xref: /linux-6.15/include/linux/crypto.h (revision bbb03029)
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <[email protected]>
5  * Copyright (c) 2002 David S. Miller ([email protected])
6  * Copyright (c) 2005 Herbert Xu <[email protected]>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
9  * and Nettle, by Niels Möller.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19 
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 
28 /*
29  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30  * arbitrary modules to be loaded. Loading from userspace may still need the
31  * unprefixed names, so retains those aliases as well.
32  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34  * expands twice on the same line. Instead, use a separate base name for the
35  * alias.
36  */
37 #define MODULE_ALIAS_CRYPTO(name)	\
38 		__MODULE_INFO(alias, alias_userspace, name);	\
39 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
40 
41 /*
42  * Algorithm masks and types.
43  */
44 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
45 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
46 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
47 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
48 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
49 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
50 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
51 #define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
52 #define CRYPTO_ALG_TYPE_KPP		0x00000008
53 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
54 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
55 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
56 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
57 #define CRYPTO_ALG_TYPE_DIGEST		0x0000000e
58 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
59 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
60 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
61 
62 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
63 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
64 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
65 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
66 
67 #define CRYPTO_ALG_LARVAL		0x00000010
68 #define CRYPTO_ALG_DEAD			0x00000020
69 #define CRYPTO_ALG_DYING		0x00000040
70 #define CRYPTO_ALG_ASYNC		0x00000080
71 
72 /*
73  * Set this bit if and only if the algorithm requires another algorithm of
74  * the same type to handle corner cases.
75  */
76 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
77 
78 /*
79  * This bit is set for symmetric key ciphers that have already been wrapped
80  * with a generic IV generator to prevent them from being wrapped again.
81  */
82 #define CRYPTO_ALG_GENIV		0x00000200
83 
84 /*
85  * Set if the algorithm has passed automated run-time testing.  Note that
86  * if there is no run-time testing for a given algorithm it is considered
87  * to have passed.
88  */
89 
90 #define CRYPTO_ALG_TESTED		0x00000400
91 
92 /*
93  * Set if the algorithm is an instance that is built from templates.
94  */
95 #define CRYPTO_ALG_INSTANCE		0x00000800
96 
97 /* Set this bit if the algorithm provided is hardware accelerated but
98  * not available to userspace via instruction set or so.
99  */
100 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
101 
102 /*
103  * Mark a cipher as a service implementation only usable by another
104  * cipher and never by a normal user of the kernel crypto API
105  */
106 #define CRYPTO_ALG_INTERNAL		0x00002000
107 
108 /*
109  * Transform masks and values (for crt_flags).
110  */
111 #define CRYPTO_TFM_REQ_MASK		0x000fff00
112 #define CRYPTO_TFM_RES_MASK		0xfff00000
113 
114 #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
115 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
116 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
117 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
118 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
119 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
120 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
121 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
122 
123 /*
124  * Miscellaneous stuff.
125  */
126 #define CRYPTO_MAX_ALG_NAME		128
127 
128 /*
129  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
130  * declaration) is used to ensure that the crypto_tfm context structure is
131  * aligned correctly for the given architecture so that there are no alignment
132  * faults for C data types.  In particular, this is required on platforms such
133  * as arm where pointers are 32-bit aligned but there are data types such as
134  * u64 which require 64-bit alignment.
135  */
136 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
137 
138 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
139 
140 struct scatterlist;
141 struct crypto_ablkcipher;
142 struct crypto_async_request;
143 struct crypto_blkcipher;
144 struct crypto_tfm;
145 struct crypto_type;
146 struct skcipher_givcrypt_request;
147 
148 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
149 
150 /**
151  * DOC: Block Cipher Context Data Structures
152  *
153  * These data structures define the operating context for each block cipher
154  * type.
155  */
156 
157 struct crypto_async_request {
158 	struct list_head list;
159 	crypto_completion_t complete;
160 	void *data;
161 	struct crypto_tfm *tfm;
162 
163 	u32 flags;
164 };
165 
166 struct ablkcipher_request {
167 	struct crypto_async_request base;
168 
169 	unsigned int nbytes;
170 
171 	void *info;
172 
173 	struct scatterlist *src;
174 	struct scatterlist *dst;
175 
176 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
177 };
178 
179 struct blkcipher_desc {
180 	struct crypto_blkcipher *tfm;
181 	void *info;
182 	u32 flags;
183 };
184 
185 struct cipher_desc {
186 	struct crypto_tfm *tfm;
187 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
188 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
189 			     const u8 *src, unsigned int nbytes);
190 	void *info;
191 };
192 
193 /**
194  * DOC: Block Cipher Algorithm Definitions
195  *
196  * These data structures define modular crypto algorithm implementations,
197  * managed via crypto_register_alg() and crypto_unregister_alg().
198  */
199 
200 /**
201  * struct ablkcipher_alg - asynchronous block cipher definition
202  * @min_keysize: Minimum key size supported by the transformation. This is the
203  *		 smallest key length supported by this transformation algorithm.
204  *		 This must be set to one of the pre-defined values as this is
205  *		 not hardware specific. Possible values for this field can be
206  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
207  * @max_keysize: Maximum key size supported by the transformation. This is the
208  *		 largest key length supported by this transformation algorithm.
209  *		 This must be set to one of the pre-defined values as this is
210  *		 not hardware specific. Possible values for this field can be
211  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
212  * @setkey: Set key for the transformation. This function is used to either
213  *	    program a supplied key into the hardware or store the key in the
214  *	    transformation context for programming it later. Note that this
215  *	    function does modify the transformation context. This function can
216  *	    be called multiple times during the existence of the transformation
217  *	    object, so one must make sure the key is properly reprogrammed into
218  *	    the hardware. This function is also responsible for checking the key
219  *	    length for validity. In case a software fallback was put in place in
220  *	    the @cra_init call, this function might need to use the fallback if
221  *	    the algorithm doesn't support all of the key sizes.
