xref: /linux-6.15/include/linux/crypto.h (revision bd360e81)
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <[email protected]>
5  * Copyright (c) 2002 David S. Miller ([email protected])
6  * Copyright (c) 2005 Herbert Xu <[email protected]>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
9  * and Nettle, by Niels Möller.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19 
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
28 
29 /*
30  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31  * arbitrary modules to be loaded. Loading from userspace may still need the
32  * unprefixed names, so retains those aliases as well.
33  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35  * expands twice on the same line. Instead, use a separate base name for the
36  * alias.
37  */
38 #define MODULE_ALIAS_CRYPTO(name)	\
39 		__MODULE_INFO(alias, alias_userspace, name);	\
40 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
41 
42 /*
43  * Algorithm masks and types.
44  */
45 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
51 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
52 #define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
53 #define CRYPTO_ALG_TYPE_KPP		0x00000008
54 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
55 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
56 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
57 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
58 #define CRYPTO_ALG_TYPE_DIGEST		0x0000000e
59 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
60 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
61 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
62 
63 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
64 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
65 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
66 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
67 
68 #define CRYPTO_ALG_LARVAL		0x00000010
69 #define CRYPTO_ALG_DEAD			0x00000020
70 #define CRYPTO_ALG_DYING		0x00000040
71 #define CRYPTO_ALG_ASYNC		0x00000080
72 
73 /*
74  * Set this bit if and only if the algorithm requires another algorithm of
75  * the same type to handle corner cases.
76  */
77 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
78 
79 /*
80  * This bit is set for symmetric key ciphers that have already been wrapped
81  * with a generic IV generator to prevent them from being wrapped again.
82  */
83 #define CRYPTO_ALG_GENIV		0x00000200
84 
85 /*
86  * Set if the algorithm has passed automated run-time testing.  Note that
87  * if there is no run-time testing for a given algorithm it is considered
88  * to have passed.
89  */
90 
91 #define CRYPTO_ALG_TESTED		0x00000400
92 
93 /*
94  * Set if the algorithm is an instance that is built from templates.
95  */
96 #define CRYPTO_ALG_INSTANCE		0x00000800
97 
98 /* Set this bit if the algorithm provided is hardware accelerated but
99  * not available to userspace via instruction set or so.
100  */
101 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
102 
103 /*
104  * Mark a cipher as a service implementation only usable by another
105  * cipher and never by a normal user of the kernel crypto API
106  */
107 #define CRYPTO_ALG_INTERNAL		0x00002000
108 
109 /*
110  * Set if the algorithm has a ->setkey() method but can be used without
111  * calling it first, i.e. there is a default key.
112  */
113 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
114 
115 /*
116  * Don't trigger module loading
117  */
118 #define CRYPTO_NOLOAD			0x00008000
119 
120 /*
121  * Transform masks and values (for crt_flags).
122  */
123 #define CRYPTO_TFM_NEED_KEY		0x00000001
124 
125 #define CRYPTO_TFM_REQ_MASK		0x000fff00
126 #define CRYPTO_TFM_RES_MASK		0xfff00000
127 
128 #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
129 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
130 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
131 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
132 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
133 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
134 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
135 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
136 
137 /*
138  * Miscellaneous stuff.
139  */
140 #define CRYPTO_MAX_ALG_NAME		128
141 
142 /*
143  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
144  * declaration) is used to ensure that the crypto_tfm context structure is
145  * aligned correctly for the given architecture so that there are no alignment
146  * faults for C data types.  In particular, this is required on platforms such
147  * as arm where pointers are 32-bit aligned but there are data types such as
148  * u64 which require 64-bit alignment.
149  */
150 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
151 
152 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
153 
154 struct scatterlist;
155 struct crypto_ablkcipher;
156 struct crypto_async_request;
157 struct crypto_blkcipher;
158 struct crypto_tfm;
159 struct crypto_type;
160 struct skcipher_givcrypt_request;
161 
162 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
163 
164 /**
165  * DOC: Block Cipher Context Data Structures
166  *
167  * These data structures define the operating context for each block cipher
168  * type.
169  */
170 
171 struct crypto_async_request {
172 	struct list_head list;
173 	crypto_completion_t complete;
174 	void *data;
175 	struct crypto_tfm *tfm;
176 
177 	u32 flags;
178 };
179 
180 struct ablkcipher_request {
181 	struct crypto_async_request base;
182 
183 	unsigned int nbytes;
184 
185 	void *info;
186 
187 	struct scatterlist *src;
188 	struct scatterlist *dst;
189 
190 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
191 };
192 
193 struct blkcipher_desc {
194 	struct crypto_blkcipher *tfm;
195 	void *info;
196 	u32 flags;
197 };
198 
199 struct cipher_desc {
200 	struct crypto_tfm *tfm;
201 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
202 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
203 			     const u8 *src, unsigned int nbytes);
204 	void *info;
205 };
206 
207 /**
208  * DOC: Block Cipher Algorithm Definitions
209  *
210  * These data structures define modular crypto algorithm implementations,
211  * managed via crypto_register_alg() and crypto_unregister_alg().
212  */
213 
214 /**
215  * struct ablkcipher_alg - asynchronous block cipher definition
216  * @min_keysize: Minimum key size supported by the transformation. This is the
217  *		 smallest key length supported by this transformation algorithm.
218  *		 This must be set to one of the pre-defined values as this is
219  *		 not hardware specific. Possible values for this field can be
220  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
221  * @max_keysize: Maximum key size supported by the transformation. This is the
222  *		 largest key length supported by this transformation algorithm.
223  *		 This must be set to one of the pre-defined values as this is
224  *		 not hardware specific. Possible values for this field can be
225  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
226  * @setkey: Set key for the transformation. This function is used to either
227  *	    program a supplied key into the hardware or store the key in the
228  *	    transformation context for programming it later. Note that this
229  *	    function does modify the transformation context. This function can
230  *	    be called multiple times during the existence of the transformation
231  *	    object, so one must make sure the key is properly reprogrammed into
232  *	    the hardware. This function is also responsible for checking the key
233  *	    length for validity. In case a software fallback was put in place in
234  *	    the @cra_init call, this function might need to use the fallback if
235  *	    the algorithm doesn't support all of the key sizes.
236  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
237  *	     the supplied scatterlist containing the blocks of data. The crypto
238  *	     API consumer is responsible for aligning the entries of the
239  *	     scatterlist properly and making sure the chunks are correctly
240  *	     sized. In case a software fallback was put in place in the
241  *	     @cra_init call, this function might need to use the fallback if
242  *	     the algorithm doesn't support all of the key sizes. In case the
243  *	     key was stored in transformation context, the key might need to be
244  *	     re-programmed into the hardware in this function. This function
245  *	     shall not modify the transformation context, as this function may
246  *	     be called in parallel with the same transformation object.
247  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
248  *	     and the conditions are exactly the same.
