1 /* 2 * Scatterlist Cryptographic API. 3 * 4 * Copyright (c) 2002 James Morris <[email protected]> 5 * Copyright (c) 2002 David S. Miller ([email protected]) 6 * Copyright (c) 2005 Herbert Xu <[email protected]> 7 * 8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]> 9 * and Nettle, by Niels Möller. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 * 16 */ 17 #ifndef _LINUX_CRYPTO_H 18 #define _LINUX_CRYPTO_H 19 20 #include <linux/atomic.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/bug.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <linux/uaccess.h> 27 28 /* 29 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 30 * arbitrary modules to be loaded. Loading from userspace may still need the 31 * unprefixed names, so retains those aliases as well. 32 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 33 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 34 * expands twice on the same line. Instead, use a separate base name for the 35 * alias. 36 */ 37 #define MODULE_ALIAS_CRYPTO(name) \ 38 __MODULE_INFO(alias, alias_userspace, name); \ 39 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 40 41 /* 42 * Algorithm masks and types. 43 */ 44 #define CRYPTO_ALG_TYPE_MASK 0x0000000f 45 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 46 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 47 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 48 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 49 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 50 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 51 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006 52 #define CRYPTO_ALG_TYPE_KPP 0x00000008 53 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 54 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 55 #define CRYPTO_ALG_TYPE_RNG 0x0000000c 56 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 57 #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e 58 #define CRYPTO_ALG_TYPE_HASH 0x0000000e 59 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e 60 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f 61 62 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 63 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 64 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c 65 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 66 67 #define CRYPTO_ALG_LARVAL 0x00000010 68 #define CRYPTO_ALG_DEAD 0x00000020 69 #define CRYPTO_ALG_DYING 0x00000040 70 #define CRYPTO_ALG_ASYNC 0x00000080 71 72 /* 73 * Set this bit if and only if the algorithm requires another algorithm of 74 * the same type to handle corner cases. 75 */ 76 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 77 78 /* 79 * This bit is set for symmetric key ciphers that have already been wrapped 80 * with a generic IV generator to prevent them from being wrapped again. 81 */ 82 #define CRYPTO_ALG_GENIV 0x00000200 83 84 /* 85 * Set if the algorithm has passed automated run-time testing. Note that 86 * if there is no run-time testing for a given algorithm it is considered 87 * to have passed. 88 */ 89 90 #define CRYPTO_ALG_TESTED 0x00000400 91 92 /* 93 * Set if the algorithm is an instance that is built from templates. 94 */ 95 #define CRYPTO_ALG_INSTANCE 0x00000800 96 97 /* Set this bit if the algorithm provided is hardware accelerated but 98 * not available to userspace via instruction set or so. 99 */ 100 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 101 102 /* 103 * Mark a cipher as a service implementation only usable by another 104 * cipher and never by a normal user of the kernel crypto API 105 */ 106 #define CRYPTO_ALG_INTERNAL 0x00002000 107 108 /* 109 * Transform masks and values (for crt_flags). 110 */ 111 #define CRYPTO_TFM_REQ_MASK 0x000fff00 112 #define CRYPTO_TFM_RES_MASK 0xfff00000 113 114 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100 115 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 116 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 117 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 118 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 119 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 120 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 121 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 122 123 /* 124 * Miscellaneous stuff. 125 */ 126 #define CRYPTO_MAX_ALG_NAME 128 127 128 /* 129 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 130 * declaration) is used to ensure that the crypto_tfm context structure is 131 * aligned correctly for the given architecture so that there are no alignment 132 * faults for C data types. In particular, this is required on platforms such 133 * as arm where pointers are 32-bit aligned but there are data types such as 134 * u64 which require 64-bit alignment. 135 */ 136 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 137 138 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 139 140 struct scatterlist; 141 struct crypto_ablkcipher; 142 struct crypto_async_request; 143 struct crypto_blkcipher; 144 struct crypto_tfm; 145 struct crypto_type; 146 struct skcipher_givcrypt_request; 147 148 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 149 150 /** 151 * DOC: Block Cipher Context Data Structures 152 * 153 * These data structures define the operating context for each block cipher 154 * type. 155 */ 156 157 struct crypto_async_request { 158 struct list_head list; 159 crypto_completion_t complete; 160 void *data; 161 struct crypto_tfm *tfm; 162 163 u32 flags; 164 }; 165 166 struct ablkcipher_request { 167 struct crypto_async_request base; 168 169 unsigned int nbytes; 170 171 void *info; 172 173 struct scatterlist *src; 174 struct scatterlist *dst; 175 176 void *__ctx[] CRYPTO_MINALIGN_ATTR; 177 }; 178 179 struct blkcipher_desc { 180 struct crypto_blkcipher *tfm; 181 void *info; 182 u32 flags; 183 }; 184 185 struct cipher_desc { 186 struct crypto_tfm *tfm; 187 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 188 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst, 189 const u8 *src, unsigned int nbytes); 190 void *info; 191 }; 192 193 /** 194 * DOC: Block Cipher Algorithm Definitions 195 * 196 * These data structures define modular crypto algorithm implementations, 197 * managed via crypto_register_alg() and crypto_unregister_alg(). 198 */ 199 200 /** 201 * struct ablkcipher_alg - asynchronous block cipher definition 202 * @min_keysize: Minimum key size supported by the transformation. This is the 203 * smallest key length supported by this transformation algorithm. 204 * This must be set to one of the pre-defined values as this is 205 * not hardware specific. Possible values for this field can be 206 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 207 * @max_keysize: Maximum key size supported by the transformation. This is the 208 * largest key length supported by this transformation algorithm. 