222  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
223  *	     the supplied scatterlist containing the blocks of data. The crypto
224  *	     API consumer is responsible for aligning the entries of the
225  *	     scatterlist properly and making sure the chunks are correctly
226  *	     sized. In case a software fallback was put in place in the
227  *	     @cra_init call, this function might need to use the fallback if
228  *	     the algorithm doesn't support all of the key sizes. In case the
229  *	     key was stored in transformation context, the key might need to be
230  *	     re-programmed into the hardware in this function. This function
231  *	     shall not modify the transformation context, as this function may
232  *	     be called in parallel with the same transformation object.
233  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
234  *	     and the conditions are exactly the same.
235  * @givencrypt: Update the IV for encryption. With this function, a cipher
236  *	        implementation may provide the function on how to update the IV
237  *	        for encryption.
238  * @givdecrypt: Update the IV for decryption. This is the reverse of
239  *	        @givencrypt .
240  * @geniv: The transformation implementation may use an "IV generator" provided
241  *	   by the kernel crypto API. Several use cases have a predefined
242  *	   approach how IVs are to be updated. For such use cases, the kernel
243  *	   crypto API provides ready-to-use implementations that can be
244  *	   referenced with this variable.
245  * @ivsize: IV size applicable for transformation. The consumer must provide an
246  *	    IV of exactly that size to perform the encrypt or decrypt operation.
247  *
248  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
249  * mandatory and must be filled.
250  */
251 struct ablkcipher_alg {
252 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
253 	              unsigned int keylen);
254 	int (*encrypt)(struct ablkcipher_request *req);
255 	int (*decrypt)(struct ablkcipher_request *req);
256 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
257 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
258 
259 	const char *geniv;
260 
261 	unsigned int min_keysize;
262 	unsigned int max_keysize;
263 	unsigned int ivsize;
264 };
265 
266 /**
267  * struct blkcipher_alg - synchronous block cipher definition
268  * @min_keysize: see struct ablkcipher_alg
269  * @max_keysize: see struct ablkcipher_alg
270  * @setkey: see struct ablkcipher_alg
271  * @encrypt: see struct ablkcipher_alg
272  * @decrypt: see struct ablkcipher_alg
273  * @geniv: see struct ablkcipher_alg
274  * @ivsize: see struct ablkcipher_alg
275  *
276  * All fields except @geniv and @ivsize are mandatory and must be filled.
277  */
278 struct blkcipher_alg {
279 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
280 	              unsigned int keylen);
281 	int (*encrypt)(struct blkcipher_desc *desc,
282 		       struct scatterlist *dst, struct scatterlist *src,
283 		       unsigned int nbytes);
284 	int (*decrypt)(struct blkcipher_desc *desc,
285 		       struct scatterlist *dst, struct scatterlist *src,
286 		       unsigned int nbytes);
287 
288 	const char *geniv;
289 
290 	unsigned int min_keysize;
291 	unsigned int max_keysize;
292 	unsigned int ivsize;
293 };
294 
295 /**
296  * struct cipher_alg - single-block symmetric ciphers definition
297  * @cia_min_keysize: Minimum key size supported by the transformation. This is
298  *		     the smallest key length supported by this transformation
299  *		     algorithm. This must be set to one of the pre-defined
300  *		     values as this is not hardware specific. Possible values
301  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
302  *		     include/crypto/
303  * @cia_max_keysize: Maximum key size supported by the transformation. This is
304  *		    the largest key length supported by this transformation
305  *		    algorithm. This must be set to one of the pre-defined values
306  *		    as this is not hardware specific. Possible values for this
307  *		    field can be found via git grep "_MAX_KEY_SIZE"
308  *		    include/crypto/
309  * @cia_setkey: Set key for the transformation. This function is used to either
310  *	        program a supplied key into the hardware or store the key in the
311  *	        transformation context for programming it later. Note that this
312  *	        function does modify the transformation context. This function
313  *	        can be called multiple times during the existence of the
314  *	        transformation object, so one must make sure the key is properly
315  *	        reprogrammed into the hardware. This function is also
316  *	        responsible for checking the key length for validity.
317  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
318  *		 single block of data, which must be @cra_blocksize big. This
319  *		 always operates on a full @cra_blocksize and it is not possible
320  *		 to encrypt a block of smaller size. The supplied buffers must
321  *		 therefore also be at least of @cra_blocksize size. Both the
322  *		 input and output buffers are always aligned to @cra_alignmask.
323  *		 In case either of the input or output buffer supplied by user
324  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
325  *		 API will re-align the buffers. The re-alignment means that a
326  *		 new buffer will be allocated, the data will be copied into the
327  *		 new buffer, then the processing will happen on the new buffer,
328  *		 then the data will be copied back into the original buffer and
329  *		 finally the new buffer will be freed. In case a software
330  *		 fallback was put in place in the @cra_init call, this function
331  *		 might need to use the fallback if the algorithm doesn't support
332  *		 all of the key sizes. In case the key was stored in
333  *		 transformation context, the key might need to be re-programmed
334  *		 into the hardware in this function. This function shall not
335  *		 modify the transformation context, as this function may be
336  *		 called in parallel with the same transformation object.
337  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
338  *		 @cia_encrypt, and the conditions are exactly the same.
339  *
340  * All fields are mandatory and must be filled.
341  */
342 struct cipher_alg {
343 	unsigned int cia_min_keysize;
344 	unsigned int cia_max_keysize;
345 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
346 	                  unsigned int keylen);
347 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
348 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
349 };
350 
351 struct compress_alg {
352 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
353 			    unsigned int slen, u8 *dst, unsigned int *dlen);
354 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
355 			      unsigned int slen, u8 *dst, unsigned int *dlen);
356 };
357 
358 
359 #define cra_ablkcipher	cra_u.ablkcipher
360 #define cra_blkcipher	cra_u.blkcipher
361 #define cra_cipher	cra_u.cipher
362 #define cra_compress	cra_u.compress
363 
364 /**
365  * struct crypto_alg - definition of a cryptograpic cipher algorithm
366  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
367  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
368  *	       used for fine-tuning the description of the transformation
369  *	       algorithm.
370  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
371  *		   of the smallest possible unit which can be transformed with
372  *		   this algorithm. The users must respect this value.
373  *		   In case of HASH transformation, it is possible for a smaller
374  *		   block than @cra_blocksize to be passed to the crypto API for
375  *		   transformation, in case of any other transformation type, an
376  * 		   error will be returned upon any attempt to transform smaller
377  *		   than @cra_blocksize chunks.