249  * @givencrypt: Update the IV for encryption. With this function, a cipher
250  *	        implementation may provide the function on how to update the IV
251  *	        for encryption.
252  * @givdecrypt: Update the IV for decryption. This is the reverse of
253  *	        @givencrypt .
254  * @geniv: The transformation implementation may use an "IV generator" provided
255  *	   by the kernel crypto API. Several use cases have a predefined
256  *	   approach how IVs are to be updated. For such use cases, the kernel
257  *	   crypto API provides ready-to-use implementations that can be
258  *	   referenced with this variable.
259  * @ivsize: IV size applicable for transformation. The consumer must provide an
260  *	    IV of exactly that size to perform the encrypt or decrypt operation.
261  *
262  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
263  * mandatory and must be filled.
264  */
265 struct ablkcipher_alg {
266 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
267 	              unsigned int keylen);
268 	int (*encrypt)(struct ablkcipher_request *req);
269 	int (*decrypt)(struct ablkcipher_request *req);
270 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
271 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
272 
273 	const char *geniv;
274 
275 	unsigned int min_keysize;
276 	unsigned int max_keysize;
277 	unsigned int ivsize;
278 };
279 
280 /**
281  * struct blkcipher_alg - synchronous block cipher definition
282  * @min_keysize: see struct ablkcipher_alg
283  * @max_keysize: see struct ablkcipher_alg
284  * @setkey: see struct ablkcipher_alg
285  * @encrypt: see struct ablkcipher_alg
286  * @decrypt: see struct ablkcipher_alg
287  * @geniv: see struct ablkcipher_alg
288  * @ivsize: see struct ablkcipher_alg
289  *
290  * All fields except @geniv and @ivsize are mandatory and must be filled.
291  */
292 struct blkcipher_alg {
293 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
294 	              unsigned int keylen);
295 	int (*encrypt)(struct blkcipher_desc *desc,
296 		       struct scatterlist *dst, struct scatterlist *src,
297 		       unsigned int nbytes);
298 	int (*decrypt)(struct blkcipher_desc *desc,
299 		       struct scatterlist *dst, struct scatterlist *src,
300 		       unsigned int nbytes);
301 
302 	const char *geniv;
303 
304 	unsigned int min_keysize;
305 	unsigned int max_keysize;
306 	unsigned int ivsize;
307 };
308 
309 /**
310  * struct cipher_alg - single-block symmetric ciphers definition
311  * @cia_min_keysize: Minimum key size supported by the transformation. This is
312  *		     the smallest key length supported by this transformation
313  *		     algorithm. This must be set to one of the pre-defined
314  *		     values as this is not hardware specific. Possible values
315  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
316  *		     include/crypto/
317  * @cia_max_keysize: Maximum key size supported by the transformation. This is
318  *		    the largest key length supported by this transformation
319  *		    algorithm. This must be set to one of the pre-defined values
320  *		    as this is not hardware specific. Possible values for this
321  *		    field can be found via git grep "_MAX_KEY_SIZE"
322  *		    include/crypto/
323  * @cia_setkey: Set key for the transformation. This function is used to either
324  *	        program a supplied key into the hardware or store the key in the
325  *	        transformation context for programming it later. Note that this
326  *	        function does modify the transformation context. This function
327  *	        can be called multiple times during the existence of the
328  *	        transformation object, so one must make sure the key is properly
329  *	        reprogrammed into the hardware. This function is also
330  *	        responsible for checking the key length for validity.
331  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
332  *		 single block of data, which must be @cra_blocksize big. This
333  *		 always operates on a full @cra_blocksize and it is not possible
334  *		 to encrypt a block of smaller size. The supplied buffers must
335  *		 therefore also be at least of @cra_blocksize size. Both the
336  *		 input and output buffers are always aligned to @cra_alignmask.
337  *		 In case either of the input or output buffer supplied by user
338  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
339  *		 API will re-align the buffers. The re-alignment means that a
340  *		 new buffer will be allocated, the data will be copied into the
341  *		 new buffer, then the processing will happen on the new buffer,
342  *		 then the data will be copied back into the original buffer and
343  *		 finally the new buffer will be freed. In case a software
344  *		 fallback was put in place in the @cra_init call, this function
345  *		 might need to use the fallback if the algorithm doesn't support
346  *		 all of the key sizes. In case the key was stored in
347  *		 transformation context, the key might need to be re-programmed
348  *		 into the hardware in this function. This function shall not
349  *		 modify the transformation context, as this function may be
350  *		 called in parallel with the same transformation object.
351  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
352  *		 @cia_encrypt, and the conditions are exactly the same.
353  *
354  * All fields are mandatory and must be filled.
355  */
356 struct cipher_alg {
357 	unsigned int cia_min_keysize;
358 	unsigned int cia_max_keysize;
359 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
360 	                  unsigned int keylen);
361 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
362 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
363 };
364 
365 struct compress_alg {
366 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
367 			    unsigned int slen, u8 *dst, unsigned int *dlen);
368 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
369 			      unsigned int slen, u8 *dst, unsigned int *dlen);
370 };
371 
372 
373 #define cra_ablkcipher	cra_u.ablkcipher
374 #define cra_blkcipher	cra_u.blkcipher
375 #define cra_cipher	cra_u.cipher
376 #define cra_compress	cra_u.compress
377 
378 /**
379  * struct crypto_alg - definition of a cryptograpic cipher algorithm
380  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
381  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
382  *	       used for fine-tuning the description of the transformation
383  *	       algorithm.
384  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
385  *		   of the smallest possible unit which can be transformed with
386  *		   this algorithm. The users must respect this value.
387  *		   In case of HASH transformation, it is possible for a smaller
388  *		   block than @cra_blocksize to be passed to the crypto API for
389  *		   transformation, in case of any other transformation type, an
390  * 		   error will be returned upon any attempt to transform smaller
391  *		   than @cra_blocksize chunks.
392  * @cra_ctxsize: Size of the operational context of the transformation. This
393  *		 value informs the kernel crypto API about the memory size
394  *		 needed to be allocated for the transformation context.
395  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
396  *		   buffer containing the input data for the algorithm must be
397  *		   aligned to this alignment mask. The data buffer for the
398  *		   output data must be aligned to this alignment mask. Note that
399  *		   the Crypto API will do the re-alignment in software, but
400  *		   only under special conditions and there is a performance hit.
401  *		   The re-alignment happens at these occasions for different
402  *		   @cra_u types: cipher -- For both input data and output data
403  *		   buffer; ahash -- For output hash destination buf; shash --
404  *		   For output hash destination buf.
405  *		   This is needed on hardware which is flawed by design and
406  *		   cannot pick data from arbitrary addresses.
407  * @cra_priority: Priority of this transformation implementation. In case
408  *		  multiple transformations with same @cra_name are available to
409  *		  the Crypto API, the kernel will use the one with highest
410  *		  @cra_priority.
411  * @cra_name: Generic name (usable by multiple implementations) of the
412  *	      transformation algorithm. This is the name of the transformation
413  *	      itself. This field is used by the kernel when looking up the
414  *	      providers of particular transformation.
