xref: /linux-6.15/include/linux/crypto.h (revision bbaf1ff0)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Scatterlist Cryptographic API.
4  *
5  * Copyright (c) 2002 James Morris <[email protected]>
6  * Copyright (c) 2002 David S. Miller ([email protected])
7  * Copyright (c) 2005 Herbert Xu <[email protected]>
8  *
9  * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
10  * and Nettle, by Niels Möller.
11  */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14 
15 #include <linux/completion.h>
16 #include <linux/refcount.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 
20 /*
21  * Algorithm masks and types.
22  */
23 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
24 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
25 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
26 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
27 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
28 #define CRYPTO_ALG_TYPE_KPP		0x00000008
29 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
30 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
31 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
32 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
33 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
34 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
35 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
36 
37 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
38 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
39 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
40 
41 #define CRYPTO_ALG_LARVAL		0x00000010
42 #define CRYPTO_ALG_DEAD			0x00000020
43 #define CRYPTO_ALG_DYING		0x00000040
44 #define CRYPTO_ALG_ASYNC		0x00000080
45 
46 /*
47  * Set if the algorithm (or an algorithm which it uses) requires another
48  * algorithm of the same type to handle corner cases.
49  */
50 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
51 
52 /*
53  * Set if the algorithm has passed automated run-time testing.  Note that
54  * if there is no run-time testing for a given algorithm it is considered
55  * to have passed.
56  */
57 
58 #define CRYPTO_ALG_TESTED		0x00000400
59 
60 /*
61  * Set if the algorithm is an instance that is built from templates.
62  */
63 #define CRYPTO_ALG_INSTANCE		0x00000800
64 
65 /* Set this bit if the algorithm provided is hardware accelerated but
66  * not available to userspace via instruction set or so.
67  */
68 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
69 
70 /*
71  * Mark a cipher as a service implementation only usable by another
72  * cipher and never by a normal user of the kernel crypto API
73  */
74 #define CRYPTO_ALG_INTERNAL		0x00002000
75 
76 /*
77  * Set if the algorithm has a ->setkey() method but can be used without
78  * calling it first, i.e. there is a default key.
79  */
80 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
81 
82 /*
83  * Don't trigger module loading
84  */
85 #define CRYPTO_NOLOAD			0x00008000
86 
87 /*
88  * The algorithm may allocate memory during request processing, i.e. during
89  * encryption, decryption, or hashing.  Users can request an algorithm with this
90  * flag unset if they can't handle memory allocation failures.
91  *
92  * This flag is currently only implemented for algorithms of type "skcipher",
93  * "aead", "ahash", "shash", and "cipher".  Algorithms of other types might not
94  * have this flag set even if they allocate memory.
95  *
96  * In some edge cases, algorithms can allocate memory regardless of this flag.
97  * To avoid these cases, users must obey the following usage constraints:
98  *    skcipher:
99  *	- The IV buffer and all scatterlist elements must be aligned to the
100  *	  algorithm's alignmask.
101  *	- If the data were to be divided into chunks of size
102  *	  crypto_skcipher_walksize() (with any remainder going at the end), no
103  *	  chunk can cross a page boundary or a scatterlist element boundary.
104  *    aead:
105  *	- The IV buffer and all scatterlist elements must be aligned to the
106  *	  algorithm's alignmask.
107  *	- The first scatterlist element must contain all the associated data,
108  *	  and its pages must be !PageHighMem.
109  *	- If the plaintext/ciphertext were to be divided into chunks of size
110  *	  crypto_aead_walksize() (with the remainder going at the end), no chunk
111  *	  can cross a page boundary or a scatterlist element boundary.
112  *    ahash:
113  *	- The result buffer must be aligned to the algorithm's alignmask.
114  *	- crypto_ahash_finup() must not be used unless the algorithm implements
115  *	  ->finup() natively.
116  */
117 #define CRYPTO_ALG_ALLOCATES_MEMORY	0x00010000
118 
119 /*
120  * Mark an algorithm as a service implementation only usable by a
121  * template and never by a normal user of the kernel crypto API.
122  * This is intended to be used by algorithms that are themselves
123  * not FIPS-approved but may instead be used to implement parts of
124  * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)).
125  */
126 #define CRYPTO_ALG_FIPS_INTERNAL	0x00020000
127 
128 /*
129  * Transform masks and values (for crt_flags).
130  */
131 #define CRYPTO_TFM_NEED_KEY		0x00000001
132 
133 #define CRYPTO_TFM_REQ_MASK		0x000fff00
134 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100
135 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
136 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
137 
138 /*
139  * Miscellaneous stuff.