209 * This must be set to one of the pre-defined values as this is 210 * not hardware specific. Possible values for this field can be 211 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 212 * @setkey: Set key for the transformation. This function is used to either 213 * program a supplied key into the hardware or store the key in the 214 * transformation context for programming it later. Note that this 215 * function does modify the transformation context. This function can 216 * be called multiple times during the existence of the transformation 217 * object, so one must make sure the key is properly reprogrammed into 218 * the hardware. This function is also responsible for checking the key 219 * length for validity. In case a software fallback was put in place in 220 * the @cra_init call, this function might need to use the fallback if 221 * the algorithm doesn't support all of the key sizes. 222 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 223 * the supplied scatterlist containing the blocks of data. The crypto 224 * API consumer is responsible for aligning the entries of the 225 * scatterlist properly and making sure the chunks are correctly 226 * sized. In case a software fallback was put in place in the 227 * @cra_init call, this function might need to use the fallback if 228 * the algorithm doesn't support all of the key sizes. In case the 229 * key was stored in transformation context, the key might need to be 230 * re-programmed into the hardware in this function. This function 231 * shall not modify the transformation context, as this function may 232 * be called in parallel with the same transformation object. 233 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 234 * and the conditions are exactly the same. 235 * @givencrypt: Update the IV for encryption. With this function, a cipher 236 * implementation may provide the function on how to update the IV 237 * for encryption. 238 * @givdecrypt: Update the IV for decryption. This is the reverse of 239 * @givencrypt . 240 * @geniv: The transformation implementation may use an "IV generator" provided 241 * by the kernel crypto API. Several use cases have a predefined 242 * approach how IVs are to be updated. For such use cases, the kernel 243 * crypto API provides ready-to-use implementations that can be 244 * referenced with this variable. 245 * @ivsize: IV size applicable for transformation. The consumer must provide an 246 * IV of exactly that size to perform the encrypt or decrypt operation. 247 * 248 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are 249 * mandatory and must be filled. 250 */ 251 struct ablkcipher_alg { 252 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 253 unsigned int keylen); 254 int (*encrypt)(struct ablkcipher_request *req); 255 int (*decrypt)(struct ablkcipher_request *req); 256 int (*givencrypt)(struct skcipher_givcrypt_request *req); 257 int (*givdecrypt)(struct skcipher_givcrypt_request *req); 258 259 const char *geniv; 260 261 unsigned int min_keysize; 262 unsigned int max_keysize; 263 unsigned int ivsize; 264 }; 265 266 /** 267 * struct blkcipher_alg - synchronous block cipher definition 268 * @min_keysize: see struct ablkcipher_alg 269 * @max_keysize: see struct ablkcipher_alg 270 * @setkey: see struct ablkcipher_alg 271 * @encrypt: see struct ablkcipher_alg 272 * @decrypt: see struct ablkcipher_alg 273 * @geniv: see struct ablkcipher_alg 274 * @ivsize: see struct ablkcipher_alg 275 * 276 * All fields except @geniv and @ivsize are mandatory and must be filled. 277 */ 278 struct blkcipher_alg { 279 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 280 unsigned int keylen); 281 int (*encrypt)(struct blkcipher_desc *desc, 282 struct scatterlist *dst, struct scatterlist *src, 283 unsigned int nbytes); 284 int (*decrypt)(struct blkcipher_desc *desc, 285 struct scatterlist *dst, struct scatterlist *src, 286 unsigned int nbytes); 287 288 const char *geniv; 289 290 unsigned int min_keysize; 291 unsigned int max_keysize; 292 unsigned int ivsize; 293 }; 294 295 /** 296 * struct cipher_alg - single-block symmetric ciphers definition 297 * @cia_min_keysize: Minimum key size supported by the transformation. This is 298 * the smallest key length supported by this transformation 299 * algorithm. This must be set to one of the pre-defined 300 * values as this is not hardware specific. Possible values 301 * for this field can be found via git grep "_MIN_KEY_SIZE" 302 * include/crypto/ 303 * @cia_max_keysize: Maximum key size supported by the transformation. This is 304 * the largest key length supported by this transformation 305 * algorithm. This must be set to one of the pre-defined values 306 * as this is not hardware specific. Possible values for this 307 * field can be found via git grep "_MAX_KEY_SIZE" 308 * include/crypto/ 309 * @cia_setkey: Set key for the transformation. This function is used to either 310 * program a supplied key into the hardware or store the key in the 311 * transformation context for programming it later. Note that this 312 * function does modify the transformation context. This function 313 * can be called multiple times during the existence of the 314 * transformation object, so one must make sure the key is properly 315 * reprogrammed into the hardware. This function is also 316 * responsible for checking the key length for validity. 317 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 318 * single block of data, which must be @cra_blocksize big. This 319 * always operates on a full @cra_blocksize and it is not possible 320 * to encrypt a block of smaller size. The supplied buffers must 321 * therefore also be at least of @cra_blocksize size. Both the 322 * input and output buffers are always aligned to @cra_alignmask. 323 * In case either of the input or output buffer supplied by user 324 * of the crypto API is not aligned to @cra_alignmask, the crypto 325 * API will re-align the buffers. The re-alignment means that a 326 * new buffer will be allocated, the data will be copied into the 327 * new buffer, then the processing will happen on the new buffer, 328 * then the data will be copied back into the original buffer and 329 * finally the new buffer will be freed. In case a software 330 * fallback was put in place in the @cra_init call, this function 331 * might need to use the fallback if the algorithm doesn't support 332 * all of the key sizes. In case the key was stored in 333 * transformation context, the key might need to be re-programmed 334 * into the hardware in this function. This function shall not 335 * modify the transformation context, as this function may be 336 * called in parallel with the same transformation object. 337 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 338 * @cia_encrypt, and the conditions are exactly the same. 339 * 340 * All fields are mandatory and must be filled. 341 */ 342 struct cipher_alg { 343 unsigned int cia_min_keysize; 344 unsigned int cia_max_keysize; 345 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 346 unsigned int keylen); 347 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 348 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 349 }; 350 351 struct compress_alg { 352 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 353 unsigned int slen, u8 *dst, unsigned int *dlen); 354 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 355 unsigned int slen, u8 *dst, unsigned int *dlen); 356 }; 357 358 359 #define cra_ablkcipher cra_u.ablkcipher 360 #define cra_blkcipher cra_u.blkcipher 361 #define cra_cipher cra_u.cipher 362 #define cra_compress cra_u.compress 363 364 /** 365 * struct crypto_alg - definition of a cryptograpic cipher algorithm 366 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 367 * CRYPTO_ALG_* flags for the flags which go in here. Those are 368 * used for fine-tuning the description of the transformation 369 * algorithm. 