415  * @cra_driver_name: Unique name of the transformation provider. This is the
416  *		     name of the provider of the transformation. This can be any
417  *		     arbitrary value, but in the usual case, this contains the
418  *		     name of the chip or provider and the name of the
419  *		     transformation algorithm.
420  * @cra_type: Type of the cryptographic transformation. This is a pointer to
421  *	      struct crypto_type, which implements callbacks common for all
422  *	      transformation types. There are multiple options:
423  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
424  *	      &crypto_ahash_type, &crypto_rng_type.
425  *	      This field might be empty. In that case, there are no common
426  *	      callbacks. This is the case for: cipher, compress, shash.
427  * @cra_u: Callbacks implementing the transformation. This is a union of
428  *	   multiple structures. Depending on the type of transformation selected
429  *	   by @cra_type and @cra_flags above, the associated structure must be
430  *	   filled with callbacks. This field might be empty. This is the case
431  *	   for ahash, shash.
432  * @cra_init: Initialize the cryptographic transformation object. This function
433  *	      is used to initialize the cryptographic transformation object.
434  *	      This function is called only once at the instantiation time, right
435  *	      after the transformation context was allocated. In case the
436  *	      cryptographic hardware has some special requirements which need to
437  *	      be handled by software, this function shall check for the precise
438  *	      requirement of the transformation and put any software fallbacks
439  *	      in place.
440  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
441  *	      counterpart to @cra_init, used to remove various changes set in
442  *	      @cra_init.
443  * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
444  *		      definition. See @struct @ablkcipher_alg.
445  * @cra_u.blkcipher: Union member which contains a synchronous block cipher
446  * 		     definition See @struct @blkcipher_alg.
447  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
448  *		  definition. See @struct @cipher_alg.
449  * @cra_u.compress: Union member which contains a (de)compression algorithm.
450  *		    See @struct @compress_alg.
451  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
452  * @cra_list: internally used
453  * @cra_users: internally used
454  * @cra_refcnt: internally used
455  * @cra_destroy: internally used
456  *
457  * All following statistics are for this crypto_alg
458  * @encrypt_cnt:	number of encrypt requests
459  * @decrypt_cnt:	number of decrypt requests
460  * @compress_cnt:	number of compress requests
461  * @decompress_cnt:	number of decompress requests
462  * @generate_cnt:	number of RNG generate requests
463  * @seed_cnt:		number of times the rng was seeded
464  * @hash_cnt:		number of hash requests
465  * @sign_cnt:		number of sign requests
466  * @setsecret_cnt:	number of setsecrey operation
467  * @generate_public_key_cnt:	number of generate_public_key operation
468  * @verify_cnt:			number of verify operation
469  * @compute_shared_secret_cnt:	number of compute_shared_secret operation
470  * @encrypt_tlen:	total data size handled by encrypt requests
471  * @decrypt_tlen:	total data size handled by decrypt requests
472  * @compress_tlen:	total data size handled by compress requests
473  * @decompress_tlen:	total data size handled by decompress requests
474  * @generate_tlen:	total data size of generated data by the RNG
475  * @hash_tlen:		total data size hashed
476  * @akcipher_err_cnt:	number of error for akcipher requests
477  * @cipher_err_cnt:	number of error for akcipher requests
478  * @compress_err_cnt:	number of error for akcipher requests
479  * @aead_err_cnt:	number of error for akcipher requests
480  * @hash_err_cnt:	number of error for akcipher requests
481  * @rng_err_cnt:	number of error for akcipher requests
482  * @kpp_err_cnt:	number of error for akcipher requests
483  *
484  * The struct crypto_alg describes a generic Crypto API algorithm and is common
485  * for all of the transformations. Any variable not documented here shall not
486  * be used by a cipher implementation as it is internal to the Crypto API.
487  */
488 struct crypto_alg {
489 	struct list_head cra_list;
490 	struct list_head cra_users;
491 
492 	u32 cra_flags;
493 	unsigned int cra_blocksize;
494 	unsigned int cra_ctxsize;
495 	unsigned int cra_alignmask;
496 
497 	int cra_priority;
498 	refcount_t cra_refcnt;
499 
500 	char cra_name[CRYPTO_MAX_ALG_NAME];
501 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
502 
503 	const struct crypto_type *cra_type;
504 
505 	union {
506 		struct ablkcipher_alg ablkcipher;
507 		struct blkcipher_alg blkcipher;
508 		struct cipher_alg cipher;
509 		struct compress_alg compress;
510 	} cra_u;
511 
512 	int (*cra_init)(struct crypto_tfm *tfm);
513 	void (*cra_exit)(struct crypto_tfm *tfm);
514 	void (*cra_destroy)(struct crypto_alg *alg);
515 
516 	struct module *cra_module;
517 
518 	union {
519 		atomic_t encrypt_cnt;
520 		atomic_t compress_cnt;
521 		atomic_t generate_cnt;
522 		atomic_t hash_cnt;
523 		atomic_t setsecret_cnt;
524 	};
525 	union {
526 		atomic64_t encrypt_tlen;
527 		atomic64_t compress_tlen;
528 		atomic64_t generate_tlen;
529 		atomic64_t hash_tlen;
530 	};
531 	union {
532 		atomic_t akcipher_err_cnt;
533 		atomic_t cipher_err_cnt;
534 		atomic_t compress_err_cnt;
535 		atomic_t aead_err_cnt;
536 		atomic_t hash_err_cnt;
537 		atomic_t rng_err_cnt;
538 		atomic_t kpp_err_cnt;
539 	};
540 	union {
541 		atomic_t decrypt_cnt;
542 		atomic_t decompress_cnt;
543 		atomic_t seed_cnt;
544 		atomic_t generate_public_key_cnt;
545 	};
546 	union {
547 		atomic64_t decrypt_tlen;
548 		atomic64_t decompress_tlen;
549 	};
550 	union {
551 		atomic_t verify_cnt;
552 		atomic_t compute_shared_secret_cnt;
553 	};
554 	atomic_t sign_cnt;
555 
556 } CRYPTO_MINALIGN_ATTR;
557 
558 /*
559  * A helper struct for waiting for completion of async crypto ops
560  */
561 struct crypto_wait {
562 	struct completion completion;
563 	int err;
564 };
565 
566 /*
567  * Macro for declaring a crypto op async wait object on stack
568  */
569 #define DECLARE_CRYPTO_WAIT(_wait) \
570 	struct crypto_wait _wait = { \
571 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
572 
573 /*
574  * Async ops completion helper functioons
575  */
576 void crypto_req_done(struct crypto_async_request *req, int err);
577 
578 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
579 {
580 	switch (err) {
581 	case -EINPROGRESS:
582 	case -EBUSY:
583 		wait_for_completion(&wait->completion);
584 		reinit_completion(&wait->completion);
585 		err = wait->err;
586 		break;
587 	};
588 
589 	return err;
590 }
591 
592 static inline void crypto_init_wait(struct crypto_wait *wait)
593 {
594 	init_completion(&wait->completion);
595 }
596 
597 /*
598  * Algorithm registration interface.