140  */
141 #define CRYPTO_MAX_ALG_NAME		128
142 
143 /*
144  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
145  * declaration) is used to ensure that the crypto_tfm context structure is
146  * aligned correctly for the given architecture so that there are no alignment
147  * faults for C data types.  On architectures that support non-cache coherent
148  * DMA, such as ARM or arm64, it also takes into account the minimal alignment
149  * that is required to ensure that the context struct member does not share any
150  * cachelines with the rest of the struct. This is needed to ensure that cache
151  * maintenance for non-coherent DMA (cache invalidation in particular) does not
152  * affect data that may be accessed by the CPU concurrently.
153  */
154 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
155 
156 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
157 
158 struct crypto_tfm;
159 struct crypto_type;
160 struct module;
161 
162 typedef void (*crypto_completion_t)(void *req, int err);
163 
164 /**
165  * DOC: Block Cipher Context Data Structures
166  *
167  * These data structures define the operating context for each block cipher
168  * type.
169  */
170 
171 struct crypto_async_request {
172 	struct list_head list;
173 	crypto_completion_t complete;
174 	void *data;
175 	struct crypto_tfm *tfm;
176 
177 	u32 flags;
178 };
179 
180 /**
181  * DOC: Block Cipher Algorithm Definitions
182  *
183  * These data structures define modular crypto algorithm implementations,
184  * managed via crypto_register_alg() and crypto_unregister_alg().
185  */
186 
187 /**
188  * struct cipher_alg - single-block symmetric ciphers definition
189  * @cia_min_keysize: Minimum key size supported by the transformation. This is
190  *		     the smallest key length supported by this transformation
191  *		     algorithm. This must be set to one of the pre-defined
192  *		     values as this is not hardware specific. Possible values
193  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
194  *		     include/crypto/
195  * @cia_max_keysize: Maximum key size supported by the transformation. This is
196  *		    the largest key length supported by this transformation
197  *		    algorithm. This must be set to one of the pre-defined values
198  *		    as this is not hardware specific. Possible values for this
199  *		    field can be found via git grep "_MAX_KEY_SIZE"
200  *		    include/crypto/
201  * @cia_setkey: Set key for the transformation. This function is used to either
202  *	        program a supplied key into the hardware or store the key in the
203  *	        transformation context for programming it later. Note that this
204  *	        function does modify the transformation context. This function
205  *	        can be called multiple times during the existence of the
206  *	        transformation object, so one must make sure the key is properly
207  *	        reprogrammed into the hardware. This function is also
208  *	        responsible for checking the key length for validity.
209  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
210  *		 single block of data, which must be @cra_blocksize big. This
211  *		 always operates on a full @cra_blocksize and it is not possible
212  *		 to encrypt a block of smaller size. The supplied buffers must
213  *		 therefore also be at least of @cra_blocksize size. Both the
214  *		 input and output buffers are always aligned to @cra_alignmask.
215  *		 In case either of the input or output buffer supplied by user
216  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
217  *		 API will re-align the buffers. The re-alignment means that a
218  *		 new buffer will be allocated, the data will be copied into the
219  *		 new buffer, then the processing will happen on the new buffer,
220  *		 then the data will be copied back into the original buffer and
221  *		 finally the new buffer will be freed. In case a software
222  *		 fallback was put in place in the @cra_init call, this function
223  *		 might need to use the fallback if the algorithm doesn't support
224  *		 all of the key sizes. In case the key was stored in
225  *		 transformation context, the key might need to be re-programmed
226  *		 into the hardware in this function. This function shall not
227  *		 modify the transformation context, as this function may be
228  *		 called in parallel with the same transformation object.
229  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
230  *		 @cia_encrypt, and the conditions are exactly the same.
231  *
232  * All fields are mandatory and must be filled.
233  */
234 struct cipher_alg {
235 	unsigned int cia_min_keysize;
236 	unsigned int cia_max_keysize;
237 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
238 	                  unsigned int keylen);
239 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
240 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
241 };
242 
243 /**
244  * struct compress_alg - compression/decompression algorithm
245  * @coa_compress: Compress a buffer of specified length, storing the resulting
246  *		  data in the specified buffer. Return the length of the
247  *		  compressed data in dlen.
248  * @coa_decompress: Decompress the source buffer, storing the uncompressed
249  *		    data in the specified buffer. The length of the data is
250  *		    returned in dlen.
251  *
252  * All fields are mandatory.