370 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 371 * of the smallest possible unit which can be transformed with 372 * this algorithm. The users must respect this value. 373 * In case of HASH transformation, it is possible for a smaller 374 * block than @cra_blocksize to be passed to the crypto API for 375 * transformation, in case of any other transformation type, an 376 * error will be returned upon any attempt to transform smaller 377 * than @cra_blocksize chunks. 378 * @cra_ctxsize: Size of the operational context of the transformation. This 379 * value informs the kernel crypto API about the memory size 380 * needed to be allocated for the transformation context. 381 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 382 * buffer containing the input data for the algorithm must be 383 * aligned to this alignment mask. The data buffer for the 384 * output data must be aligned to this alignment mask. Note that 385 * the Crypto API will do the re-alignment in software, but 386 * only under special conditions and there is a performance hit. 387 * The re-alignment happens at these occasions for different 388 * @cra_u types: cipher -- For both input data and output data 389 * buffer; ahash -- For output hash destination buf; shash -- 390 * For output hash destination buf. 391 * This is needed on hardware which is flawed by design and 392 * cannot pick data from arbitrary addresses. 393 * @cra_priority: Priority of this transformation implementation. In case 394 * multiple transformations with same @cra_name are available to 395 * the Crypto API, the kernel will use the one with highest 396 * @cra_priority. 397 * @cra_name: Generic name (usable by multiple implementations) of the 398 * transformation algorithm. This is the name of the transformation 399 * itself. This field is used by the kernel when looking up the 400 * providers of particular transformation. 401 * @cra_driver_name: Unique name of the transformation provider. This is the 402 * name of the provider of the transformation. This can be any 403 * arbitrary value, but in the usual case, this contains the 404 * name of the chip or provider and the name of the 405 * transformation algorithm. 406 * @cra_type: Type of the cryptographic transformation. This is a pointer to 407 * struct crypto_type, which implements callbacks common for all 408 * transformation types. There are multiple options: 409 * &crypto_blkcipher_type, &crypto_ablkcipher_type, 410 * &crypto_ahash_type, &crypto_rng_type. 411 * This field might be empty. In that case, there are no common 412 * callbacks. This is the case for: cipher, compress, shash. 413 * @cra_u: Callbacks implementing the transformation. This is a union of 414 * multiple structures. Depending on the type of transformation selected 415 * by @cra_type and @cra_flags above, the associated structure must be 416 * filled with callbacks. This field might be empty. This is the case 417 * for ahash, shash. 418 * @cra_init: Initialize the cryptographic transformation object. This function 419 * is used to initialize the cryptographic transformation object. 420 * This function is called only once at the instantiation time, right 421 * after the transformation context was allocated. In case the 422 * cryptographic hardware has some special requirements which need to 423 * be handled by software, this function shall check for the precise 424 * requirement of the transformation and put any software fallbacks 425 * in place. 426 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 427 * counterpart to @cra_init, used to remove various changes set in 428 * @cra_init. 429 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 430 * @cra_list: internally used 431 * @cra_users: internally used 432 * @cra_refcnt: internally used 433 * @cra_destroy: internally used 434 * 435 * The struct crypto_alg describes a generic Crypto API algorithm and is common 436 * for all of the transformations. Any variable not documented here shall not 437 * be used by a cipher implementation as it is internal to the Crypto API. 438 */ 439 struct crypto_alg { 440 struct list_head cra_list; 441 struct list_head cra_users; 442 443 u32 cra_flags; 444 unsigned int cra_blocksize; 445 unsigned int cra_ctxsize; 446 unsigned int cra_alignmask; 447 448 int cra_priority; 449 atomic_t cra_refcnt; 450 451 char cra_name[CRYPTO_MAX_ALG_NAME]; 452 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 453 454 const struct crypto_type *cra_type; 455 456 union { 457 struct ablkcipher_alg ablkcipher; 458 struct blkcipher_alg blkcipher; 459 struct cipher_alg cipher; 460 struct compress_alg compress; 461 } cra_u; 462 463 int (*cra_init)(struct crypto_tfm *tfm); 464 void (*cra_exit)(struct crypto_tfm *tfm); 465 void (*cra_destroy)(struct crypto_alg *alg); 466 467 struct module *cra_module; 468 } CRYPTO_MINALIGN_ATTR; 469 470 /* 471 * Algorithm registration interface. 472 */ 473 int crypto_register_alg(struct crypto_alg *alg); 474 int crypto_unregister_alg(struct crypto_alg *alg); 475 int crypto_register_algs(struct crypto_alg *algs, int count); 476 int crypto_unregister_algs(struct crypto_alg *algs, int count); 477 478 /* 479 * Algorithm query interface. 480 */ 481 int crypto_has_alg(const char *name, u32 type, u32 mask); 482 483 /* 484 * Transforms: user-instantiated objects which encapsulate algorithms 485 * and core processing logic. Managed via crypto_alloc_*() and 486 * crypto_free_*(), as well as the various helpers below. 487 */ 488 489 struct ablkcipher_tfm { 490 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 491 unsigned int keylen); 492 int (*encrypt)(struct ablkcipher_request *req); 493 int (*decrypt)(struct ablkcipher_request *req); 494 495 struct crypto_ablkcipher *base; 496 497 unsigned int ivsize; 498 unsigned int reqsize; 499 }; 500 501 struct blkcipher_tfm { 502 void *iv; 503 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 504 unsigned int keylen); 505 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 506 struct scatterlist *src, unsigned int nbytes); 507 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 508 struct scatterlist *src, unsigned int nbytes); 509 }; 510 511 struct cipher_tfm { 512 int (*cit_setkey)(struct crypto_tfm *tfm, 513 const u8 *key, unsigned int keylen); 514 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 515 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 516 }; 517 518 struct compress_tfm { 519 int (*cot_compress)(struct crypto_tfm *tfm, 520 const u8 *src, unsigned int slen, 521 u8 *dst, unsigned int *dlen); 522 int (*cot_decompress)(struct crypto_tfm *tfm, 523 const u8 *src, unsigned int slen, 524 u8 *dst, unsigned int *dlen); 525 }; 526 527 #define crt_ablkcipher crt_u.ablkcipher 528 #define crt_blkcipher crt_u.blkcipher 529 #define crt_cipher crt_u.cipher 530 #define crt_compress crt_u.compress 531 532 struct crypto_tfm { 533 534 u32 crt_flags; 535 536 union { 537 struct ablkcipher_tfm ablkcipher; 538 struct blkcipher_tfm blkcipher; 539 struct cipher_tfm cipher; 540 struct compress_tfm compress; 541 } crt_u; 542 543 void (*exit)(struct crypto_tfm *tfm); 544 545 struct crypto_alg *__crt_alg; 546 547 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 548 }; 549 550 struct crypto_ablkcipher { 551 struct crypto_tfm base; 552 }; 553 554 struct crypto_blkcipher { 555 struct crypto_tfm base; 556 }; 557 558 struct crypto_cipher { 559 struct crypto_tfm base; 560 }; 561 562 struct crypto_comp { 563 struct crypto_tfm base; 564 }; 565 566 enum { 567 CRYPTOA_UNSPEC, 568 CRYPTOA_ALG, 569 CRYPTOA_TYPE, 570 CRYPTOA_U32, 571 __CRYPTOA_MAX, 572 }; 573 574 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 575 576 /* Maximum number of (rtattr) parameters for each template. */ 577 #define CRYPTO_MAX_ATTRS 32 578 579 struct crypto_attr_alg { 580 char name[CRYPTO_MAX_ALG_NAME]; 581 }; 582 583 struct crypto_attr_type { 584 u32 type; 585 u32 mask; 586 }; 587 588 struct crypto_attr_u32 { 589 u32 num; 590 }; 591 592 /* 593 * Transform user interface. 594 */ 595 596 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 597 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 598 599 static inline void crypto_free_tfm(struct crypto_tfm *tfm) 600 { 601 return crypto_destroy_tfm(tfm, tfm); 602 } 603 604 int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 605 606 /* 607 * Transform helpers which query the underlying algorithm. 608 */ 609 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 610 { 611 return tfm->__crt_alg->cra_name; 612 } 613 614 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 615 { 616 return tfm->__crt_alg->cra_driver_name; 617 } 618 619 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 620 { 621 return tfm->__crt_alg->cra_priority; 622 } 623 624 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 625 { 626 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 627 } 628 629 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 630 { 631 return tfm->__crt_alg->cra_blocksize; 632 } 633 634 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 635 { 636 return tfm->__crt_alg->cra_alignmask; 637 } 638 639 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 640 { 641 return tfm->crt_flags; 642 } 643 644 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 645 { 646 tfm->crt_flags |= flags; 647 } 648 649 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 650 { 651 tfm->crt_flags &= ~flags; 652 } 653 654 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 655 { 656 return tfm->__crt_ctx; 657 } 658 659 static inline unsigned int crypto_tfm_ctx_alignment(void) 660 { 661 struct crypto_tfm *tfm; 662 return __alignof__(tfm->__crt_ctx); 663 } 664 665 /* 666 * API wrappers. 667 */ 668 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( 669 struct crypto_tfm *tfm) 670 { 671 return (struct crypto_ablkcipher *)tfm; 672 } 673 674 static inline u32 crypto_skcipher_type(u32 type) 675 { 676 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); 677 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 678 return type; 679 } 680 681 static inline u32 crypto_skcipher_mask(u32 mask) 682 { 683 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); 684 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; 685 return mask; 686 } 687 688 /** 689 * DOC: Asynchronous Block Cipher API 690 * 691 * Asynchronous block cipher API is used with the ciphers of type 692 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). 693 * 694 * Asynchronous cipher operations imply that the function invocation for a 695 * cipher request returns immediately before the completion of the operation. 696 * The cipher request is scheduled as a separate kernel thread and therefore 697 * load-balanced on the different CPUs via the process scheduler. To allow 698 * the kernel crypto API to inform the caller about the completion of a cipher 699 * request, the caller must provide a callback function. That function is 700 * invoked with the cipher handle when the request completes. 701 * 702 * To support the asynchronous operation, additional information than just the 703 * cipher handle must be supplied to the kernel crypto API. That additional 704 * information is given by filling in the ablkcipher_request data structure. 705 * 706 * For the asynchronous block cipher API, the state is maintained with the tfm 707 * cipher handle. A single tfm can be used across multiple calls and in 708 * parallel. For asynchronous block cipher calls, context data supplied and 709 * only used by the caller can be referenced the request data structure in 710 * addition to the IV used for the cipher request. The maintenance of such 711 * state information would be important for a crypto driver implementer to 712 * have, because when calling the callback function upon completion of the 713 * cipher operation, that callback function may need some information about 714 * which operation just finished if it invoked multiple in parallel. This 715 * state information is unused by the kernel crypto API. 716 */ 717 718 static inline struct crypto_tfm *crypto_ablkcipher_tfm( 719 struct crypto_ablkcipher *tfm) 720 { 721 return &tfm->base; 722 } 723 724 /** 725 * crypto_free_ablkcipher() - zeroize and free cipher handle 726 * @tfm: cipher handle to be freed 727 */ 728 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) 729 { 730 crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); 731 } 732 733 /** 734 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. 735 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 736 * ablkcipher 737 * @type: specifies the type of the cipher 738 * @mask: specifies the mask for the cipher 739 * 740 * Return: true when the ablkcipher is known to the kernel crypto API; false 741 * otherwise 742 */ 743 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, 744 u32 mask) 745 { 746 return crypto_has_alg(alg_name, crypto_skcipher_type(type), 747 crypto_skcipher_mask(mask)); 748 } 749 750 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( 751 struct crypto_ablkcipher *tfm) 752 { 753 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; 754 } 755 756 /** 757 * crypto_ablkcipher_ivsize() - obtain IV size 758 * @tfm: cipher handle 759 * 760 * The size of the IV for the ablkcipher referenced by the cipher handle is 761 * returned. This IV size may be zero if the cipher does not need an IV. 762 * 763 * Return: IV size in bytes 764 */ 765 static inline unsigned int crypto_ablkcipher_ivsize( 766 struct crypto_ablkcipher *tfm) 767 { 768 return crypto_ablkcipher_crt(tfm)->ivsize; 769 } 770 771 /** 772 * crypto_ablkcipher_blocksize() - obtain block size of cipher 773 * @tfm: cipher handle 774 * 775 * The block size for the ablkcipher referenced with the cipher handle is 776 * returned. The caller may use that information to allocate appropriate 777 * memory for the data returned by the encryption or decryption operation 778 * 779 * Return: block size of cipher 780 */ 781 static inline unsigned int crypto_ablkcipher_blocksize( 782 struct crypto_ablkcipher *tfm) 783 { 784 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); 785 } 786 787 static inline unsigned int crypto_ablkcipher_alignmask( 788 struct crypto_ablkcipher *tfm) 789 { 790 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); 791 } 792 793 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) 794 { 795 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); 796 } 797 798 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, 799 u32 flags) 800 { 801 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); 802 } 803 804 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, 805 u32 flags) 806 { 807 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); 808 } 809 810 /** 811 * crypto_ablkcipher_setkey() - set key for cipher 812 * @tfm: cipher handle 813 * @key: buffer holding the key 814 * @keylen: length of the key in bytes 815 * 816 * The caller provided key is set for the ablkcipher referenced by the cipher 817 * handle. 