378  * @cra_ctxsize: Size of the operational context of the transformation. This
379  *		 value informs the kernel crypto API about the memory size
380  *		 needed to be allocated for the transformation context.
381  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
382  *		   buffer containing the input data for the algorithm must be
383  *		   aligned to this alignment mask. The data buffer for the
384  *		   output data must be aligned to this alignment mask. Note that
385  *		   the Crypto API will do the re-alignment in software, but
386  *		   only under special conditions and there is a performance hit.
387  *		   The re-alignment happens at these occasions for different
388  *		   @cra_u types: cipher -- For both input data and output data
389  *		   buffer; ahash -- For output hash destination buf; shash --
390  *		   For output hash destination buf.
391  *		   This is needed on hardware which is flawed by design and
392  *		   cannot pick data from arbitrary addresses.
393  * @cra_priority: Priority of this transformation implementation. In case
394  *		  multiple transformations with same @cra_name are available to
395  *		  the Crypto API, the kernel will use the one with highest
396  *		  @cra_priority.
397  * @cra_name: Generic name (usable by multiple implementations) of the
398  *	      transformation algorithm. This is the name of the transformation
399  *	      itself. This field is used by the kernel when looking up the
400  *	      providers of particular transformation.
401  * @cra_driver_name: Unique name of the transformation provider. This is the
402  *		     name of the provider of the transformation. This can be any
403  *		     arbitrary value, but in the usual case, this contains the
404  *		     name of the chip or provider and the name of the
405  *		     transformation algorithm.
406  * @cra_type: Type of the cryptographic transformation. This is a pointer to
407  *	      struct crypto_type, which implements callbacks common for all
408  *	      transformation types. There are multiple options:
409  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
410  *	      &crypto_ahash_type, &crypto_rng_type.
411  *	      This field might be empty. In that case, there are no common
412  *	      callbacks. This is the case for: cipher, compress, shash.
413  * @cra_u: Callbacks implementing the transformation. This is a union of
414  *	   multiple structures. Depending on the type of transformation selected
415  *	   by @cra_type and @cra_flags above, the associated structure must be
416  *	   filled with callbacks. This field might be empty. This is the case
417  *	   for ahash, shash.
418  * @cra_init: Initialize the cryptographic transformation object. This function
419  *	      is used to initialize the cryptographic transformation object.
420  *	      This function is called only once at the instantiation time, right
421  *	      after the transformation context was allocated. In case the
422  *	      cryptographic hardware has some special requirements which need to
423  *	      be handled by software, this function shall check for the precise
424  *	      requirement of the transformation and put any software fallbacks
425  *	      in place.
426  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
427  *	      counterpart to @cra_init, used to remove various changes set in
428  *	      @cra_init.
429  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
430  * @cra_list: internally used
431  * @cra_users: internally used
432  * @cra_refcnt: internally used
433  * @cra_destroy: internally used
434  *
435  * The struct crypto_alg describes a generic Crypto API algorithm and is common
436  * for all of the transformations. Any variable not documented here shall not
437  * be used by a cipher implementation as it is internal to the Crypto API.
438  */
439 struct crypto_alg {
440 	struct list_head cra_list;
441 	struct list_head cra_users;
442 
443 	u32 cra_flags;
444 	unsigned int cra_blocksize;
445 	unsigned int cra_ctxsize;
446 	unsigned int cra_alignmask;
447 
448 	int cra_priority;
449 	atomic_t cra_refcnt;
450 
451 	char cra_name[CRYPTO_MAX_ALG_NAME];
452 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
453 
454 	const struct crypto_type *cra_type;
455 
456 	union {
457 		struct ablkcipher_alg ablkcipher;
458 		struct blkcipher_alg blkcipher;
459 		struct cipher_alg cipher;
460 		struct compress_alg compress;
461 	} cra_u;
462 
463 	int (*cra_init)(struct crypto_tfm *tfm);
464 	void (*cra_exit)(struct crypto_tfm *tfm);
465 	void (*cra_destroy)(struct crypto_alg *alg);
466 
467 	struct module *cra_module;
468 } CRYPTO_MINALIGN_ATTR;
469 
470 /*
471  * Algorithm registration interface.
472  */
473 int crypto_register_alg(struct crypto_alg *alg);
474 int crypto_unregister_alg(struct crypto_alg *alg);
475 int crypto_register_algs(struct crypto_alg *algs, int count);
476 int crypto_unregister_algs(struct crypto_alg *algs, int count);
477 
478 /*
479  * Algorithm query interface.
480  */
481 int crypto_has_alg(const char *name, u32 type, u32 mask);
482 
483 /*
484  * Transforms: user-instantiated objects which encapsulate algorithms
485  * and core processing logic.  Managed via crypto_alloc_*() and
486  * crypto_free_*(), as well as the various helpers below.