599  */
600 int crypto_register_alg(struct crypto_alg *alg);
601 int crypto_unregister_alg(struct crypto_alg *alg);
602 int crypto_register_algs(struct crypto_alg *algs, int count);
603 int crypto_unregister_algs(struct crypto_alg *algs, int count);
604 
605 /*
606  * Algorithm query interface.
607  */
608 int crypto_has_alg(const char *name, u32 type, u32 mask);
609 
610 /*
611  * Transforms: user-instantiated objects which encapsulate algorithms
612  * and core processing logic.  Managed via crypto_alloc_*() and
613  * crypto_free_*(), as well as the various helpers below.
614  */
615 
616 struct ablkcipher_tfm {
617 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
618 	              unsigned int keylen);
619 	int (*encrypt)(struct ablkcipher_request *req);
620 	int (*decrypt)(struct ablkcipher_request *req);
621 
622 	struct crypto_ablkcipher *base;
623 
624 	unsigned int ivsize;
625 	unsigned int reqsize;
626 };
627 
628 struct blkcipher_tfm {
629 	void *iv;
630 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
631 		      unsigned int keylen);
632 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
633 		       struct scatterlist *src, unsigned int nbytes);
634 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
635 		       struct scatterlist *src, unsigned int nbytes);
636 };
637 
638 struct cipher_tfm {
639 	int (*cit_setkey)(struct crypto_tfm *tfm,
640 	                  const u8 *key, unsigned int keylen);
641 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
642 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
643 };
644 
645 struct compress_tfm {
646 	int (*cot_compress)(struct crypto_tfm *tfm,
647 	                    const u8 *src, unsigned int slen,
648 	                    u8 *dst, unsigned int *dlen);
649 	int (*cot_decompress)(struct crypto_tfm *tfm,
650 	                      const u8 *src, unsigned int slen,
651 	                      u8 *dst, unsigned int *dlen);
652 };
653 
654 #define crt_ablkcipher	crt_u.ablkcipher
655 #define crt_blkcipher	crt_u.blkcipher
656 #define crt_cipher	crt_u.cipher
657 #define crt_compress	crt_u.compress
658 
659 struct crypto_tfm {
660 
661 	u32 crt_flags;
662 
663 	union {
664 		struct ablkcipher_tfm ablkcipher;
665 		struct blkcipher_tfm blkcipher;
666 		struct cipher_tfm cipher;
667 		struct compress_tfm compress;
668 	} crt_u;
669 
670 	void (*exit)(struct crypto_tfm *tfm);
671 
672 	struct crypto_alg *__crt_alg;
673 
674 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
675 };
676 
677 struct crypto_ablkcipher {
678 	struct crypto_tfm base;
679 };
680 
681 struct crypto_blkcipher {
682 	struct crypto_tfm base;
683 };
684 
685 struct crypto_cipher {
686 	struct crypto_tfm base;
687 };
688 
689 struct crypto_comp {
690 	struct crypto_tfm base;
691 };
692 
693 enum {
694 	CRYPTOA_UNSPEC,
695 	CRYPTOA_ALG,
696 	CRYPTOA_TYPE,
697 	CRYPTOA_U32,
698 	__CRYPTOA_MAX,
699 };
700 
701 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
702 
703 /* Maximum number of (rtattr) parameters for each template. */
704 #define CRYPTO_MAX_ATTRS 32
705 
706 struct crypto_attr_alg {
707 	char name[CRYPTO_MAX_ALG_NAME];
708 };
709 
710 struct crypto_attr_type {
711 	u32 type;
712 	u32 mask;
713 };
714 
715 struct crypto_attr_u32 {
716 	u32 num;
717 };
718 
719 /*
720  * Transform user interface.
721  */
722 
723 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
724 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
725 
726 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
727 {
728 	return crypto_destroy_tfm(tfm, tfm);
729 }
730 
731 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
732 
733 /*
734  * Transform helpers which query the underlying algorithm.
735  */
736 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
737 {
738 	return tfm->__crt_alg->cra_name;
739 }
740 
741 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
742 {
743 	return tfm->__crt_alg->cra_driver_name;
744 }
745 
746 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
747 {
748 	return tfm->__crt_alg->cra_priority;
749 }
750 
751 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
752 {
753 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
754 }
755 
756 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
757 {
758 	return tfm->__crt_alg->cra_blocksize;
759 }
760 
761 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
762 {
763 	return tfm->__crt_alg->cra_alignmask;
764 }
765 
766 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
767 {
768 	return tfm->crt_flags;
769 }
770 
771 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
772 {
773 	tfm->crt_flags |= flags;
774 }
775 
776 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
777 {
778 	tfm->crt_flags &= ~flags;
779 }
780 
781 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
782 {
783 	return tfm->__crt_ctx;
784 }
785 
786 static inline unsigned int crypto_tfm_ctx_alignment(void)
787 {
788 	struct crypto_tfm *tfm;
789 	return __alignof__(tfm->__crt_ctx);
790 }
791 
792 /*
793  * API wrappers.
794  */
795 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
796 	struct crypto_tfm *tfm)
797 {
798 	return (struct crypto_ablkcipher *)tfm;
799 }
800 
801 static inline u32 crypto_skcipher_type(u32 type)
802 {
803 	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
804 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
805 	return type;
806 }
807 
808 static inline u32 crypto_skcipher_mask(u32 mask)
809 {
810 	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
811 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
812 	return mask;
813 }
814 
815 /**
816  * DOC: Asynchronous Block Cipher API
817  *
818  * Asynchronous block cipher API is used with the ciphers of type
819  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
820  *
821  * Asynchronous cipher operations imply that the function invocation for a
822  * cipher request returns immediately before the completion of the operation.
823  * The cipher request is scheduled as a separate kernel thread and therefore
824  * load-balanced on the different CPUs via the process scheduler. To allow
825  * the kernel crypto API to inform the caller about the completion of a cipher
826  * request, the caller must provide a callback function. That function is
827  * invoked with the cipher handle when the request completes.
828  *
829  * To support the asynchronous operation, additional information than just the
830  * cipher handle must be supplied to the kernel crypto API. That additional
831  * information is given by filling in the ablkcipher_request data structure.
832  *
833  * For the asynchronous block cipher API, the state is maintained with the tfm
834  * cipher handle. A single tfm can be used across multiple calls and in
835  * parallel. For asynchronous block cipher calls, context data supplied and
836  * only used by the caller can be referenced the request data structure in
837  * addition to the IV used for the cipher request. The maintenance of such
838  * state information would be important for a crypto driver implementer to
839  * have, because when calling the callback function upon completion of the
840  * cipher operation, that callback function may need some information about
841  * which operation just finished if it invoked multiple in parallel. This
842  * state information is unused by the kernel crypto API.