818 * 819 * Note, the key length determines the cipher type. Many block ciphers implement 820 * different cipher modes depending on the key size, such as AES-128 vs AES-192 821 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 822 * is performed. 823 * 824 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 825 */ 826 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, 827 const u8 *key, unsigned int keylen) 828 { 829 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); 830 831 return crt->setkey(crt->base, key, keylen); 832 } 833 834 /** 835 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request 836 * @req: ablkcipher_request out of which the cipher handle is to be obtained 837 * 838 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request 839 * data structure. 840 * 841 * Return: crypto_ablkcipher handle 842 */ 843 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( 844 struct ablkcipher_request *req) 845 { 846 return __crypto_ablkcipher_cast(req->base.tfm); 847 } 848 849 /** 850 * crypto_ablkcipher_encrypt() - encrypt plaintext 851 * @req: reference to the ablkcipher_request handle that holds all information 852 * needed to perform the cipher operation 853 * 854 * Encrypt plaintext data using the ablkcipher_request handle. That data 855 * structure and how it is filled with data is discussed with the 856 * ablkcipher_request_* functions. 857 * 858 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 859 */ 860 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) 861 { 862 struct ablkcipher_tfm *crt = 863 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 864 return crt->encrypt(req); 865 } 866 867 /** 868 * crypto_ablkcipher_decrypt() - decrypt ciphertext 869 * @req: reference to the ablkcipher_request handle that holds all information 870 * needed to perform the cipher operation 871 * 872 * Decrypt ciphertext data using the ablkcipher_request handle. That data 873 * structure and how it is filled with data is discussed with the 874 * ablkcipher_request_* functions. 875 * 876 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 877 */ 878 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) 879 { 880 struct ablkcipher_tfm *crt = 881 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 882 return crt->decrypt(req); 883 } 884 885 /** 886 * DOC: Asynchronous Cipher Request Handle 887 * 888 * The ablkcipher_request data structure contains all pointers to data 889 * required for the asynchronous cipher operation. This includes the cipher 890 * handle (which can be used by multiple ablkcipher_request instances), pointer 891 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 892 * as a handle to the ablkcipher_request_* API calls in a similar way as 893 * ablkcipher handle to the crypto_ablkcipher_* API calls. 894 */ 895 896 /** 897 * crypto_ablkcipher_reqsize() - obtain size of the request data structure 898 * @tfm: cipher handle 899 * 900 * Return: number of bytes 901 */ 902 static inline unsigned int crypto_ablkcipher_reqsize( 903 struct crypto_ablkcipher *tfm) 904 { 905 return crypto_ablkcipher_crt(tfm)->reqsize; 906 } 907 908 /** 909 * ablkcipher_request_set_tfm() - update cipher handle reference in request 910 * @req: request handle to be modified 911 * @tfm: cipher handle that shall be added to the request handle 912 * 913 * Allow the caller to replace the existing ablkcipher handle in the request 914 * data structure with a different one. 915 */ 916 static inline void ablkcipher_request_set_tfm( 917 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) 918 { 919 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); 920 } 921 922 static inline struct ablkcipher_request *ablkcipher_request_cast( 923 struct crypto_async_request *req) 924 { 925 return container_of(req, struct ablkcipher_request, base); 926 } 927 928 /** 929 * ablkcipher_request_alloc() - allocate request data structure 930 * @tfm: cipher handle to be registered with the request 931 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 932 * 933 * Allocate the request data structure that must be used with the ablkcipher 934 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher 935 * handle is registered in the request data structure. 936 * 937 * Return: allocated request handle in case of success, or NULL if out of memory 938 */ 939 static inline struct ablkcipher_request *ablkcipher_request_alloc( 940 struct crypto_ablkcipher *tfm, gfp_t gfp) 941 { 942 struct ablkcipher_request *req; 943 944 req = kmalloc(sizeof(struct ablkcipher_request) + 945 crypto_ablkcipher_reqsize(tfm), gfp); 946 947 if (likely(req)) 948 ablkcipher_request_set_tfm(req, tfm); 949 950 return req; 951 } 952 953 /** 954 * ablkcipher_request_free() - zeroize and free request data structure 955 * @req: request data structure cipher handle to be freed 956 */ 957 static inline void ablkcipher_request_free(struct ablkcipher_request *req) 958 { 959 kzfree(req); 960 } 961 962 /** 963 * ablkcipher_request_set_callback() - set asynchronous callback function 964 * @req: request handle 965 * @flags: specify zero or an ORing of the flags 966 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 967 * increase the wait queue beyond the initial maximum size; 968 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 969 * @compl: callback function pointer to be registered with the request handle 970 * @data: The data pointer refers to memory that is not used by the kernel 971 * crypto API, but provided to the callback function for it to use. Here, 972 * the caller can provide a reference to memory the callback function can 973 * operate on. As the callback function is invoked asynchronously to the 974 * related functionality, it may need to access data structures of the 975 * related functionality which can be referenced using this pointer. The 976 * callback function can access the memory via the "data" field in the 977 * crypto_async_request data structure provided to the callback function. 978 * 979 * This function allows setting the callback function that is triggered once the 980 * cipher operation completes. 