487  */
488 
489 struct ablkcipher_tfm {
490 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
491 	              unsigned int keylen);
492 	int (*encrypt)(struct ablkcipher_request *req);
493 	int (*decrypt)(struct ablkcipher_request *req);
494 
495 	struct crypto_ablkcipher *base;
496 
497 	unsigned int ivsize;
498 	unsigned int reqsize;
499 };
500 
501 struct blkcipher_tfm {
502 	void *iv;
503 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
504 		      unsigned int keylen);
505 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
506 		       struct scatterlist *src, unsigned int nbytes);
507 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
508 		       struct scatterlist *src, unsigned int nbytes);
509 };
510 
511 struct cipher_tfm {
512 	int (*cit_setkey)(struct crypto_tfm *tfm,
513 	                  const u8 *key, unsigned int keylen);
514 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
515 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
516 };
517 
518 struct compress_tfm {
519 	int (*cot_compress)(struct crypto_tfm *tfm,
520 	                    const u8 *src, unsigned int slen,
521 	                    u8 *dst, unsigned int *dlen);
522 	int (*cot_decompress)(struct crypto_tfm *tfm,
523 	                      const u8 *src, unsigned int slen,
524 	                      u8 *dst, unsigned int *dlen);
525 };
526 
527 #define crt_ablkcipher	crt_u.ablkcipher
528 #define crt_blkcipher	crt_u.blkcipher
529 #define crt_cipher	crt_u.cipher
530 #define crt_compress	crt_u.compress
531 
532 struct crypto_tfm {
533 
534 	u32 crt_flags;
535 
536 	union {
537 		struct ablkcipher_tfm ablkcipher;
538 		struct blkcipher_tfm blkcipher;
539 		struct cipher_tfm cipher;
540 		struct compress_tfm compress;
541 	} crt_u;
542 
543 	void (*exit)(struct crypto_tfm *tfm);
544 
545 	struct crypto_alg *__crt_alg;
546 
547 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
548 };
549 
550 struct crypto_ablkcipher {
551 	struct crypto_tfm base;
552 };
553 
554 struct crypto_blkcipher {
555 	struct crypto_tfm base;
556 };
557 
558 struct crypto_cipher {
559 	struct crypto_tfm base;
560 };
561 
562 struct crypto_comp {
563 	struct crypto_tfm base;
564 };
565 
566 enum {
567 	CRYPTOA_UNSPEC,
568 	CRYPTOA_ALG,
569 	CRYPTOA_TYPE,
570 	CRYPTOA_U32,
571 	__CRYPTOA_MAX,
572 };
573 
574 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
575 
576 /* Maximum number of (rtattr) parameters for each template. */
577 #define CRYPTO_MAX_ATTRS 32
578 
579 struct crypto_attr_alg {
580 	char name[CRYPTO_MAX_ALG_NAME];
581 };
582 
583 struct crypto_attr_type {
584 	u32 type;
585 	u32 mask;
586 };
587 
588 struct crypto_attr_u32 {
589 	u32 num;
590 };
591 
592 /*
593  * Transform user interface.
594  */
595 
596 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
597 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
598 
599 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
600 {
601 	return crypto_destroy_tfm(tfm, tfm);
602 }
603 
604 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
605 
606 /*
607  * Transform helpers which query the underlying algorithm.
608  */
609 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
610 {
611 	return tfm->__crt_alg->cra_name;
612 }
613 
614 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
615 {
616 	return tfm->__crt_alg->cra_driver_name;
617 }
618 
619 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
620 {
621 	return tfm->__crt_alg->cra_priority;
622 }
623 
624 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
625 {
626 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
627 }
628 
629 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
630 {
631 	return tfm->__crt_alg->cra_blocksize;
632 }
633 
634 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
635 {
636 	return tfm->__crt_alg->cra_alignmask;
637 }
638 
639 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
640 {
641 	return tfm->crt_flags;
642 }
643 
644 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
645 {
646 	tfm->crt_flags |= flags;
647 }
648 
649 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
650 {
651 	tfm->crt_flags &= ~flags;
652 }
653 
654 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
655 {
656 	return tfm->__crt_ctx;
657 }
658 
659 static inline unsigned int crypto_tfm_ctx_alignment(void)
660 {
661 	struct crypto_tfm *tfm;
662 	return __alignof__(tfm->__crt_ctx);
663 }
664 
665 /*
666  * API wrappers.
667  */
668 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
669 	struct crypto_tfm *tfm)
670 {
671 	return (struct crypto_ablkcipher *)tfm;
672 }
673 
674 static inline u32 crypto_skcipher_type(u32 type)
675 {
676 	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
677 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
678 	return type;
679 }
680 
681 static inline u32 crypto_skcipher_mask(u32 mask)
682 {
683 	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
684 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
685 	return mask;
686 }
687 
688 /**
689  * DOC: Asynchronous Block Cipher API
690  *
691  * Asynchronous block cipher API is used with the ciphers of type
692  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
693  *
694  * Asynchronous cipher operations imply that the function invocation for a
695  * cipher request returns immediately before the completion of the operation.
696  * The cipher request is scheduled as a separate kernel thread and therefore
697  * load-balanced on the different CPUs via the process scheduler. To allow
698  * the kernel crypto API to inform the caller about the completion of a cipher
699  * request, the caller must provide a callback function. That function is
700  * invoked with the cipher handle when the request completes.
701  *
702  * To support the asynchronous operation, additional information than just the
703  * cipher handle must be supplied to the kernel crypto API. That additional
704  * information is given by filling in the ablkcipher_request data structure.
705  *
706  * For the asynchronous block cipher API, the state is maintained with the tfm
707  * cipher handle. A single tfm can be used across multiple calls and in
708  * parallel. For asynchronous block cipher calls, context data supplied and
709  * only used by the caller can be referenced the request data structure in
710  * addition to the IV used for the cipher request. The maintenance of such
711  * state information would be important for a crypto driver implementer to
712  * have, because when calling the callback function upon completion of the
713  * cipher operation, that callback function may need some information about
714  * which operation just finished if it invoked multiple in parallel. This
715  * state information is unused by the kernel crypto API.
716  */
717 
718 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
719 	struct crypto_ablkcipher *tfm)
720 {
721 	return &tfm->base;
722 }
723 
724 /**
725  * crypto_free_ablkcipher() - zeroize and free cipher handle
726  * @tfm: cipher handle to be freed
727  */
728 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
729 {
730 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
731 }
732 
733 /**
734  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
735  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
736  *	      ablkcipher
737  * @type: specifies the type of the cipher
738  * @mask: specifies the mask for the cipher
739  *
740  * Return: true when the ablkcipher is known to the kernel crypto API; false
741  *	   otherwise
742  */
743 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
744 					u32 mask)
745 {
746 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
747 			      crypto_skcipher_mask(mask));
748 }
749 
750 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
751 	struct crypto_ablkcipher *tfm)
752 {
753 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
754 }
755 
756 /**
757  * crypto_ablkcipher_ivsize() - obtain IV size
758  * @tfm: cipher handle
759  *
760  * The size of the IV for the ablkcipher referenced by the cipher handle is
761  * returned. This IV size may be zero if the cipher does not need an IV.
