1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Scatterlist Cryptographic API. 4 * 5 * Copyright (c) 2002 James Morris <[email protected]> 6 * Copyright (c) 2002 David S. Miller ([email protected]) 7 * Copyright (c) 2005 Herbert Xu <[email protected]> 8 * 9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]> 10 * and Nettle, by Niels Möller. 11 */ 12 #ifndef _LINUX_CRYPTO_H 13 #define _LINUX_CRYPTO_H 14 15 #include <linux/atomic.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/bug.h> 19 #include <linux/slab.h> 20 #include <linux/string.h> 21 #include <linux/uaccess.h> 22 #include <linux/completion.h> 23 24 /* 25 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 26 * arbitrary modules to be loaded. Loading from userspace may still need the 27 * unprefixed names, so retains those aliases as well. 28 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 29 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 30 * expands twice on the same line. Instead, use a separate base name for the 31 * alias. 32 */ 33 #define MODULE_ALIAS_CRYPTO(name) \ 34 __MODULE_INFO(alias, alias_userspace, name); \ 35 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 36 37 /* 38 * Algorithm masks and types. 39 */ 40 #define CRYPTO_ALG_TYPE_MASK 0x0000000f 41 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 42 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 43 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 44 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 45 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 46 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 47 #define CRYPTO_ALG_TYPE_KPP 0x00000008 48 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 49 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 50 #define CRYPTO_ALG_TYPE_RNG 0x0000000c 51 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 52 #define CRYPTO_ALG_TYPE_HASH 0x0000000e 53 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e 54 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f 55 56 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 57 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 58 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c 59 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 60 61 #define CRYPTO_ALG_LARVAL 0x00000010 62 #define CRYPTO_ALG_DEAD 0x00000020 63 #define CRYPTO_ALG_DYING 0x00000040 64 #define CRYPTO_ALG_ASYNC 0x00000080 65 66 /* 67 * Set this bit if and only if the algorithm requires another algorithm of 68 * the same type to handle corner cases. 69 */ 70 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 71 72 /* 73 * Set if the algorithm has passed automated run-time testing. Note that 74 * if there is no run-time testing for a given algorithm it is considered 75 * to have passed. 76 */ 77 78 #define CRYPTO_ALG_TESTED 0x00000400 79 80 /* 81 * Set if the algorithm is an instance that is built from templates. 82 */ 83 #define CRYPTO_ALG_INSTANCE 0x00000800 84 85 /* Set this bit if the algorithm provided is hardware accelerated but 86 * not available to userspace via instruction set or so. 87 */ 88 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 89 90 /* 91 * Mark a cipher as a service implementation only usable by another 92 * cipher and never by a normal user of the kernel crypto API 93 */ 94 #define CRYPTO_ALG_INTERNAL 0x00002000 95 96 /* 97 * Set if the algorithm has a ->setkey() method but can be used without 98 * calling it first, i.e. there is a default key. 99 */ 100 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 101 102 /* 103 * Don't trigger module loading 104 */ 105 #define CRYPTO_NOLOAD 0x00008000 106 107 /* 108 * Transform masks and values (for crt_flags). 109 */ 110 #define CRYPTO_TFM_NEED_KEY 0x00000001 111 112 #define CRYPTO_TFM_REQ_MASK 0x000fff00 113 #define CRYPTO_TFM_RES_MASK 0xfff00000 114 115 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 116 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 117 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 118 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 119 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 120 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 121 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 122 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 123 124 /* 125 * Miscellaneous stuff. 126 */ 127 #define CRYPTO_MAX_ALG_NAME 128 128 129 /* 130 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 131 * declaration) is used to ensure that the crypto_tfm context structure is 132 * aligned correctly for the given architecture so that there are no alignment 133 * faults for C data types. In particular, this is required on platforms such 134 * as arm where pointers are 32-bit aligned but there are data types such as 135 * u64 which require 64-bit alignment. 