981 * 982 * The callback function is registered with the ablkcipher_request handle and 983 * must comply with the following template:: 984 * 985 * void callback_function(struct crypto_async_request *req, int error) 986 */ 987 static inline void ablkcipher_request_set_callback( 988 struct ablkcipher_request *req, 989 u32 flags, crypto_completion_t compl, void *data) 990 { 991 req->base.complete = compl; 992 req->base.data = data; 993 req->base.flags = flags; 994 } 995 996 /** 997 * ablkcipher_request_set_crypt() - set data buffers 998 * @req: request handle 999 * @src: source scatter / gather list 1000 * @dst: destination scatter / gather list 1001 * @nbytes: number of bytes to process from @src 1002 * @iv: IV for the cipher operation which must comply with the IV size defined 1003 * by crypto_ablkcipher_ivsize 1004 * 1005 * This function allows setting of the source data and destination data 1006 * scatter / gather lists. 1007 * 1008 * For encryption, the source is treated as the plaintext and the 1009 * destination is the ciphertext. For a decryption operation, the use is 1010 * reversed - the source is the ciphertext and the destination is the plaintext. 1011 */ 1012 static inline void ablkcipher_request_set_crypt( 1013 struct ablkcipher_request *req, 1014 struct scatterlist *src, struct scatterlist *dst, 1015 unsigned int nbytes, void *iv) 1016 { 1017 req->src = src; 1018 req->dst = dst; 1019 req->nbytes = nbytes; 1020 req->info = iv; 1021 } 1022 1023 /** 1024 * DOC: Synchronous Block Cipher API 1025 * 1026 * The synchronous block cipher API is used with the ciphers of type 1027 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) 1028 * 1029 * Synchronous calls, have a context in the tfm. But since a single tfm can be 1030 * used in multiple calls and in parallel, this info should not be changeable 1031 * (unless a lock is used). This applies, for example, to the symmetric key. 1032 * However, the IV is changeable, so there is an iv field in blkcipher_tfm 1033 * structure for synchronous blkcipher api. So, its the only state info that can 1034 * be kept for synchronous calls without using a big lock across a tfm. 1035 * 1036 * The block cipher API allows the use of a complete cipher, i.e. a cipher 1037 * consisting of a template (a block chaining mode) and a single block cipher 1038 * primitive (e.g. AES). 1039 * 1040 * The plaintext data buffer and the ciphertext data buffer are pointed to 1041 * by using scatter/gather lists. The cipher operation is performed 1042 * on all segments of the provided scatter/gather lists. 1043 * 1044 * The kernel crypto API supports a cipher operation "in-place" which means that 1045 * the caller may provide the same scatter/gather list for the plaintext and 1046 * cipher text. After the completion of the cipher operation, the plaintext 1047 * data is replaced with the ciphertext data in case of an encryption and vice 1048 * versa for a decryption. The caller must ensure that the scatter/gather lists 1049 * for the output data point to sufficiently large buffers, i.e. multiples of 1050 * the block size of the cipher. 1051 */ 1052 1053 static inline struct crypto_blkcipher *__crypto_blkcipher_cast( 1054 struct crypto_tfm *tfm) 1055 { 1056 return (struct crypto_blkcipher *)tfm; 1057 } 1058 1059 static inline struct crypto_blkcipher *crypto_blkcipher_cast( 1060 struct crypto_tfm *tfm) 1061 { 1062 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); 1063 return __crypto_blkcipher_cast(tfm); 1064 } 1065 1066 /** 1067 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle 1068 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1069 * blkcipher cipher 1070 * @type: specifies the type of the cipher 1071 * @mask: specifies the mask for the cipher 1072 * 1073 * Allocate a cipher handle for a block cipher. The returned struct 1074 * crypto_blkcipher is the cipher handle that is required for any subsequent 1075 * API invocation for that block cipher. 1076 * 1077 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1078 * of an error, PTR_ERR() returns the error code. 1079 */ 1080 static inline struct crypto_blkcipher *crypto_alloc_blkcipher( 1081 const char *alg_name, u32 type, u32 mask) 1082 { 1083 type &= ~CRYPTO_ALG_TYPE_MASK; 1084 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1085 mask |= CRYPTO_ALG_TYPE_MASK; 1086 1087 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); 1088 } 1089 1090 static inline struct crypto_tfm *crypto_blkcipher_tfm( 1091 struct crypto_blkcipher *tfm) 1092 { 1093 return &tfm->base; 1094 } 1095 1096 /** 1097 * crypto_free_blkcipher() - zeroize and free the block cipher handle 1098 * @tfm: cipher handle to be freed 1099 */ 1100 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) 1101 { 1102 crypto_free_tfm(crypto_blkcipher_tfm(tfm)); 1103 } 1104 1105 /** 1106 * crypto_has_blkcipher() - Search for the availability of a block cipher 1107 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1108 * block cipher 1109 * @type: specifies the type of the cipher 1110 * @mask: specifies the mask for the cipher 1111 * 1112 * Return: true when the block cipher is known to the kernel crypto API; false 1113 * otherwise 1114 */ 1115 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) 1116 { 1117 type &= ~CRYPTO_ALG_TYPE_MASK; 1118 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1119 mask |= CRYPTO_ALG_TYPE_MASK; 1120 1121 return crypto_has_alg(alg_name, type, mask); 1122 } 1123 1124 /** 1125 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle 1126 * @tfm: cipher handle 1127 * 1128 * Return: The character string holding the name of the cipher 1129 */ 1130 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) 1131 { 1132 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); 1133 } 1134 1135 static inline struct blkcipher_tfm *crypto_blkcipher_crt( 1136 struct crypto_blkcipher *tfm) 1137 { 1138 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; 1139 } 1140 1141 static inline struct blkcipher_alg *crypto_blkcipher_alg( 1142 struct crypto_blkcipher *tfm) 1143 { 1144 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; 1145 } 1146 1147 /** 1148 * crypto_blkcipher_ivsize() - obtain IV size 1149 * @tfm: cipher handle 1150 * 1151 * The size of the IV for the block cipher referenced by the cipher handle is 1152 * returned. This IV size may be zero if the cipher does not need an IV. 1153 * 1154 * Return: IV size in bytes 1155 */ 1156 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) 1157 { 1158 return crypto_blkcipher_alg(tfm)->ivsize; 1159 } 1160 1161 /** 1162 * crypto_blkcipher_blocksize() - obtain block size of cipher 1163 * @tfm: cipher handle 1164 * 1165 * The block size for the block cipher referenced with the cipher handle is 1166 * returned. The caller may use that information to allocate appropriate 1167 * memory for the data returned by the encryption or decryption operation. 