762  *
763  * Return: IV size in bytes
764  */
765 static inline unsigned int crypto_ablkcipher_ivsize(
766 	struct crypto_ablkcipher *tfm)
767 {
768 	return crypto_ablkcipher_crt(tfm)->ivsize;
769 }
770 
771 /**
772  * crypto_ablkcipher_blocksize() - obtain block size of cipher
773  * @tfm: cipher handle
774  *
775  * The block size for the ablkcipher referenced with the cipher handle is
776  * returned. The caller may use that information to allocate appropriate
777  * memory for the data returned by the encryption or decryption operation
778  *
779  * Return: block size of cipher
780  */
781 static inline unsigned int crypto_ablkcipher_blocksize(
782 	struct crypto_ablkcipher *tfm)
783 {
784 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
785 }
786 
787 static inline unsigned int crypto_ablkcipher_alignmask(
788 	struct crypto_ablkcipher *tfm)
789 {
790 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
791 }
792 
793 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
794 {
795 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
796 }
797 
798 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
799 					       u32 flags)
800 {
801 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
802 }
803 
804 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
805 						 u32 flags)
806 {
807 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
808 }
809 
810 /**
811  * crypto_ablkcipher_setkey() - set key for cipher
812  * @tfm: cipher handle
813  * @key: buffer holding the key
814  * @keylen: length of the key in bytes
815  *
816  * The caller provided key is set for the ablkcipher referenced by the cipher
817  * handle.
818  *
819  * Note, the key length determines the cipher type. Many block ciphers implement
820  * different cipher modes depending on the key size, such as AES-128 vs AES-192
821  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
822  * is performed.
823  *
824  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
825  */
826 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
827 					   const u8 *key, unsigned int keylen)
828 {
829 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
830 
831 	return crt->setkey(crt->base, key, keylen);
832 }
833 
834 /**
835  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
836  * @req: ablkcipher_request out of which the cipher handle is to be obtained
837  *
838  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
839  * data structure.
840  *
841  * Return: crypto_ablkcipher handle
842  */
843 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
844 	struct ablkcipher_request *req)
845 {
846 	return __crypto_ablkcipher_cast(req->base.tfm);
847 }
848 
849 /**
850  * crypto_ablkcipher_encrypt() - encrypt plaintext
851  * @req: reference to the ablkcipher_request handle that holds all information
852  *	 needed to perform the cipher operation
853  *
854  * Encrypt plaintext data using the ablkcipher_request handle. That data
855  * structure and how it is filled with data is discussed with the
856  * ablkcipher_request_* functions.
857  *
858  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
859  */
860 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
861 {
862 	struct ablkcipher_tfm *crt =
863 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
864 	return crt->encrypt(req);
865 }
866 
867 /**
868  * crypto_ablkcipher_decrypt() - decrypt ciphertext
869  * @req: reference to the ablkcipher_request handle that holds all information
870  *	 needed to perform the cipher operation
871  *
872  * Decrypt ciphertext data using the ablkcipher_request handle. That data
873  * structure and how it is filled with data is discussed with the
874  * ablkcipher_request_* functions.
875  *
876  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
877  */
878 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
879 {
880 	struct ablkcipher_tfm *crt =
881 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
882 	return crt->decrypt(req);
883 }
884 
885 /**
886  * DOC: Asynchronous Cipher Request Handle
887  *
888  * The ablkcipher_request data structure contains all pointers to data
889  * required for the asynchronous cipher operation. This includes the cipher
890  * handle (which can be used by multiple ablkcipher_request instances), pointer
891  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
892  * as a handle to the ablkcipher_request_* API calls in a similar way as
893  * ablkcipher handle to the crypto_ablkcipher_* API calls.
894  */
895 
896 /**
897  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
898  * @tfm: cipher handle
899  *
900  * Return: number of bytes
901  */
902 static inline unsigned int crypto_ablkcipher_reqsize(
903 	struct crypto_ablkcipher *tfm)
904 {
905 	return crypto_ablkcipher_crt(tfm)->reqsize;
906 }
907 
908 /**
909  * ablkcipher_request_set_tfm() - update cipher handle reference in request
910  * @req: request handle to be modified
911  * @tfm: cipher handle that shall be added to the request handle
912  *
913  * Allow the caller to replace the existing ablkcipher handle in the request
914  * data structure with a different one.
915  */
916 static inline void ablkcipher_request_set_tfm(
917 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
918 {
919 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
920 }
921 
922 static inline struct ablkcipher_request *ablkcipher_request_cast(
923 	struct crypto_async_request *req)
924 {
925 	return container_of(req, struct ablkcipher_request, base);
926 }
927 
928 /**
929  * ablkcipher_request_alloc() - allocate request data structure
930  * @tfm: cipher handle to be registered with the request
931  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
932  *
933  * Allocate the request data structure that must be used with the ablkcipher
934  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
935  * handle is registered in the request data structure.
936  *
937  * Return: allocated request handle in case of success, or NULL if out of memory
938  */
939 static inline struct ablkcipher_request *ablkcipher_request_alloc(
940 	struct crypto_ablkcipher *tfm, gfp_t gfp)
941 {
942 	struct ablkcipher_request *req;
943 
944 	req = kmalloc(sizeof(struct ablkcipher_request) +
945 		      crypto_ablkcipher_reqsize(tfm), gfp);
946 
947 	if (likely(req))
948 		ablkcipher_request_set_tfm(req, tfm);
949 
950 	return req;
951 }
952 
953 /**
954  * ablkcipher_request_free() - zeroize and free request data structure
955  * @req: request data structure cipher handle to be freed
956  */
957 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
958 {
959 	kzfree(req);
960 }
961 
962 /**
963  * ablkcipher_request_set_callback() - set asynchronous callback function
964  * @req: request handle
965  * @flags: specify zero or an ORing of the flags
966  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
967  *	   increase the wait queue beyond the initial maximum size;
968  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
969  * @compl: callback function pointer to be registered with the request handle
970  * @data: The data pointer refers to memory that is not used by the kernel
971  *	  crypto API, but provided to the callback function for it to use. Here,
972  *	  the caller can provide a reference to memory the callback function can
973  *	  operate on. As the callback function is invoked asynchronously to the
974  *	  related functionality, it may need to access data structures of the
975  *	  related functionality which can be referenced using this pointer. The
976  *	  callback function can access the memory via the "data" field in the
977  *	  crypto_async_request data structure provided to the callback function.