136 */ 137 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 138 139 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 140 141 struct scatterlist; 142 struct crypto_ablkcipher; 143 struct crypto_async_request; 144 struct crypto_blkcipher; 145 struct crypto_tfm; 146 struct crypto_type; 147 148 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 149 150 /** 151 * DOC: Block Cipher Context Data Structures 152 * 153 * These data structures define the operating context for each block cipher 154 * type. 155 */ 156 157 struct crypto_async_request { 158 struct list_head list; 159 crypto_completion_t complete; 160 void *data; 161 struct crypto_tfm *tfm; 162 163 u32 flags; 164 }; 165 166 struct ablkcipher_request { 167 struct crypto_async_request base; 168 169 unsigned int nbytes; 170 171 void *info; 172 173 struct scatterlist *src; 174 struct scatterlist *dst; 175 176 void *__ctx[] CRYPTO_MINALIGN_ATTR; 177 }; 178 179 struct blkcipher_desc { 180 struct crypto_blkcipher *tfm; 181 void *info; 182 u32 flags; 183 }; 184 185 /** 186 * DOC: Block Cipher Algorithm Definitions 187 * 188 * These data structures define modular crypto algorithm implementations, 189 * managed via crypto_register_alg() and crypto_unregister_alg(). 190 */ 191 192 /** 193 * struct ablkcipher_alg - asynchronous block cipher definition 194 * @min_keysize: Minimum key size supported by the transformation. This is the 195 * smallest key length supported by this transformation algorithm. 196 * This must be set to one of the pre-defined values as this is 197 * not hardware specific. Possible values for this field can be 198 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 199 * @max_keysize: Maximum key size supported by the transformation. This is the 200 * largest key length supported by this transformation algorithm. 201 * This must be set to one of the pre-defined values as this is 202 * not hardware specific. Possible values for this field can be 203 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 204 * @setkey: Set key for the transformation. This function is used to either 205 * program a supplied key into the hardware or store the key in the 206 * transformation context for programming it later. Note that this 207 * function does modify the transformation context. This function can 208 * be called multiple times during the existence of the transformation 209 * object, so one must make sure the key is properly reprogrammed into 210 * the hardware. This function is also responsible for checking the key 211 * length for validity. In case a software fallback was put in place in 212 * the @cra_init call, this function might need to use the fallback if 213 * the algorithm doesn't support all of the key sizes. 214 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 215 * the supplied scatterlist containing the blocks of data. The crypto 216 * API consumer is responsible for aligning the entries of the 217 * scatterlist properly and making sure the chunks are correctly 218 * sized. In case a software fallback was put in place in the 219 * @cra_init call, this function might need to use the fallback if 220 * the algorithm doesn't support all of the key sizes. In case the 221 * key was stored in transformation context, the key might need to be 222 * re-programmed into the hardware in this function. This function 223 * shall not modify the transformation context, as this function may 224 * be called in parallel with the same transformation object. 225 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 226 * and the conditions are exactly the same. 227 * @ivsize: IV size applicable for transformation. The consumer must provide an 228 * IV of exactly that size to perform the encrypt or decrypt operation. 229 * 230 * All fields except @ivsize are mandatory and must be filled. 231 */ 232 struct ablkcipher_alg { 233 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 234 unsigned int keylen); 235 int (*encrypt)(struct ablkcipher_request *req); 236 int (*decrypt)(struct ablkcipher_request *req); 237 238 unsigned int min_keysize; 239 unsigned int max_keysize; 240 unsigned int ivsize; 241 }; 242 243 /** 244 * struct blkcipher_alg - synchronous block cipher definition 245 * @min_keysize: see struct ablkcipher_alg 246 * @max_keysize: see struct ablkcipher_alg 247 * @setkey: see struct ablkcipher_alg 248 * @encrypt: see struct ablkcipher_alg 249 * @decrypt: see struct ablkcipher_alg 250 * @ivsize: see struct ablkcipher_alg 251 * 252 * All fields except @ivsize are mandatory and must be filled. 