1168 * 1169 * Return: block size of cipher 1170 */ 1171 static inline unsigned int crypto_blkcipher_blocksize( 1172 struct crypto_blkcipher *tfm) 1173 { 1174 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); 1175 } 1176 1177 static inline unsigned int crypto_blkcipher_alignmask( 1178 struct crypto_blkcipher *tfm) 1179 { 1180 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); 1181 } 1182 1183 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) 1184 { 1185 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); 1186 } 1187 1188 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, 1189 u32 flags) 1190 { 1191 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); 1192 } 1193 1194 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, 1195 u32 flags) 1196 { 1197 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); 1198 } 1199 1200 /** 1201 * crypto_blkcipher_setkey() - set key for cipher 1202 * @tfm: cipher handle 1203 * @key: buffer holding the key 1204 * @keylen: length of the key in bytes 1205 * 1206 * The caller provided key is set for the block cipher referenced by the cipher 1207 * handle. 1208 * 1209 * Note, the key length determines the cipher type. Many block ciphers implement 1210 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1211 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1212 * is performed. 1213 * 1214 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1215 */ 1216 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, 1217 const u8 *key, unsigned int keylen) 1218 { 1219 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), 1220 key, keylen); 1221 } 1222 1223 /** 1224 * crypto_blkcipher_encrypt() - encrypt plaintext 1225 * @desc: reference to the block cipher handle with meta data 1226 * @dst: scatter/gather list that is filled by the cipher operation with the 1227 * ciphertext 1228 * @src: scatter/gather list that holds the plaintext 1229 * @nbytes: number of bytes of the plaintext to encrypt. 1230 * 1231 * Encrypt plaintext data using the IV set by the caller with a preceding 1232 * call of crypto_blkcipher_set_iv. 1233 * 1234 * The blkcipher_desc data structure must be filled by the caller and can 1235 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1236 * with the block cipher handle; desc.flags is filled with either 1237 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1238 * 1239 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1240 */ 1241 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, 1242 struct scatterlist *dst, 1243 struct scatterlist *src, 1244 unsigned int nbytes) 1245 { 1246 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1247 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1248 } 1249 1250 /** 1251 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV 1252 * @desc: reference to the block cipher handle with meta data 1253 * @dst: scatter/gather list that is filled by the cipher operation with the 1254 * ciphertext 1255 * @src: scatter/gather list that holds the plaintext 1256 * @nbytes: number of bytes of the plaintext to encrypt. 1257 * 1258 * Encrypt plaintext data with the use of an IV that is solely used for this 1259 * cipher operation. Any previously set IV is not used. 1260 * 1261 * The blkcipher_desc data structure must be filled by the caller and can 1262 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1263 * with the block cipher handle; desc.info is filled with the IV to be used for 1264 * the current operation; desc.flags is filled with either 1265 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1266 * 1267 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1268 */ 1269 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, 1270 struct scatterlist *dst, 1271 struct scatterlist *src, 1272 unsigned int nbytes) 1273 { 1274 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1275 } 1276 1277 /** 1278 * crypto_blkcipher_decrypt() - decrypt ciphertext 1279 * @desc: reference to the block cipher handle with meta data 1280 * @dst: scatter/gather list that is filled by the cipher operation with the 1281 * plaintext 1282 * @src: scatter/gather list that holds the ciphertext 1283 * @nbytes: number of bytes of the ciphertext to decrypt. 1284 * 1285 * Decrypt ciphertext data using the IV set by the caller with a preceding 1286 * call of crypto_blkcipher_set_iv. 1287 * 1288 * The blkcipher_desc data structure must be filled by the caller as documented 1289 * for the crypto_blkcipher_encrypt call above. 1290 * 1291 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1292 * 1293 */ 1294 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, 1295 struct scatterlist *dst, 1296 struct scatterlist *src, 1297 unsigned int nbytes) 1298 { 1299 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1300 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1301 } 1302 1303 /** 1304 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV 1305 * @desc: reference to the block cipher handle with meta data 1306 * @dst: scatter/gather list that is filled by the cipher operation with the 1307 * plaintext 1308 * @src: scatter/gather list that holds the ciphertext 1309 * @nbytes: number of bytes of the ciphertext to decrypt. 1310 * 1311 * Decrypt ciphertext data with the use of an IV that is solely used for this 1312 * cipher operation. Any previously set IV is not used. 1313 * 1314 * The blkcipher_desc data structure must be filled by the caller as documented 1315 * for the crypto_blkcipher_encrypt_iv call above. 1316 * 1317 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1318 */ 1319 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, 1320 struct scatterlist *dst, 1321 struct scatterlist *src, 1322 unsigned int nbytes) 1323 { 1324 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1325 } 1326 1327 /** 1328 * crypto_blkcipher_set_iv() - set IV for cipher 1329 * @tfm: cipher handle 1330 * @src: buffer holding the IV 1331 * @len: length of the IV in bytes 1332 * 1333 * The caller provided IV is set for the block cipher referenced by the cipher 1334 * handle. 1335 */ 1336 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, 1337 const u8 *src, unsigned int len) 1338 { 1339 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); 1340 } 1341 1342 /** 1343 * crypto_blkcipher_get_iv() - obtain IV from cipher 1344 * @tfm: cipher handle 1345 * @dst: buffer filled with the IV 1346 * @len: length of the buffer dst 1347 * 1348 * The caller can obtain the IV set for the block cipher referenced by the 1349 * cipher handle and store it into the user-provided buffer. If the buffer 1350 * has an insufficient space, the IV is truncated to fit the buffer. 1351 */ 1352 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, 1353 u8 *dst, unsigned int len) 1354 { 1355 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); 1356 } 1357 1358 /** 1359 * DOC: Single Block Cipher API 1360 * 1361 * The single block cipher API is used with the ciphers of type 1362 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 1363 * 1364 * Using the single block cipher API calls, operations with the basic cipher 1365 * primitive can be implemented. These cipher primitives exclude any block 1366 * chaining operations including IV handling. 1367 * 1368 * The purpose of this single block cipher API is to support the implementation 1369 * of templates or other concepts that only need to perform the cipher operation 1370 * on one block at a time. Templates invoke the underlying cipher primitive 1371 * block-wise and process either the input or the output data of these cipher 1372 * operations. 