253  */
254 struct compress_alg {
255 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
256 			    unsigned int slen, u8 *dst, unsigned int *dlen);
257 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
258 			      unsigned int slen, u8 *dst, unsigned int *dlen);
259 };
260 
261 #define cra_cipher	cra_u.cipher
262 #define cra_compress	cra_u.compress
263 
264 /**
265  * struct crypto_alg - definition of a cryptograpic cipher algorithm
266  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
267  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
268  *	       used for fine-tuning the description of the transformation
269  *	       algorithm.
270  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
271  *		   of the smallest possible unit which can be transformed with
272  *		   this algorithm. The users must respect this value.
273  *		   In case of HASH transformation, it is possible for a smaller
274  *		   block than @cra_blocksize to be passed to the crypto API for
275  *		   transformation, in case of any other transformation type, an
276  * 		   error will be returned upon any attempt to transform smaller
277  *		   than @cra_blocksize chunks.
278  * @cra_ctxsize: Size of the operational context of the transformation. This
279  *		 value informs the kernel crypto API about the memory size
280  *		 needed to be allocated for the transformation context.
281  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
282  *		   buffer containing the input data for the algorithm must be
283  *		   aligned to this alignment mask. The data buffer for the
284  *		   output data must be aligned to this alignment mask. Note that
285  *		   the Crypto API will do the re-alignment in software, but
286  *		   only under special conditions and there is a performance hit.
287  *		   The re-alignment happens at these occasions for different
288  *		   @cra_u types: cipher -- For both input data and output data
289  *		   buffer; ahash -- For output hash destination buf; shash --
290  *		   For output hash destination buf.
291  *		   This is needed on hardware which is flawed by design and
292  *		   cannot pick data from arbitrary addresses.
293  * @cra_priority: Priority of this transformation implementation. In case
294  *		  multiple transformations with same @cra_name are available to
295  *		  the Crypto API, the kernel will use the one with highest
296  *		  @cra_priority.
297  * @cra_name: Generic name (usable by multiple implementations) of the
298  *	      transformation algorithm. This is the name of the transformation
299  *	      itself. This field is used by the kernel when looking up the
300  *	      providers of particular transformation.
301  * @cra_driver_name: Unique name of the transformation provider. This is the
302  *		     name of the provider of the transformation. This can be any
303  *		     arbitrary value, but in the usual case, this contains the
304  *		     name of the chip or provider and the name of the
305  *		     transformation algorithm.
306  * @cra_type: Type of the cryptographic transformation. This is a pointer to
307  *	      struct crypto_type, which implements callbacks common for all
308  *	      transformation types. There are multiple options, such as
309  *	      &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
310  *	      This field might be empty. In that case, there are no common
311  *	      callbacks. This is the case for: cipher, compress, shash.
312  * @cra_u: Callbacks implementing the transformation. This is a union of
313  *	   multiple structures. Depending on the type of transformation selected
314  *	   by @cra_type and @cra_flags above, the associated structure must be
315  *	   filled with callbacks. This field might be empty. This is the case
316  *	   for ahash, shash.
317  * @cra_init: Initialize the cryptographic transformation object. This function
318  *	      is used to initialize the cryptographic transformation object.
319  *	      This function is called only once at the instantiation time, right
320  *	      after the transformation context was allocated. In case the
321  *	      cryptographic hardware has some special requirements which need to
322  *	      be handled by software, this function shall check for the precise
323  *	      requirement of the transformation and put any software fallbacks
324  *	      in place.
325  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
326  *	      counterpart to @cra_init, used to remove various changes set in
327  *	      @cra_init.
328  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
329  *		  definition. See @struct @cipher_alg.
330  * @cra_u.compress: Union member which contains a (de)compression algorithm.
331  *		    See @struct @compress_alg.
332  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
333  * @cra_list: internally used
334  * @cra_users: internally used
335  * @cra_refcnt: internally used
336  * @cra_destroy: internally used
337  *
338  * The struct crypto_alg describes a generic Crypto API algorithm and is common
339  * for all of the transformations. Any variable not documented here shall not
340  * be used by a cipher implementation as it is internal to the Crypto API.