253 */ 254 struct blkcipher_alg { 255 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 256 unsigned int keylen); 257 int (*encrypt)(struct blkcipher_desc *desc, 258 struct scatterlist *dst, struct scatterlist *src, 259 unsigned int nbytes); 260 int (*decrypt)(struct blkcipher_desc *desc, 261 struct scatterlist *dst, struct scatterlist *src, 262 unsigned int nbytes); 263 264 unsigned int min_keysize; 265 unsigned int max_keysize; 266 unsigned int ivsize; 267 }; 268 269 /** 270 * struct cipher_alg - single-block symmetric ciphers definition 271 * @cia_min_keysize: Minimum key size supported by the transformation. This is 272 * the smallest key length supported by this transformation 273 * algorithm. This must be set to one of the pre-defined 274 * values as this is not hardware specific. Possible values 275 * for this field can be found via git grep "_MIN_KEY_SIZE" 276 * include/crypto/ 277 * @cia_max_keysize: Maximum key size supported by the transformation. This is 278 * the largest key length supported by this transformation 279 * algorithm. This must be set to one of the pre-defined values 280 * as this is not hardware specific. Possible values for this 281 * field can be found via git grep "_MAX_KEY_SIZE" 282 * include/crypto/ 283 * @cia_setkey: Set key for the transformation. This function is used to either 284 * program a supplied key into the hardware or store the key in the 285 * transformation context for programming it later. Note that this 286 * function does modify the transformation context. This function 287 * can be called multiple times during the existence of the 288 * transformation object, so one must make sure the key is properly 289 * reprogrammed into the hardware. This function is also 290 * responsible for checking the key length for validity. 291 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 292 * single block of data, which must be @cra_blocksize big. This 293 * always operates on a full @cra_blocksize and it is not possible 294 * to encrypt a block of smaller size. The supplied buffers must 295 * therefore also be at least of @cra_blocksize size. Both the 296 * input and output buffers are always aligned to @cra_alignmask. 297 * In case either of the input or output buffer supplied by user 298 * of the crypto API is not aligned to @cra_alignmask, the crypto 299 * API will re-align the buffers. The re-alignment means that a 300 * new buffer will be allocated, the data will be copied into the 301 * new buffer, then the processing will happen on the new buffer, 302 * then the data will be copied back into the original buffer and 303 * finally the new buffer will be freed. In case a software 304 * fallback was put in place in the @cra_init call, this function 305 * might need to use the fallback if the algorithm doesn't support 306 * all of the key sizes. In case the key was stored in 307 * transformation context, the key might need to be re-programmed 308 * into the hardware in this function. This function shall not 309 * modify the transformation context, as this function may be 310 * called in parallel with the same transformation object. 311 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 312 * @cia_encrypt, and the conditions are exactly the same. 313 * 314 * All fields are mandatory and must be filled. 315 */ 316 struct cipher_alg { 317 unsigned int cia_min_keysize; 318 unsigned int cia_max_keysize; 319 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 320 unsigned int keylen); 321 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 322 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 323 }; 324 325 /** 326 * struct compress_alg - compression/decompression algorithm 327 * @coa_compress: Compress a buffer of specified length, storing the resulting 328 * data in the specified buffer. Return the length of the 329 * compressed data in dlen. 330 * @coa_decompress: Decompress the source buffer, storing the uncompressed 331 * data in the specified buffer. The length of the data is 332 * returned in dlen. 333 * 334 * All fields are mandatory. 