843  */
844 
845 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
846 	struct crypto_ablkcipher *tfm)
847 {
848 	return &tfm->base;
849 }
850 
851 /**
852  * crypto_free_ablkcipher() - zeroize and free cipher handle
853  * @tfm: cipher handle to be freed
854  */
855 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
856 {
857 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
858 }
859 
860 /**
861  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
862  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
863  *	      ablkcipher
864  * @type: specifies the type of the cipher
865  * @mask: specifies the mask for the cipher
866  *
867  * Return: true when the ablkcipher is known to the kernel crypto API; false
868  *	   otherwise
869  */
870 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
871 					u32 mask)
872 {
873 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
874 			      crypto_skcipher_mask(mask));
875 }
876 
877 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
878 	struct crypto_ablkcipher *tfm)
879 {
880 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
881 }
882 
883 /**
884  * crypto_ablkcipher_ivsize() - obtain IV size
885  * @tfm: cipher handle
886  *
887  * The size of the IV for the ablkcipher referenced by the cipher handle is
888  * returned. This IV size may be zero if the cipher does not need an IV.
889  *
890  * Return: IV size in bytes
891  */
892 static inline unsigned int crypto_ablkcipher_ivsize(
893 	struct crypto_ablkcipher *tfm)
894 {
895 	return crypto_ablkcipher_crt(tfm)->ivsize;
896 }
897 
898 /**
899  * crypto_ablkcipher_blocksize() - obtain block size of cipher
900  * @tfm: cipher handle
901  *
902  * The block size for the ablkcipher referenced with the cipher handle is
903  * returned. The caller may use that information to allocate appropriate
904  * memory for the data returned by the encryption or decryption operation
905  *
906  * Return: block size of cipher
907  */
908 static inline unsigned int crypto_ablkcipher_blocksize(
909 	struct crypto_ablkcipher *tfm)
910 {
911 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
912 }
913 
914 static inline unsigned int crypto_ablkcipher_alignmask(
915 	struct crypto_ablkcipher *tfm)
916 {
917 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
918 }
919 
920 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
921 {
922 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
923 }
924 
925 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
926 					       u32 flags)
927 {
928 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
929 }
930 
931 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
932 						 u32 flags)
933 {
934 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
935 }
936 
937 /**
938  * crypto_ablkcipher_setkey() - set key for cipher
939  * @tfm: cipher handle
940  * @key: buffer holding the key
941  * @keylen: length of the key in bytes
942  *
943  * The caller provided key is set for the ablkcipher referenced by the cipher
944  * handle.
945  *
946  * Note, the key length determines the cipher type. Many block ciphers implement
947  * different cipher modes depending on the key size, such as AES-128 vs AES-192
948  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
949  * is performed.
950  *
951  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
952  */
953 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
954 					   const u8 *key, unsigned int keylen)
955 {
956 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
957 
958 	return crt->setkey(crt->base, key, keylen);
959 }
960 
961 /**
962  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
963  * @req: ablkcipher_request out of which the cipher handle is to be obtained
964  *
965  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
966  * data structure.
967  *
968  * Return: crypto_ablkcipher handle
969  */
970 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
971 	struct ablkcipher_request *req)
972 {
973 	return __crypto_ablkcipher_cast(req->base.tfm);
974 }
975 
976 static inline void crypto_stat_ablkcipher_encrypt(struct ablkcipher_request *req,
977 						  int ret)
978 {
979 #ifdef CONFIG_CRYPTO_STATS
980 	struct ablkcipher_tfm *crt =
981 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
982 
983 	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
984 		atomic_inc(&crt->base->base.__crt_alg->cipher_err_cnt);
985 	} else {
986 		atomic_inc(&crt->base->base.__crt_alg->encrypt_cnt);
987 		atomic64_add(req->nbytes, &crt->base->base.__crt_alg->encrypt_tlen);
988 	}
989 #endif
990 }
991 
992 static inline void crypto_stat_ablkcipher_decrypt(struct ablkcipher_request *req,
993 						  int ret)
994 {
995 #ifdef CONFIG_CRYPTO_STATS
996 	struct ablkcipher_tfm *crt =
997 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
998 
999 	if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
1000 		atomic_inc(&crt->base->base.__crt_alg->cipher_err_cnt);
1001 	} else {
1002 		atomic_inc(&crt->base->base.__crt_alg->decrypt_cnt);
1003 		atomic64_add(req->nbytes, &crt->base->base.__crt_alg->decrypt_tlen);
1004 	}
1005 #endif
1006 }
1007 
1008 /**
1009  * crypto_ablkcipher_encrypt() - encrypt plaintext
1010  * @req: reference to the ablkcipher_request handle that holds all information
1011  *	 needed to perform the cipher operation
1012  *
1013  * Encrypt plaintext data using the ablkcipher_request handle. That data
1014  * structure and how it is filled with data is discussed with the
1015  * ablkcipher_request_* functions.
1016  *
1017  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1018  */
1019 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1020 {
1021 	struct ablkcipher_tfm *crt =
1022 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1023 	int ret;
1024 
1025 	ret = crt->encrypt(req);
1026 	crypto_stat_ablkcipher_encrypt(req, ret);
1027 	return ret;
1028 }
1029 
1030 /**
1031  * crypto_ablkcipher_decrypt() - decrypt ciphertext
1032  * @req: reference to the ablkcipher_request handle that holds all information
1033  *	 needed to perform the cipher operation
1034  *
1035  * Decrypt ciphertext data using the ablkcipher_request handle. That data
1036  * structure and how it is filled with data is discussed with the
1037  * ablkcipher_request_* functions.
1038  *
1039  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1040  */
1041 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1042 {
1043 	struct ablkcipher_tfm *crt =
1044 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1045 	int ret;
1046 
1047 	ret = crt->decrypt(req);
1048 	crypto_stat_ablkcipher_decrypt(req, ret);
1049 	return ret;
1050 }
1051 
1052 /**
1053  * DOC: Asynchronous Cipher Request Handle
1054  *
1055  * The ablkcipher_request data structure contains all pointers to data
1056  * required for the asynchronous cipher operation. This includes the cipher
1057  * handle (which can be used by multiple ablkcipher_request instances), pointer
1058  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1059  * as a handle to the ablkcipher_request_* API calls in a similar way as
1060  * ablkcipher handle to the crypto_ablkcipher_* API calls.
1061  */
1062 
1063 /**
1064  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1065  * @tfm: cipher handle
1066  *
1067  * Return: number of bytes
1068  */
1069 static inline unsigned int crypto_ablkcipher_reqsize(
1070 	struct crypto_ablkcipher *tfm)
1071 {
1072 	return crypto_ablkcipher_crt(tfm)->reqsize;
1073 }
1074 
1075 /**
1076  * ablkcipher_request_set_tfm() - update cipher handle reference in request
1077  * @req: request handle to be modified
1078  * @tfm: cipher handle that shall be added to the request handle
1079  *
1080  * Allow the caller to replace the existing ablkcipher handle in the request
1081  * data structure with a different one.
