 /* 655 * Transform helpers which query the underlying algorithm. 656 */ 657 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 658 { 659 return tfm->__crt_alg->cra_name; 660 } 661 662 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 663 { 664 return tfm->__crt_alg->cra_driver_name; 665 } 666 667 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 668 { 669 return tfm->__crt_alg->cra_priority; 670 } 671 672 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 673 { 674 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 675 } 676 677 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 678 { 679 return tfm->__crt_alg->cra_blocksize; 680 } 681 682 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 683 { 684 return tfm->__crt_alg->cra_alignmask; 685 } 686 687 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 688 { 689 return tfm->crt_flags; 690 } 691 692 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 693 { 694 tfm->crt_flags |= flags; 695 } 696 697 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 698 { 699 tfm->crt_flags &= ~flags; 700 } 701 702 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 703 { 704 return tfm->__crt_ctx; 705 } 706 707 static inline unsigned int crypto_tfm_ctx_alignment(void) 708 { 709 struct crypto_tfm *tfm; 710 return __alignof__(tfm->__crt_ctx); 711 } 712 713 /** 714 * DOC: Single Block Cipher API 715 * 716 * The single block cipher API is used with the ciphers of type 717 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 718 * 719 * Using the single block cipher API calls, operations with the basic cipher 720 * primitive can be implemented. These cipher primitives exclude any block 721 * chaining operations including IV handling. 722 * 723 * The purpose of this single block cipher API is to support the implementation 724 * of templates or other concepts that only need to perform the cipher operation 725 * on one block at a time. Templates invoke the underlying cipher primitive 726 * block-wise and process either the input or the output data of these cipher 727 * operations. 728 */ 729 730 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 731 { 732 return (struct crypto_cipher *)tfm; 733 } 734 735 /** 736 * crypto_alloc_cipher() - allocate single block cipher handle 737 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 738 * single block cipher 739 * @type: specifies the type of the cipher 740 * @mask: specifies the mask for the cipher 741 * 742 * Allocate a cipher handle for a single block cipher. The returned struct 743 * crypto_cipher is the cipher handle that is required for any subsequent API 744 * invocation for that single block cipher. 745 * 746 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 747 * of an error, PTR_ERR() returns the error code. 748 */ 749 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 750 u32 type, u32 mask) 751 { 752 type &= ~CRYPTO_ALG_TYPE_MASK; 753 type |= CRYPTO_ALG_TYPE_CIPHER; 754 mask |= CRYPTO_ALG_TYPE_MASK; 755 756 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 757 } 758 759 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 760 { 761 return &tfm->base; 762 } 763 764 /** 765 * crypto_free_cipher() - zeroize and free the single block cipher handle 766 * @tfm: cipher handle to be freed 767 */ 768 static inline void crypto_free_cipher(struct crypto_cipher *tfm) 769 { 770 crypto_free_tfm(crypto_cipher_tfm(tfm)); 771 } 772 773 /** 774 * crypto_has_cipher() - Search for the availability of a single block cipher 775 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 776 * single block cipher 777 * @type: specifies the type of the cipher 778 * @mask: specifies the mask for the cipher 779 * 780 * Return: true when the single block cipher is known to the kernel crypto API; 781 * false otherwise 782 */ 783 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 784 { 785 type &= ~CRYPTO_ALG_TYPE_MASK; 786 type |= CRYPTO_ALG_TYPE_CIPHER; 787 mask |= CRYPTO_ALG_TYPE_MASK; 788 789 return crypto_has_alg(alg_name, type, mask); 790 } 791 792 /** 793 * crypto_cipher_blocksize() - obtain block size for cipher 794 * @tfm: cipher handle 795 * 796 * The block size for the single block cipher referenced with the cipher handle 797 * tfm is returned. The caller may use that information to allocate appropriate 798 * memory for the data returned by the encryption or decryption operation 799 * 800 * Return: block size of cipher 801 */ 802 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 803 { 804 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 805 } 806 807 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 808 { 809 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 810 } 811 812 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 813 { 814 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 815 } 816 817 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 818 u32 flags) 819 { 820 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 821 } 822 823 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 824 u32 flags) 825 { 826 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 827 } 828 829 /** 830 * crypto_cipher_setkey() - set key for cipher 831 * @tfm: cipher handle 832 * @key: buffer holding the key 833 * @keylen: length of the key in bytes 834 * 835 * The caller provided key is set for the single block cipher referenced by the 836 * cipher handle. 837 * 838 * Note, the key length determines the cipher type. Many block ciphers implement 839 * different cipher modes depending on the key size, such as AES-128 vs AES-192 840 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 841 * is performed. 842 * 843 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 844 */ 845 int crypto_cipher_setkey(struct crypto_cipher *tfm, 846 const u8 *key, unsigned int keylen); 847 848 /** 849 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 850 * @tfm: cipher handle 851 * @dst: points to the buffer that will be filled with the ciphertext 852 * @src: buffer holding the plaintext to be encrypted 853 * 854 * Invoke the encryption operation of one block. The caller must ensure that 855 * the plaintext and ciphertext buffers are at least one block in size. 856 */ 857 void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 858 u8 *dst, const u8 *src); 859 860 /** 861 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 862 * @tfm: cipher handle 863 * @dst: points to the buffer that will be filled with the plaintext 864 * @src: buffer holding the ciphertext to be decrypted 865 * 866 * Invoke the decryption operation of one block. The caller must ensure that 867 * the plaintext and ciphertext buffers are at least one block in size. 868 */ 869 void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 870 u8 *dst, const u8 *src); 871 872 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 873 { 874 return (struct crypto_comp *)tfm; 875 } 876 877 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 878 u32 type, u32 mask) 879 { 880 type &= ~CRYPTO_ALG_TYPE_MASK; 881 type |= CRYPTO_ALG_TYPE_COMPRESS; 882 mask |= CRYPTO_ALG_TYPE_MASK; 883 884 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 885 } 886 887 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 888 { 889 return &tfm->base; 890 } 891 892 static inline void crypto_free_comp(struct crypto_comp *tfm) 893 { 894 crypto_free_tfm(crypto_comp_tfm(tfm)); 895 } 896 897 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 898 { 899 type &= ~CRYPTO_ALG_TYPE_MASK; 900 type |= CRYPTO_ALG_TYPE_COMPRESS; 901 mask |= CRYPTO_ALG_TYPE_MASK; 902 903 return crypto_has_alg(alg_name, type, mask); 904 } 905 906 static inline const char *crypto_comp_name(struct crypto_comp *tfm) 907 { 908 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 909 } 910 911 int crypto_comp_compress(struct crypto_comp *tfm, 912 const u8 *src, unsigned int slen, 913 u8 *dst, unsigned int *dlen); 914 915 int crypto_comp_decompress(struct crypto_comp *tfm, 916 const u8 *src, unsigned int slen, 917 u8 *dst, unsigned int *dlen); 918 919 #endif /* _LINUX_CRYPTO_H */ 920 921