978  *
979  * This function allows setting the callback function that is triggered once the
980  * cipher operation completes.
981  *
982  * The callback function is registered with the ablkcipher_request handle and
983  * must comply with the following template::
984  *
985  *	void callback_function(struct crypto_async_request *req, int error)
986  */
987 static inline void ablkcipher_request_set_callback(
988 	struct ablkcipher_request *req,
989 	u32 flags, crypto_completion_t compl, void *data)
990 {
991 	req->base.complete = compl;
992 	req->base.data = data;
993 	req->base.flags = flags;
994 }
995 
996 /**
997  * ablkcipher_request_set_crypt() - set data buffers
998  * @req: request handle
999  * @src: source scatter / gather list
1000  * @dst: destination scatter / gather list
1001  * @nbytes: number of bytes to process from @src
1002  * @iv: IV for the cipher operation which must comply with the IV size defined
1003  *      by crypto_ablkcipher_ivsize
1004  *
1005  * This function allows setting of the source data and destination data
1006  * scatter / gather lists.
1007  *
1008  * For encryption, the source is treated as the plaintext and the
1009  * destination is the ciphertext. For a decryption operation, the use is
1010  * reversed - the source is the ciphertext and the destination is the plaintext.
1011  */
1012 static inline void ablkcipher_request_set_crypt(
1013 	struct ablkcipher_request *req,
1014 	struct scatterlist *src, struct scatterlist *dst,
1015 	unsigned int nbytes, void *iv)
1016 {
1017 	req->src = src;
1018 	req->dst = dst;
1019 	req->nbytes = nbytes;
1020 	req->info = iv;
1021 }
1022 
1023 /**
1024  * DOC: Synchronous Block Cipher API
1025  *
1026  * The synchronous block cipher API is used with the ciphers of type
1027  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1028  *
1029  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1030  * used in multiple calls and in parallel, this info should not be changeable
1031  * (unless a lock is used). This applies, for example, to the symmetric key.
1032  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1033  * structure for synchronous blkcipher api. So, its the only state info that can
1034  * be kept for synchronous calls without using a big lock across a tfm.
1035  *
1036  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1037  * consisting of a template (a block chaining mode) and a single block cipher
1038  * primitive (e.g. AES).
1039  *
1040  * The plaintext data buffer and the ciphertext data buffer are pointed to
1041  * by using scatter/gather lists. The cipher operation is performed
1042  * on all segments of the provided scatter/gather lists.
1043  *
1044  * The kernel crypto API supports a cipher operation "in-place" which means that
1045  * the caller may provide the same scatter/gather list for the plaintext and
1046  * cipher text. After the completion of the cipher operation, the plaintext
1047  * data is replaced with the ciphertext data in case of an encryption and vice
1048  * versa for a decryption. The caller must ensure that the scatter/gather lists
1049  * for the output data point to sufficiently large buffers, i.e. multiples of
1050  * the block size of the cipher.
1051  */
1052 
1053 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1054 	struct crypto_tfm *tfm)
1055 {
1056 	return (struct crypto_blkcipher *)tfm;
1057 }
1058 
1059 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1060 	struct crypto_tfm *tfm)
1061 {
1062 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1063 	return __crypto_blkcipher_cast(tfm);
1064 }
1065 
1066 /**
1067  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1068  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1069  *	      blkcipher cipher
1070  * @type: specifies the type of the cipher
1071  * @mask: specifies the mask for the cipher
1072  *
1073  * Allocate a cipher handle for a block cipher. The returned struct
1074  * crypto_blkcipher is the cipher handle that is required for any subsequent
1075  * API invocation for that block cipher.
1076  *
1077  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1078  *	   of an error, PTR_ERR() returns the error code.
1079  */
1080 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1081 	const char *alg_name, u32 type, u32 mask)
1082 {
1083 	type &= ~CRYPTO_ALG_TYPE_MASK;
1084 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1085 	mask |= CRYPTO_ALG_TYPE_MASK;
1086 
1087 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1088 }
1089 
1090 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1091 	struct crypto_blkcipher *tfm)
1092 {
1093 	return &tfm->base;
1094 }
1095 
1096 /**
1097  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1098  * @tfm: cipher handle to be freed
1099  */
1100 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1101 {
1102 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1103 }
1104 
1105 /**
1106  * crypto_has_blkcipher() - Search for the availability of a block cipher
1107  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1108  *	      block cipher
1109  * @type: specifies the type of the cipher
1110  * @mask: specifies the mask for the cipher
1111  *
1112  * Return: true when the block cipher is known to the kernel crypto API; false
1113  *	   otherwise
1114  */
1115 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1116 {
1117 	type &= ~CRYPTO_ALG_TYPE_MASK;
1118 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1119 	mask |= CRYPTO_ALG_TYPE_MASK;
1120 
1121 	return crypto_has_alg(alg_name, type, mask);
1122 }
1123 
1124 /**
1125  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1126  * @tfm: cipher handle
1127  *
1128  * Return: The character string holding the name of the cipher
1129  */
1130 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1131 {
1132 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1133 }
1134 
1135 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1136 	struct crypto_blkcipher *tfm)
1137 {
1138 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1139 }
1140 
1141 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1142 	struct crypto_blkcipher *tfm)
1143 {
1144 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1145 }
1146 
1147 /**
1148  * crypto_blkcipher_ivsize() - obtain IV size
1149  * @tfm: cipher handle
1150  *
1151  * The size of the IV for the block cipher referenced by the cipher handle is
1152  * returned. This IV size may be zero if the cipher does not need an IV.
1153  *
1154  * Return: IV size in bytes
1155  */
1156 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1157 {
1158 	return crypto_blkcipher_alg(tfm)->ivsize;
1159 }
1160 
1161 /**
1162  * crypto_blkcipher_blocksize() - obtain block size of cipher
1163  * @tfm: cipher handle
1164  *
1165  * The block size for the block cipher referenced with the cipher handle is
1166  * returned. The caller may use that information to allocate appropriate
1167  * memory for the data returned by the encryption or decryption operation.