1082  */
1083 static inline void ablkcipher_request_set_tfm(
1084 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1085 {
1086 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1087 }
1088 
1089 static inline struct ablkcipher_request *ablkcipher_request_cast(
1090 	struct crypto_async_request *req)
1091 {
1092 	return container_of(req, struct ablkcipher_request, base);
1093 }
1094 
1095 /**
1096  * ablkcipher_request_alloc() - allocate request data structure
1097  * @tfm: cipher handle to be registered with the request
1098  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1099  *
1100  * Allocate the request data structure that must be used with the ablkcipher
1101  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1102  * handle is registered in the request data structure.
1103  *
1104  * Return: allocated request handle in case of success, or NULL if out of memory
1105  */
1106 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1107 	struct crypto_ablkcipher *tfm, gfp_t gfp)
1108 {
1109 	struct ablkcipher_request *req;
1110 
1111 	req = kmalloc(sizeof(struct ablkcipher_request) +
1112 		      crypto_ablkcipher_reqsize(tfm), gfp);
1113 
1114 	if (likely(req))
1115 		ablkcipher_request_set_tfm(req, tfm);
1116 
1117 	return req;
1118 }
1119 
1120 /**
1121  * ablkcipher_request_free() - zeroize and free request data structure
1122  * @req: request data structure cipher handle to be freed
1123  */
1124 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1125 {
1126 	kzfree(req);
1127 }
1128 
1129 /**
1130  * ablkcipher_request_set_callback() - set asynchronous callback function
1131  * @req: request handle
1132  * @flags: specify zero or an ORing of the flags
1133  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1134  *	   increase the wait queue beyond the initial maximum size;
1135  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1136  * @compl: callback function pointer to be registered with the request handle
1137  * @data: The data pointer refers to memory that is not used by the kernel
1138  *	  crypto API, but provided to the callback function for it to use. Here,
1139  *	  the caller can provide a reference to memory the callback function can
1140  *	  operate on. As the callback function is invoked asynchronously to the
1141  *	  related functionality, it may need to access data structures of the
1142  *	  related functionality which can be referenced using this pointer. The
1143  *	  callback function can access the memory via the "data" field in the
1144  *	  crypto_async_request data structure provided to the callback function.
1145  *
1146  * This function allows setting the callback function that is triggered once the
1147  * cipher operation completes.
1148  *
1149  * The callback function is registered with the ablkcipher_request handle and
1150  * must comply with the following template::
1151  *
1152  *	void callback_function(struct crypto_async_request *req, int error)
1153  */
1154 static inline void ablkcipher_request_set_callback(
1155 	struct ablkcipher_request *req,
1156 	u32 flags, crypto_completion_t compl, void *data)
1157 {
1158 	req->base.complete = compl;
1159 	req->base.data = data;
1160 	req->base.flags = flags;
1161 }
1162 
1163 /**
1164  * ablkcipher_request_set_crypt() - set data buffers
1165  * @req: request handle
1166  * @src: source scatter / gather list
1167  * @dst: destination scatter / gather list
1168  * @nbytes: number of bytes to process from @src
1169  * @iv: IV for the cipher operation which must comply with the IV size defined
1170  *      by crypto_ablkcipher_ivsize
1171  *
1172  * This function allows setting of the source data and destination data
1173  * scatter / gather lists.
1174  *
1175  * For encryption, the source is treated as the plaintext and the
1176  * destination is the ciphertext. For a decryption operation, the use is
1177  * reversed - the source is the ciphertext and the destination is the plaintext.
1178  */
1179 static inline void ablkcipher_request_set_crypt(
1180 	struct ablkcipher_request *req,
1181 	struct scatterlist *src, struct scatterlist *dst,
1182 	unsigned int nbytes, void *iv)
1183 {
1184 	req->src = src;
1185 	req->dst = dst;
1186 	req->nbytes = nbytes;
1187 	req->info = iv;
1188 }
1189 
1190 /**
1191  * DOC: Synchronous Block Cipher API
1192  *
1193  * The synchronous block cipher API is used with the ciphers of type
1194  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1195  *
1196  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1197  * used in multiple calls and in parallel, this info should not be changeable
1198  * (unless a lock is used). This applies, for example, to the symmetric key.
1199  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1200  * structure for synchronous blkcipher api. So, its the only state info that can
1201  * be kept for synchronous calls without using a big lock across a tfm.
1202  *
1203  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1204  * consisting of a template (a block chaining mode) and a single block cipher
1205  * primitive (e.g. AES).
1206  *
1207  * The plaintext data buffer and the ciphertext data buffer are pointed to
1208  * by using scatter/gather lists. The cipher operation is performed
1209  * on all segments of the provided scatter/gather lists.
1210  *
1211  * The kernel crypto API supports a cipher operation "in-place" which means that
1212  * the caller may provide the same scatter/gather list for the plaintext and
1213  * cipher text. After the completion of the cipher operation, the plaintext
1214  * data is replaced with the ciphertext data in case of an encryption and vice
1215  * versa for a decryption. The caller must ensure that the scatter/gather lists
1216  * for the output data point to sufficiently large buffers, i.e. multiples of
1217  * the block size of the cipher.
1218  */
1219 
1220 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1221 	struct crypto_tfm *tfm)
1222 {
1223 	return (struct crypto_blkcipher *)tfm;
1224 }
1225 
1226 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1227 	struct crypto_tfm *tfm)
1228 {
1229 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1230 	return __crypto_blkcipher_cast(tfm);
1231 }
1232 
1233 /**
1234  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1235  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1236  *	      blkcipher cipher
1237  * @type: specifies the type of the cipher
1238  * @mask: specifies the mask for the cipher
1239  *
1240  * Allocate a cipher handle for a block cipher. The returned struct
1241  * crypto_blkcipher is the cipher handle that is required for any subsequent
1242  * API invocation for that block cipher.
1243  *
1244  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1245  *	   of an error, PTR_ERR() returns the error code.