1373 */ 1374 1375 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 1376 { 1377 return (struct crypto_cipher *)tfm; 1378 } 1379 1380 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) 1381 { 1382 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); 1383 return __crypto_cipher_cast(tfm); 1384 } 1385 1386 /** 1387 * crypto_alloc_cipher() - allocate single block cipher handle 1388 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1389 * single block cipher 1390 * @type: specifies the type of the cipher 1391 * @mask: specifies the mask for the cipher 1392 * 1393 * Allocate a cipher handle for a single block cipher. The returned struct 1394 * crypto_cipher is the cipher handle that is required for any subsequent API 1395 * invocation for that single block cipher. 1396 * 1397 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1398 * of an error, PTR_ERR() returns the error code. 1399 */ 1400 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 1401 u32 type, u32 mask) 1402 { 1403 type &= ~CRYPTO_ALG_TYPE_MASK; 1404 type |= CRYPTO_ALG_TYPE_CIPHER; 1405 mask |= CRYPTO_ALG_TYPE_MASK; 1406 1407 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 1408 } 1409 1410 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 1411 { 1412 return &tfm->base; 1413 } 1414 1415 /** 1416 * crypto_free_cipher() - zeroize and free the single block cipher handle 1417 * @tfm: cipher handle to be freed 1418 */ 1419 static inline void crypto_free_cipher(struct crypto_cipher *tfm) 1420 { 1421 crypto_free_tfm(crypto_cipher_tfm(tfm)); 1422 } 1423 1424 /** 1425 * crypto_has_cipher() - Search for the availability of a single block cipher 1426 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1427 * single block cipher 1428 * @type: specifies the type of the cipher 1429 * @mask: specifies the mask for the cipher 1430 * 1431 * Return: true when the single block cipher is known to the kernel crypto API; 1432 * false otherwise 1433 */ 1434 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 1435 { 1436 type &= ~CRYPTO_ALG_TYPE_MASK; 1437 type |= CRYPTO_ALG_TYPE_CIPHER; 1438 mask |= CRYPTO_ALG_TYPE_MASK; 1439 1440 return crypto_has_alg(alg_name, type, mask); 1441 } 1442 1443 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) 1444 { 1445 return &crypto_cipher_tfm(tfm)->crt_cipher; 1446 } 1447 1448 /** 1449 * crypto_cipher_blocksize() - obtain block size for cipher 1450 * @tfm: cipher handle 1451 * 1452 * The block size for the single block cipher referenced with the cipher handle 1453 * tfm is returned. The caller may use that information to allocate appropriate 1454 * memory for the data returned by the encryption or decryption operation 1455 * 1456 * Return: block size of cipher 1457 */ 1458 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 1459 { 1460 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 1461 } 1462 1463 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 1464 { 1465 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 1466 } 1467 1468 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 1469 { 1470 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 1471 } 1472 1473 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 1474 u32 flags) 1475 { 1476 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 1477 } 1478 1479 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 1480 u32 flags) 1481 { 1482 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 1483 } 1484 1485 /** 1486 * crypto_cipher_setkey() - set key for cipher 1487 * @tfm: cipher handle 1488 * @key: buffer holding the key 1489 * @keylen: length of the key in bytes 1490 * 1491 * The caller provided key is set for the single block cipher referenced by the 1492 * cipher handle. 1493 * 1494 * Note, the key length determines the cipher type. Many block ciphers implement 1495 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1496 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1497 * is performed. 1498 * 1499 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1500 */ 1501 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 1502 const u8 *key, unsigned int keylen) 1503 { 1504 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), 1505 key, keylen); 1506 } 1507 1508 /** 1509 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 1510 * @tfm: cipher handle 1511 * @dst: points to the buffer that will be filled with the ciphertext 1512 * @src: buffer holding the plaintext to be encrypted 1513 * 1514 * Invoke the encryption operation of one block. The caller must ensure that 1515 * the plaintext and ciphertext buffers are at least one block in size. 1516 */ 1517 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 1518 u8 *dst, const u8 *src) 1519 { 1520 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), 1521 dst, src); 1522 } 1523 1524 /** 1525 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 1526 * @tfm: cipher handle 1527 * @dst: points to the buffer that will be filled with the plaintext 1528 * @src: buffer holding the ciphertext to be decrypted 1529 * 1530 * Invoke the decryption operation of one block. The caller must ensure that 1531 * the plaintext and ciphertext buffers are at least one block in size. 1532 */ 1533 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 1534 u8 *dst, const u8 *src) 1535 { 1536 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), 1537 dst, src); 1538 } 1539 1540 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 1541 { 1542 return (struct crypto_comp *)tfm; 1543 } 1544 1545 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) 1546 { 1547 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & 1548 CRYPTO_ALG_TYPE_MASK); 1549 return __crypto_comp_cast(tfm); 1550 } 1551 1552 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 1553 u32 type, u32 mask) 1554 { 1555 type &= ~CRYPTO_ALG_TYPE_MASK; 1556 type |= CRYPTO_ALG_TYPE_COMPRESS; 1557 mask |= CRYPTO_ALG_TYPE_MASK; 1558 1559 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 1560 } 1561 1562 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 1563 { 1564 return &tfm->base; 1565 } 1566 1567 static inline void crypto_free_comp(struct crypto_comp *tfm) 1568 { 1569 crypto_free_tfm(crypto_comp_tfm(tfm)); 1570 } 1571 1572 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 1573 { 1574 type &= ~CRYPTO_ALG_TYPE_MASK; 1575 type |= CRYPTO_ALG_TYPE_COMPRESS; 1576 mask |= CRYPTO_ALG_TYPE_MASK; 1577 1578 return crypto_has_alg(alg_name, type, mask); 1579 } 1580 1581 static inline const char *crypto_comp_name(struct crypto_comp *tfm) 1582 { 1583 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 1584 } 1585 1586 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) 1587 { 1588 return &crypto_comp_tfm(tfm)->crt_compress; 1589 } 1590 1591 static inline int crypto_comp_compress(struct crypto_comp *tfm, 1592 const u8 *src, unsigned int slen, 1593 u8 *dst, unsigned int *dlen) 1594 { 1595 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), 1596 src, slen, dst, dlen); 1597 } 1598 1599 static inline int crypto_comp_decompress(struct crypto_comp *tfm, 1600 const u8 *src, unsigned int slen, 1601 u8 *dst, unsigned int *dlen) 1602 { 1603 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), 1604 src, slen, dst, dlen); 1605 } 1606 1607 #endif /* _LINUX_CRYPTO_H */ 1608 1609