1168  *
1169  * Return: block size of cipher
1170  */
1171 static inline unsigned int crypto_blkcipher_blocksize(
1172 	struct crypto_blkcipher *tfm)
1173 {
1174 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1175 }
1176 
1177 static inline unsigned int crypto_blkcipher_alignmask(
1178 	struct crypto_blkcipher *tfm)
1179 {
1180 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1181 }
1182 
1183 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1184 {
1185 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1186 }
1187 
1188 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1189 					      u32 flags)
1190 {
1191 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1192 }
1193 
1194 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1195 						u32 flags)
1196 {
1197 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1198 }
1199 
1200 /**
1201  * crypto_blkcipher_setkey() - set key for cipher
1202  * @tfm: cipher handle
1203  * @key: buffer holding the key
1204  * @keylen: length of the key in bytes
1205  *
1206  * The caller provided key is set for the block cipher referenced by the cipher
1207  * handle.
1208  *
1209  * Note, the key length determines the cipher type. Many block ciphers implement
1210  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1211  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1212  * is performed.
1213  *
1214  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1215  */
1216 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1217 					  const u8 *key, unsigned int keylen)
1218 {
1219 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1220 						 key, keylen);
1221 }
1222 
1223 /**
1224  * crypto_blkcipher_encrypt() - encrypt plaintext
1225  * @desc: reference to the block cipher handle with meta data
1226  * @dst: scatter/gather list that is filled by the cipher operation with the
1227  *	ciphertext
1228  * @src: scatter/gather list that holds the plaintext
1229  * @nbytes: number of bytes of the plaintext to encrypt.
1230  *
1231  * Encrypt plaintext data using the IV set by the caller with a preceding
1232  * call of crypto_blkcipher_set_iv.
1233  *
1234  * The blkcipher_desc data structure must be filled by the caller and can
1235  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1236  * with the block cipher handle; desc.flags is filled with either
1237  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1238  *
1239  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1240  */
1241 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1242 					   struct scatterlist *dst,
1243 					   struct scatterlist *src,
1244 					   unsigned int nbytes)
1245 {
1246 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1247 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1248 }
1249 
1250 /**
1251  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1252  * @desc: reference to the block cipher handle with meta data
1253  * @dst: scatter/gather list that is filled by the cipher operation with the
1254  *	ciphertext
1255  * @src: scatter/gather list that holds the plaintext
1256  * @nbytes: number of bytes of the plaintext to encrypt.
1257  *
1258  * Encrypt plaintext data with the use of an IV that is solely used for this
1259  * cipher operation. Any previously set IV is not used.
1260  *
1261  * The blkcipher_desc data structure must be filled by the caller and can
1262  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1263  * with the block cipher handle; desc.info is filled with the IV to be used for
1264  * the current operation; desc.flags is filled with either
1265  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1266  *
1267  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1268  */
1269 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1270 					      struct scatterlist *dst,
1271 					      struct scatterlist *src,
1272 					      unsigned int nbytes)
1273 {
1274 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1275 }
1276 
1277 /**
1278  * crypto_blkcipher_decrypt() - decrypt ciphertext
1279  * @desc: reference to the block cipher handle with meta data
1280  * @dst: scatter/gather list that is filled by the cipher operation with the
1281  *	plaintext
1282  * @src: scatter/gather list that holds the ciphertext
1283  * @nbytes: number of bytes of the ciphertext to decrypt.
1284  *
1285  * Decrypt ciphertext data using the IV set by the caller with a preceding
1286  * call of crypto_blkcipher_set_iv.
1287  *
1288  * The blkcipher_desc data structure must be filled by the caller as documented
1289  * for the crypto_blkcipher_encrypt call above.
1290  *
1291  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1292  *
1293  */
1294 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1295 					   struct scatterlist *dst,
1296 					   struct scatterlist *src,
1297 					   unsigned int nbytes)
1298 {
1299 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1300 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1301 }
1302 
1303 /**
1304  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1305  * @desc: reference to the block cipher handle with meta data
1306  * @dst: scatter/gather list that is filled by the cipher operation with the
1307  *	plaintext
1308  * @src: scatter/gather list that holds the ciphertext
1309  * @nbytes: number of bytes of the ciphertext to decrypt.
1310  *
1311  * Decrypt ciphertext data with the use of an IV that is solely used for this
1312  * cipher operation. Any previously set IV is not used.
1313  *
1314  * The blkcipher_desc data structure must be filled by the caller as documented
1315  * for the crypto_blkcipher_encrypt_iv call above.
1316  *
1317  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1318  */
1319 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1320 					      struct scatterlist *dst,
1321 					      struct scatterlist *src,
1322 					      unsigned int nbytes)
1323 {
1324 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1325 }
1326 
1327 /**
1328  * crypto_blkcipher_set_iv() - set IV for cipher
1329  * @tfm: cipher handle
1330  * @src: buffer holding the IV
1331  * @len: length of the IV in bytes
1332  *
1333  * The caller provided IV is set for the block cipher referenced by the cipher
1334  * handle.
1335  */
1336 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1337 					   const u8 *src, unsigned int len)
1338 {
1339 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1340 }
1341 
1342 /**
1343  * crypto_blkcipher_get_iv() - obtain IV from cipher
1344  * @tfm: cipher handle
1345  * @dst: buffer filled with the IV
1346  * @len: length of the buffer dst
1347  *
1348  * The caller can obtain the IV set for the block cipher referenced by the
1349  * cipher handle and store it into the user-provided buffer. If the buffer
1350  * has an insufficient space, the IV is truncated to fit the buffer.
1351  */
1352 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1353 					   u8 *dst, unsigned int len)
1354 {
1355 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1356 }
1357 
1358 /**
1359  * DOC: Single Block Cipher API
1360  *
1361  * The single block cipher API is used with the ciphers of type
1362  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1363  *
1364  * Using the single block cipher API calls, operations with the basic cipher
1365  * primitive can be implemented. These cipher primitives exclude any block
1366  * chaining operations including IV handling.
1367  *
1368  * The purpose of this single block cipher API is to support the implementation
1369  * of templates or other concepts that only need to perform the cipher operation
1370  * on one block at a time. Templates invoke the underlying cipher primitive
1371  * block-wise and process either the input or the output data of these cipher
1372  * operations.