341  */
342 struct crypto_alg {
343 	struct list_head cra_list;
344 	struct list_head cra_users;
345 
346 	u32 cra_flags;
347 	unsigned int cra_blocksize;
348 	unsigned int cra_ctxsize;
349 	unsigned int cra_alignmask;
350 
351 	int cra_priority;
352 	refcount_t cra_refcnt;
353 
354 	char cra_name[CRYPTO_MAX_ALG_NAME];
355 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
356 
357 	const struct crypto_type *cra_type;
358 
359 	union {
360 		struct cipher_alg cipher;
361 		struct compress_alg compress;
362 	} cra_u;
363 
364 	int (*cra_init)(struct crypto_tfm *tfm);
365 	void (*cra_exit)(struct crypto_tfm *tfm);
366 	void (*cra_destroy)(struct crypto_alg *alg);
367 
368 	struct module *cra_module;
369 } CRYPTO_MINALIGN_ATTR;
370 
371 /*
372  * A helper struct for waiting for completion of async crypto ops
373  */
374 struct crypto_wait {
375 	struct completion completion;
376 	int err;
377 };
378 
379 /*
380  * Macro for declaring a crypto op async wait object on stack
381  */
382 #define DECLARE_CRYPTO_WAIT(_wait) \
383 	struct crypto_wait _wait = { \
384 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
385 
386 /*
387  * Async ops completion helper functioons
388  */
389 void crypto_req_done(void *req, int err);
390 
391 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
392 {
393 	switch (err) {
394 	case -EINPROGRESS:
395 	case -EBUSY:
396 		wait_for_completion(&wait->completion);
397 		reinit_completion(&wait->completion);
398 		err = wait->err;
399 		break;
400 	}
401 
402 	return err;
403 }
404 
405 static inline void crypto_init_wait(struct crypto_wait *wait)
406 {
407 	init_completion(&wait->completion);
408 }
409 
410 /*
411  * Algorithm query interface.
412  */
413 int crypto_has_alg(const char *name, u32 type, u32 mask);
414 
415 /*
416  * Transforms: user-instantiated objects which encapsulate algorithms
417  * and core processing logic.  Managed via crypto_alloc_*() and
418  * crypto_free_*(), as well as the various helpers below.
419  */
420 
421 struct crypto_tfm {
422 	refcount_t refcnt;
423 
424 	u32 crt_flags;
425 
426 	int node;
427 
428 	void (*exit)(struct crypto_tfm *tfm);
429 
430 	struct crypto_alg *__crt_alg;
431 
432 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
433 };
434 
435 struct crypto_comp {
436 	struct crypto_tfm base;
437 };
438 
439 /*
440  * Transform user interface.
441  */
442 
443 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
444 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
445 
446 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
447 {
448 	return crypto_destroy_tfm(tfm, tfm);
449 }
450 
451 /*
452  * Transform helpers which query the underlying algorithm.
453  */
454 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
455 {
456 	return tfm->__crt_alg->cra_name;
457 }
458 
459 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
460 {
461 	return tfm->__crt_alg->cra_driver_name;
462 }
463 
464 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
465 {
466 	return tfm->__crt_alg->cra_blocksize;
467 }
468 
469 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
470 {
471 	return tfm->__crt_alg->cra_alignmask;
472 }
473 
474 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
475 {
476 	return tfm->crt_flags;
477 }
478 
479 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
480 {
481 	tfm->crt_flags |= flags;
482 }
483 
484 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
485 {
486 	tfm->crt_flags &= ~flags;
487 }
488 
489 static inline unsigned int crypto_tfm_ctx_alignment(void)
490 {
491 	struct crypto_tfm *tfm;
492 	return __alignof__(tfm->__crt_ctx);
493 }
494 
495 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
496 {
497 	return (struct crypto_comp *)tfm;
498 }
499 
500 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
501 						    u32 type, u32 mask)
502 {
503 	type &= ~CRYPTO_ALG_TYPE_MASK;
504 	type |= CRYPTO_ALG_TYPE_COMPRESS;
505 	mask |= CRYPTO_ALG_TYPE_MASK;
506 
507 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
508 }
509 
510 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
511 {
512 	return &tfm->base;
513 }
514 
515 static inline void crypto_free_comp(struct crypto_comp *tfm)
516 {
517 	crypto_free_tfm(crypto_comp_tfm(tfm));
518 }
519 
520 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
521 {
522 	type &= ~CRYPTO_ALG_TYPE_MASK;
523 	type |= CRYPTO_ALG_TYPE_COMPRESS;
524 	mask |= CRYPTO_ALG_TYPE_MASK;
525 
526 	return crypto_has_alg(alg_name, type, mask);
527 }
528 
529 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
530 {
531 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
532 }
533 
534 int crypto_comp_compress(struct crypto_comp *tfm,
535 			 const u8 *src, unsigned int slen,
536 			 u8 *dst, unsigned int *dlen);
537 
538 int crypto_comp_decompress(struct crypto_comp *tfm,
539 			   const u8 *src, unsigned int slen,
540 			   u8 *dst, unsigned int *dlen);
541 
542 #endif	/* _LINUX_CRYPTO_H */
543 
544