335 */ 336 struct compress_alg { 337 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 338 unsigned int slen, u8 *dst, unsigned int *dlen); 339 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 340 unsigned int slen, u8 *dst, unsigned int *dlen); 341 }; 342 343 #ifdef CONFIG_CRYPTO_STATS 344 /* 345 * struct crypto_istat_aead - statistics for AEAD algorithm 346 * @encrypt_cnt: number of encrypt requests 347 * @encrypt_tlen: total data size handled by encrypt requests 348 * @decrypt_cnt: number of decrypt requests 349 * @decrypt_tlen: total data size handled by decrypt requests 350 * @err_cnt: number of error for AEAD requests 351 */ 352 struct crypto_istat_aead { 353 atomic64_t encrypt_cnt; 354 atomic64_t encrypt_tlen; 355 atomic64_t decrypt_cnt; 356 atomic64_t decrypt_tlen; 357 atomic64_t err_cnt; 358 }; 359 360 /* 361 * struct crypto_istat_akcipher - statistics for akcipher algorithm 362 * @encrypt_cnt: number of encrypt requests 363 * @encrypt_tlen: total data size handled by encrypt requests 364 * @decrypt_cnt: number of decrypt requests 365 * @decrypt_tlen: total data size handled by decrypt requests 366 * @verify_cnt: number of verify operation 367 * @sign_cnt: number of sign requests 368 * @err_cnt: number of error for akcipher requests 369 */ 370 struct crypto_istat_akcipher { 371 atomic64_t encrypt_cnt; 372 atomic64_t encrypt_tlen; 373 atomic64_t decrypt_cnt; 374 atomic64_t decrypt_tlen; 375 atomic64_t verify_cnt; 376 atomic64_t sign_cnt; 377 atomic64_t err_cnt; 378 }; 379 380 /* 381 * struct crypto_istat_cipher - statistics for cipher algorithm 382 * @encrypt_cnt: number of encrypt requests 383 * @encrypt_tlen: total data size handled by encrypt requests 384 * @decrypt_cnt: number of decrypt requests 385 * @decrypt_tlen: total data size handled by decrypt requests 386 * @err_cnt: number of error for cipher requests 387 */ 388 struct crypto_istat_cipher { 389 atomic64_t encrypt_cnt; 390 atomic64_t encrypt_tlen; 391 atomic64_t decrypt_cnt; 392 atomic64_t decrypt_tlen; 393 atomic64_t err_cnt; 394 }; 395 396 /* 397 * struct crypto_istat_compress - statistics for compress algorithm 398 * @compress_cnt: number of compress requests 399 * @compress_tlen: total data size handled by compress requests 400 * @decompress_cnt: number of decompress requests 401 * @decompress_tlen: total data size handled by decompress requests 402 * @err_cnt: number of error for compress requests 403 */ 404 struct crypto_istat_compress { 405 atomic64_t compress_cnt; 406 atomic64_t compress_tlen; 407 atomic64_t decompress_cnt; 408 atomic64_t decompress_tlen; 409 atomic64_t err_cnt; 410 }; 411 412 /* 413 * struct crypto_istat_hash - statistics for has algorithm 414 * @hash_cnt: number of hash requests 415 * @hash_tlen: total data size hashed 416 * @err_cnt: number of error for hash requests 417 */ 418 struct crypto_istat_hash { 419 atomic64_t hash_cnt; 420 atomic64_t hash_tlen; 421 atomic64_t err_cnt; 422 }; 423 424 /* 425 * struct crypto_istat_kpp - statistics for KPP algorithm 426 * @setsecret_cnt: number of setsecrey operation 427 * @generate_public_key_cnt: number of generate_public_key operation 428 * @compute_shared_secret_cnt: number of compute_shared_secret operation 429 * @err_cnt: number of error for KPP requests 430 */ 431 struct crypto_istat_kpp { 432 atomic64_t setsecret_cnt; 433 atomic64_t generate_public_key_cnt; 434 atomic64_t compute_shared_secret_cnt; 435 atomic64_t err_cnt; 436 }; 437 438 /* 439 * struct crypto_istat_rng: statistics for RNG algorithm 440 * @generate_cnt: number of RNG generate requests 441 * @generate_tlen: total data size of generated data by the RNG 442 * @seed_cnt: number of times the RNG was seeded 443 * @err_cnt: number of error for RNG requests 444 */ 445 struct crypto_istat_rng { 446 atomic64_t generate_cnt; 447 atomic64_t generate_tlen; 448 atomic64_t seed_cnt; 449 atomic64_t err_cnt; 450 }; 451 #endif /* CONFIG_CRYPTO_STATS */ 452 453 #define cra_ablkcipher cra_u.ablkcipher 454 #define cra_blkcipher cra_u.blkcipher 455 #define cra_cipher cra_u.cipher 456 #define cra_compress cra_u.compress 457 458 /** 459 * struct crypto_alg - definition of a cryptograpic cipher algorithm 460 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 461 * CRYPTO_ALG_* flags for the flags which go in here. Those are 462 * used for fine-tuning the description of the transformation 463 * algorithm. 464 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 465 * of the smallest possible unit which can be transformed with 466 * this algorithm. The users must respect this value. 467 * In case of HASH transformation, it is possible for a smaller 468 * block than @cra_blocksize to be passed to the crypto API for 469 * transformation, in case of any other transformation type, an 470 * error will be returned upon any attempt to transform smaller 471 * than @cra_blocksize chunks. 472 * @cra_ctxsize: Size of the operational context of the transformation. This 473 * value informs the kernel crypto API about the memory size 474 * needed to be allocated for the transformation context. 