1246  */
1247 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1248 	const char *alg_name, u32 type, u32 mask)
1249 {
1250 	type &= ~CRYPTO_ALG_TYPE_MASK;
1251 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1252 	mask |= CRYPTO_ALG_TYPE_MASK;
1253 
1254 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1255 }
1256 
1257 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1258 	struct crypto_blkcipher *tfm)
1259 {
1260 	return &tfm->base;
1261 }
1262 
1263 /**
1264  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1265  * @tfm: cipher handle to be freed
1266  */
1267 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1268 {
1269 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1270 }
1271 
1272 /**
1273  * crypto_has_blkcipher() - Search for the availability of a block cipher
1274  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1275  *	      block cipher
1276  * @type: specifies the type of the cipher
1277  * @mask: specifies the mask for the cipher
1278  *
1279  * Return: true when the block cipher is known to the kernel crypto API; false
1280  *	   otherwise
1281  */
1282 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1283 {
1284 	type &= ~CRYPTO_ALG_TYPE_MASK;
1285 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1286 	mask |= CRYPTO_ALG_TYPE_MASK;
1287 
1288 	return crypto_has_alg(alg_name, type, mask);
1289 }
1290 
1291 /**
1292  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1293  * @tfm: cipher handle
1294  *
1295  * Return: The character string holding the name of the cipher
1296  */
1297 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1298 {
1299 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1300 }
1301 
1302 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1303 	struct crypto_blkcipher *tfm)
1304 {
1305 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1306 }
1307 
1308 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1309 	struct crypto_blkcipher *tfm)
1310 {
1311 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1312 }
1313 
1314 /**
1315  * crypto_blkcipher_ivsize() - obtain IV size
1316  * @tfm: cipher handle
1317  *
1318  * The size of the IV for the block cipher referenced by the cipher handle is
1319  * returned. This IV size may be zero if the cipher does not need an IV.
1320  *
1321  * Return: IV size in bytes
1322  */
1323 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1324 {
1325 	return crypto_blkcipher_alg(tfm)->ivsize;
1326 }
1327 
1328 /**
1329  * crypto_blkcipher_blocksize() - obtain block size of cipher
1330  * @tfm: cipher handle
1331  *
1332  * The block size for the block cipher referenced with the cipher handle is
1333  * returned. The caller may use that information to allocate appropriate
1334  * memory for the data returned by the encryption or decryption operation.
1335  *
1336  * Return: block size of cipher
1337  */
1338 static inline unsigned int crypto_blkcipher_blocksize(
1339 	struct crypto_blkcipher *tfm)
1340 {
1341 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1342 }
1343 
1344 static inline unsigned int crypto_blkcipher_alignmask(
1345 	struct crypto_blkcipher *tfm)
1346 {
1347 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1348 }
1349 
1350 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1351 {
1352 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1353 }
1354 
1355 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1356 					      u32 flags)
1357 {
1358 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1359 }
1360 
1361 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1362 						u32 flags)
1363 {
1364 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1365 }
1366 
1367 /**
1368  * crypto_blkcipher_setkey() - set key for cipher
1369  * @tfm: cipher handle
1370  * @key: buffer holding the key
1371  * @keylen: length of the key in bytes
1372  *
1373  * The caller provided key is set for the block cipher referenced by the cipher
1374  * handle.
1375  *
1376  * Note, the key length determines the cipher type. Many block ciphers implement
1377  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1378  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1379  * is performed.
1380  *
1381  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1382  */
1383 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1384 					  const u8 *key, unsigned int keylen)
1385 {
1386 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1387 						 key, keylen);
1388 }
1389 
1390 /**
1391  * crypto_blkcipher_encrypt() - encrypt plaintext
1392  * @desc: reference to the block cipher handle with meta data
1393  * @dst: scatter/gather list that is filled by the cipher operation with the
1394  *	ciphertext
1395  * @src: scatter/gather list that holds the plaintext
1396  * @nbytes: number of bytes of the plaintext to encrypt.
1397  *
1398  * Encrypt plaintext data using the IV set by the caller with a preceding
1399  * call of crypto_blkcipher_set_iv.
1400  *
1401  * The blkcipher_desc data structure must be filled by the caller and can
1402  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1403  * with the block cipher handle; desc.flags is filled with either
1404  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1405  *
1406  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1407  */
1408 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1409 					   struct scatterlist *dst,
1410 					   struct scatterlist *src,
1411 					   unsigned int nbytes)
1412 {
1413 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1414 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1415 }
1416 
1417 /**
1418  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1419  * @desc: reference to the block cipher handle with meta data
1420  * @dst: scatter/gather list that is filled by the cipher operation with the
1421  *	ciphertext
1422  * @src: scatter/gather list that holds the plaintext
1423  * @nbytes: number of bytes of the plaintext to encrypt.
1424  *
1425  * Encrypt plaintext data with the use of an IV that is solely used for this
1426  * cipher operation. Any previously set IV is not used.
1427  *
1428  * The blkcipher_desc data structure must be filled by the caller and can
1429  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1430  * with the block cipher handle; desc.info is filled with the IV to be used for
1431  * the current operation; desc.flags is filled with either
1432  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1433  *
1434  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1435  */
1436 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1437 					      struct scatterlist *dst,
1438 					      struct scatterlist *src,
1439 					      unsigned int nbytes)
1440 {
1441 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1442 }
1443 
1444 /**
1445  * crypto_blkcipher_decrypt() - decrypt ciphertext
1446  * @desc: reference to the block cipher handle with meta data
1447  * @dst: scatter/gather list that is filled by the cipher operation with the
1448  *	plaintext
1449  * @src: scatter/gather list that holds the ciphertext
1450  * @nbytes: number of bytes of the ciphertext to decrypt.
1451  *
1452  * Decrypt ciphertext data using the IV set by the caller with a preceding
1453  * call of crypto_blkcipher_set_iv.
1454  *
1455  * The blkcipher_desc data structure must be filled by the caller as documented
1456  * for the crypto_blkcipher_encrypt call above.
1457  *
1458  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1459  *
1460  */
1461 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1462 					   struct scatterlist *dst,
1463 					   struct scatterlist *src,
1464 					   unsigned int nbytes)
1465 {
1466 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1467 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1468 }
1469 
1470 /**
1471  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1472  * @desc: reference to the block cipher handle with meta data
1473  * @dst: scatter/gather list that is filled by the cipher operation with the
1474  *	plaintext
1475  * @src: scatter/gather list that holds the ciphertext
1476  * @nbytes: number of bytes of the ciphertext to decrypt.
1477  *
1478  * Decrypt ciphertext data with the use of an IV that is solely used for this
1479  * cipher operation. Any previously set IV is not used.
1480  *
1481  * The blkcipher_desc data structure must be filled by the caller as documented
1482  * for the crypto_blkcipher_encrypt_iv call above.
1483  *
1484  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1485  */
1486 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1487 					      struct scatterlist *dst,
1488 					      struct scatterlist *src,
1489 					      unsigned int nbytes)
1490 {
1491 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1492 }
1493 
1494 /**
1495  * crypto_blkcipher_set_iv() - set IV for cipher
1496  * @tfm: cipher handle
1497  * @src: buffer holding the IV
1498  * @len: length of the IV in bytes
1499  *
1500  * The caller provided IV is set for the block cipher referenced by the cipher
1501  * handle.
1502  */
1503 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1504 					   const u8 *src, unsigned int len)
1505 {
1506 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1507 }
1508 
1509 /**
1510  * crypto_blkcipher_get_iv() - obtain IV from cipher
1511  * @tfm: cipher handle
1512  * @dst: buffer filled with the IV
1513  * @len: length of the buffer dst
1514  *
1515  * The caller can obtain the IV set for the block cipher referenced by the
1516  * cipher handle and store it into the user-provided buffer. If the buffer
1517  * has an insufficient space, the IV is truncated to fit the buffer.