1373  */
1374 
1375 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1376 {
1377 	return (struct crypto_cipher *)tfm;
1378 }
1379 
1380 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1381 {
1382 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1383 	return __crypto_cipher_cast(tfm);
1384 }
1385 
1386 /**
1387  * crypto_alloc_cipher() - allocate single block cipher handle
1388  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1389  *	     single block cipher
1390  * @type: specifies the type of the cipher
1391  * @mask: specifies the mask for the cipher
1392  *
1393  * Allocate a cipher handle for a single block cipher. The returned struct
1394  * crypto_cipher is the cipher handle that is required for any subsequent API
1395  * invocation for that single block cipher.
1396  *
1397  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1398  *	   of an error, PTR_ERR() returns the error code.
1399  */
1400 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1401 							u32 type, u32 mask)
1402 {
1403 	type &= ~CRYPTO_ALG_TYPE_MASK;
1404 	type |= CRYPTO_ALG_TYPE_CIPHER;
1405 	mask |= CRYPTO_ALG_TYPE_MASK;
1406 
1407 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1408 }
1409 
1410 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1411 {
1412 	return &tfm->base;
1413 }
1414 
1415 /**
1416  * crypto_free_cipher() - zeroize and free the single block cipher handle
1417  * @tfm: cipher handle to be freed
1418  */
1419 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1420 {
1421 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1422 }
1423 
1424 /**
1425  * crypto_has_cipher() - Search for the availability of a single block cipher
1426  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1427  *	     single block cipher
1428  * @type: specifies the type of the cipher
1429  * @mask: specifies the mask for the cipher
1430  *
1431  * Return: true when the single block cipher is known to the kernel crypto API;
1432  *	   false otherwise
1433  */
1434 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1435 {
1436 	type &= ~CRYPTO_ALG_TYPE_MASK;
1437 	type |= CRYPTO_ALG_TYPE_CIPHER;
1438 	mask |= CRYPTO_ALG_TYPE_MASK;
1439 
1440 	return crypto_has_alg(alg_name, type, mask);
1441 }
1442 
1443 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1444 {
1445 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1446 }
1447 
1448 /**
1449  * crypto_cipher_blocksize() - obtain block size for cipher
1450  * @tfm: cipher handle
1451  *
1452  * The block size for the single block cipher referenced with the cipher handle
1453  * tfm is returned. The caller may use that information to allocate appropriate
1454  * memory for the data returned by the encryption or decryption operation
1455  *
1456  * Return: block size of cipher
1457  */
1458 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1459 {
1460 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1461 }
1462 
1463 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1464 {
1465 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1466 }
1467 
1468 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1469 {
1470 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1471 }
1472 
1473 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1474 					   u32 flags)
1475 {
1476 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1477 }
1478 
1479 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1480 					     u32 flags)
1481 {
1482 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1483 }
1484 
1485 /**
1486  * crypto_cipher_setkey() - set key for cipher
1487  * @tfm: cipher handle
1488  * @key: buffer holding the key
1489  * @keylen: length of the key in bytes
1490  *
1491  * The caller provided key is set for the single block cipher referenced by the
1492  * cipher handle.
1493  *
1494  * Note, the key length determines the cipher type. Many block ciphers implement
1495  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1496  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1497  * is performed.
1498  *
1499  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1500  */
1501 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1502                                        const u8 *key, unsigned int keylen)
1503 {
1504 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1505 						  key, keylen);
1506 }
1507 
1508 /**
1509  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1510  * @tfm: cipher handle
1511  * @dst: points to the buffer that will be filled with the ciphertext
1512  * @src: buffer holding the plaintext to be encrypted
1513  *
1514  * Invoke the encryption operation of one block. The caller must ensure that
1515  * the plaintext and ciphertext buffers are at least one block in size.
1516  */
1517 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1518 					     u8 *dst, const u8 *src)
1519 {
1520 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1521 						dst, src);
1522 }
1523 
1524 /**
1525  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1526  * @tfm: cipher handle
1527  * @dst: points to the buffer that will be filled with the plaintext
1528  * @src: buffer holding the ciphertext to be decrypted
1529  *
1530  * Invoke the decryption operation of one block. The caller must ensure that
1531  * the plaintext and ciphertext buffers are at least one block in size.
1532  */
1533 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1534 					     u8 *dst, const u8 *src)
1535 {
1536 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1537 						dst, src);
1538 }
1539 
1540 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1541 {
1542 	return (struct crypto_comp *)tfm;
1543 }
1544 
1545 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1546 {
1547 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1548 	       CRYPTO_ALG_TYPE_MASK);
1549 	return __crypto_comp_cast(tfm);
1550 }
1551 
1552 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1553 						    u32 type, u32 mask)
1554 {
1555 	type &= ~CRYPTO_ALG_TYPE_MASK;
1556 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1557 	mask |= CRYPTO_ALG_TYPE_MASK;
1558 
1559 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1560 }
1561 
1562 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1563 {
1564 	return &tfm->base;
1565 }
1566 
1567 static inline void crypto_free_comp(struct crypto_comp *tfm)
1568 {
1569 	crypto_free_tfm(crypto_comp_tfm(tfm));
1570 }
1571 
1572 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1573 {
1574 	type &= ~CRYPTO_ALG_TYPE_MASK;
1575 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1576 	mask |= CRYPTO_ALG_TYPE_MASK;
1577 
1578 	return crypto_has_alg(alg_name, type, mask);
1579 }
1580 
1581 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1582 {
1583 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1584 }
1585 
1586 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1587 {
1588 	return &crypto_comp_tfm(tfm)->crt_compress;
1589 }
1590 
1591 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1592                                        const u8 *src, unsigned int slen,
1593                                        u8 *dst, unsigned int *dlen)
1594 {
1595 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1596 						  src, slen, dst, dlen);
1597 }
1598 
1599 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1600                                          const u8 *src, unsigned int slen,
1601                                          u8 *dst, unsigned int *dlen)
1602 {
1603 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1604 						    src, slen, dst, dlen);
1605 }
1606 
1607 #endif	/* _LINUX_CRYPTO_H */
1608 
1609