1518  */
1519 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1520 					   u8 *dst, unsigned int len)
1521 {
1522 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1523 }
1524 
1525 /**
1526  * DOC: Single Block Cipher API
1527  *
1528  * The single block cipher API is used with the ciphers of type
1529  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1530  *
1531  * Using the single block cipher API calls, operations with the basic cipher
1532  * primitive can be implemented. These cipher primitives exclude any block
1533  * chaining operations including IV handling.
1534  *
1535  * The purpose of this single block cipher API is to support the implementation
1536  * of templates or other concepts that only need to perform the cipher operation
1537  * on one block at a time. Templates invoke the underlying cipher primitive
1538  * block-wise and process either the input or the output data of these cipher
1539  * operations.
1540  */
1541 
1542 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1543 {
1544 	return (struct crypto_cipher *)tfm;
1545 }
1546 
1547 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1548 {
1549 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1550 	return __crypto_cipher_cast(tfm);
1551 }
1552 
1553 /**
1554  * crypto_alloc_cipher() - allocate single block cipher handle
1555  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1556  *	     single block cipher
1557  * @type: specifies the type of the cipher
1558  * @mask: specifies the mask for the cipher
1559  *
1560  * Allocate a cipher handle for a single block cipher. The returned struct
1561  * crypto_cipher is the cipher handle that is required for any subsequent API
1562  * invocation for that single block cipher.
1563  *
1564  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1565  *	   of an error, PTR_ERR() returns the error code.
1566  */
1567 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1568 							u32 type, u32 mask)
1569 {
1570 	type &= ~CRYPTO_ALG_TYPE_MASK;
1571 	type |= CRYPTO_ALG_TYPE_CIPHER;
1572 	mask |= CRYPTO_ALG_TYPE_MASK;
1573 
1574 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1575 }
1576 
1577 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1578 {
1579 	return &tfm->base;
1580 }
1581 
1582 /**
1583  * crypto_free_cipher() - zeroize and free the single block cipher handle
1584  * @tfm: cipher handle to be freed
1585  */
1586 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1587 {
1588 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1589 }
1590 
1591 /**
1592  * crypto_has_cipher() - Search for the availability of a single block cipher
1593  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1594  *	     single block cipher
1595  * @type: specifies the type of the cipher
1596  * @mask: specifies the mask for the cipher
1597  *
1598  * Return: true when the single block cipher is known to the kernel crypto API;
1599  *	   false otherwise
1600  */
1601 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1602 {
1603 	type &= ~CRYPTO_ALG_TYPE_MASK;
1604 	type |= CRYPTO_ALG_TYPE_CIPHER;
1605 	mask |= CRYPTO_ALG_TYPE_MASK;
1606 
1607 	return crypto_has_alg(alg_name, type, mask);
1608 }
1609 
1610 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1611 {
1612 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1613 }
1614 
1615 /**
1616  * crypto_cipher_blocksize() - obtain block size for cipher
1617  * @tfm: cipher handle
1618  *
1619  * The block size for the single block cipher referenced with the cipher handle
1620  * tfm is returned. The caller may use that information to allocate appropriate
1621  * memory for the data returned by the encryption or decryption operation
1622  *
1623  * Return: block size of cipher
1624  */
1625 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1626 {
1627 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1628 }
1629 
1630 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1631 {
1632 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1633 }
1634 
1635 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1636 {
1637 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1638 }
1639 
1640 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1641 					   u32 flags)
1642 {
1643 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1644 }
1645 
1646 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1647 					     u32 flags)
1648 {
1649 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1650 }
1651 
1652 /**
1653  * crypto_cipher_setkey() - set key for cipher
1654  * @tfm: cipher handle
1655  * @key: buffer holding the key
1656  * @keylen: length of the key in bytes
1657  *
1658  * The caller provided key is set for the single block cipher referenced by the
1659  * cipher handle.
1660  *
1661  * Note, the key length determines the cipher type. Many block ciphers implement
1662  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1663  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1664  * is performed.
1665  *
1666  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1667  */
1668 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1669                                        const u8 *key, unsigned int keylen)
1670 {
1671 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1672 						  key, keylen);
1673 }
1674 
1675 /**
1676  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1677  * @tfm: cipher handle
1678  * @dst: points to the buffer that will be filled with the ciphertext
1679  * @src: buffer holding the plaintext to be encrypted
1680  *
1681  * Invoke the encryption operation of one block. The caller must ensure that
1682  * the plaintext and ciphertext buffers are at least one block in size.
1683  */
1684 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1685 					     u8 *dst, const u8 *src)
1686 {
1687 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1688 						dst, src);
1689 }
1690 
1691 /**
1692  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1693  * @tfm: cipher handle
1694  * @dst: points to the buffer that will be filled with the plaintext
1695  * @src: buffer holding the ciphertext to be decrypted
1696  *
1697  * Invoke the decryption operation of one block. The caller must ensure that
1698  * the plaintext and ciphertext buffers are at least one block in size.
1699  */
1700 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1701 					     u8 *dst, const u8 *src)
1702 {
1703 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1704 						dst, src);
1705 }
1706 
1707 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1708 {
1709 	return (struct crypto_comp *)tfm;
1710 }
1711 
1712 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1713 {
1714 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1715 	       CRYPTO_ALG_TYPE_MASK);
1716 	return __crypto_comp_cast(tfm);
1717 }
1718 
1719 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1720 						    u32 type, u32 mask)
1721 {
1722 	type &= ~CRYPTO_ALG_TYPE_MASK;
1723 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1724 	mask |= CRYPTO_ALG_TYPE_MASK;
1725 
1726 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1727 }
1728 
1729 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1730 {
1731 	return &tfm->base;
1732 }
1733 
1734 static inline void crypto_free_comp(struct crypto_comp *tfm)
1735 {
1736 	crypto_free_tfm(crypto_comp_tfm(tfm));
1737 }
1738 
1739 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1740 {
1741 	type &= ~CRYPTO_ALG_TYPE_MASK;
1742 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1743 	mask |= CRYPTO_ALG_TYPE_MASK;
1744 
1745 	return crypto_has_alg(alg_name, type, mask);
1746 }
1747 
1748 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1749 {
1750 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1751 }
1752 
1753 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1754 {
1755 	return &crypto_comp_tfm(tfm)->crt_compress;
1756 }
1757 
1758 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1759                                        const u8 *src, unsigned int slen,
1760                                        u8 *dst, unsigned int *dlen)
1761 {
1762 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1763 						  src, slen, dst, dlen);
1764 }
1765 
1766 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1767                                          const u8 *src, unsigned int slen,
1768                                          u8 *dst, unsigned int *dlen)
1769 {
1770 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1771 						    src, slen, dst, dlen);
1772 }
1773 
1774 #endif	/* _LINUX_CRYPTO_H */
1775 
1776