475 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 476 * buffer containing the input data for the algorithm must be 477 * aligned to this alignment mask. The data buffer for the 478 * output data must be aligned to this alignment mask. Note that 479 * the Crypto API will do the re-alignment in software, but 480 * only under special conditions and there is a performance hit. 481 * The re-alignment happens at these occasions for different 482 * @cra_u types: cipher -- For both input data and output data 483 * buffer; ahash -- For output hash destination buf; shash -- 484 * For output hash destination buf. 485 * This is needed on hardware which is flawed by design and 486 * cannot pick data from arbitrary addresses. 487 * @cra_priority: Priority of this transformation implementation. In case 488 * multiple transformations with same @cra_name are available to 489 * the Crypto API, the kernel will use the one with highest 490 * @cra_priority. 491 * @cra_name: Generic name (usable by multiple implementations) of the 492 * transformation algorithm. This is the name of the transformation 493 * itself. This field is used by the kernel when looking up the 494 * providers of particular transformation. 495 * @cra_driver_name: Unique name of the transformation provider. This is the 496 * name of the provider of the transformation. This can be any 497 * arbitrary value, but in the usual case, this contains the 498 * name of the chip or provider and the name of the 499 * transformation algorithm. 500 * @cra_type: Type of the cryptographic transformation. This is a pointer to 501 * struct crypto_type, which implements callbacks common for all 502 * transformation types. There are multiple options: 503 * &crypto_blkcipher_type, &crypto_ablkcipher_type, 504 * &crypto_ahash_type, &crypto_rng_type. 505 * This field might be empty. In that case, there are no common 506 * callbacks. This is the case for: cipher, compress, shash. 507 * @cra_u: Callbacks implementing the transformation. This is a union of 508 * multiple structures. Depending on the type of transformation selected 509 * by @cra_type and @cra_flags above, the associated structure must be 510 * filled with callbacks. This field might be empty. This is the case 511 * for ahash, shash. 512 * @cra_init: Initialize the cryptographic transformation object. This function 513 * is used to initialize the cryptographic transformation object. 514 * This function is called only once at the instantiation time, right 515 * after the transformation context was allocated. In case the 516 * cryptographic hardware has some special requirements which need to 517 * be handled by software, this function shall check for the precise 518 * requirement of the transformation and put any software fallbacks 519 * in place. 520 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 521 * counterpart to @cra_init, used to remove various changes set in 522 * @cra_init. 523 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher 524 * definition. See @struct @ablkcipher_alg. 525 * @cra_u.blkcipher: Union member which contains a synchronous block cipher 526 * definition See @struct @blkcipher_alg. 527 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 528 * definition. See @struct @cipher_alg. 529 * @cra_u.compress: Union member which contains a (de)compression algorithm. 530 * See @struct @compress_alg. 531 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 532 * @cra_list: internally used 533 * @cra_users: internally used 534 * @cra_refcnt: internally used 535 * @cra_destroy: internally used 536 * 537 * @stats: union of all possible crypto_istat_xxx structures 538 * @stats.aead: statistics for AEAD algorithm 539 * @stats.akcipher: statistics for akcipher algorithm 540 * @stats.cipher: statistics for cipher algorithm 541 * @stats.compress: statistics for compress algorithm 542 * @stats.hash: statistics for hash algorithm 543 * @stats.rng: statistics for rng algorithm 544 * @stats.kpp: statistics for KPP algorithm 545 * 546 * The struct crypto_alg describes a generic Crypto API algorithm and is common 547 * for all of the transformations. Any variable not documented here shall not 548 * be used by a cipher implementation as it is internal to the Crypto API. 549 */ 550 struct crypto_alg { 551 struct list_head cra_list; 552 struct list_head cra_users; 553 554 u32 cra_flags; 555 unsigned int cra_blocksize; 556 unsigned int cra_ctxsize; 557 unsigned int cra_alignmask; 558 559 int cra_priority; 560 refcount_t cra_refcnt; 561 562 char cra_name[CRYPTO_MAX_ALG_NAME]; 563 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 564 565 const struct crypto_type *cra_type; 566 567 union { 568 struct ablkcipher_alg ablkcipher; 569 struct blkcipher_alg blkcipher; 570 struct cipher_alg cipher; 571 struct compress_alg compress; 572 } cra_u; 573 574 int (*cra_init)(struct crypto_tfm *tfm); 575 void (*cra_exit)(struct crypto_tfm *tfm); 576 void (*cra_destroy)(struct crypto_alg *alg); 577 578 struct module *cra_module; 579 580 #ifdef CONFIG_CRYPTO_STATS 581 union { 582 struct crypto_istat_aead aead; 583 struct crypto_istat_akcipher akcipher; 584 struct crypto_istat_cipher cipher; 585 struct crypto_istat_compress compress; 586 struct crypto_istat_hash hash; 587 struct crypto_istat_rng rng; 588 struct crypto_istat_kpp kpp; 589 } stats; 590 #endif /* CONFIG_CRYPTO_STATS */ 591 592 } CRYPTO_MINALIGN_ATTR; 593 594 #ifdef CONFIG_CRYPTO_STATS 595 void crypto_stats_init(struct crypto_alg *alg); 596 void crypto_stats_get(struct crypto_alg *alg); 597 void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg); 598 void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg); 599 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 600 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 601 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 602 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 603 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 604 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 605 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 606 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 607 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 608 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 609 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 610 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 611 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 612 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 613 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 614 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 615 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 616 #else 617 static inline void crypto_stats_init(struct crypto_alg *alg) 618 {} 619 static inline void crypto_stats_get(struct crypto_alg *alg) 620 {} 621 static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg) 622 {} 623 static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg) 624 {} 625 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 626 {} 627 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 628 {} 629 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 630 {} 631 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 632 {} 633 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 634 {} 635 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 636 {} 637 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 638 {} 639 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 640 {} 641 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 642 {} 643 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 644 {} 645 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 646 {} 647 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 648 {} 649 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 650 {} 651 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 652 {} 653 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 654 {} 655 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 656 {} 657 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 658 {} 659 #endif 660 /* 661 * A helper struct for waiting for completion of async crypto ops 662 */ 663 struct crypto_wait { 664 struct completion completion; 665 int err; 666 }; 667 668 /* 669 * Macro for declaring a crypto op async wait object on stack 670 */ 671 #define DECLARE_CRYPTO_WAIT(_wait) \ 672 struct crypto_wait _wait = { \ 673 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 674 675 /* 676 * Async ops completion helper functioons 677 */ 678 void crypto_req_done(struct crypto_async_request *req, int err); 679 680 static inline int crypto_wait_req(int err, struct crypto_wait *wait) 681 { 682 switch (err) { 683 case -EINPROGRESS: 684 case -EBUSY: 685 wait_for_completion(&wait->completion); 686 reinit_completion(&wait->completion); 687 err = wait->err; 688 break; 689 }; 690 691 return err; 692 } 693 694 static inline void crypto_init_wait(struct crypto_wait *wait) 695 { 696 init_completion(&wait->completion); 697 } 698 699 /* 700 * Algorithm registration interface. 701 */ 702 int crypto_register_alg(struct crypto_alg *alg); 703 int crypto_unregister_alg(struct crypto_alg *alg); 704 int crypto_register_algs(struct crypto_alg *algs, int count); 705 int crypto_unregister_algs(struct crypto_alg *algs, int count); 706 707 /* 708 * Algorithm query interface. 709 */ 710 int crypto_has_alg(const char *name, u32 type, u32 mask); 711 712 /* 713 * Transforms: user-instantiated objects which encapsulate algorithms 714 * and core processing logic. Managed via crypto_alloc_*() and 715 * crypto_free_*(), as well as the various helpers below. 716 */ 717 718 struct ablkcipher_tfm { 719 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 720 unsigned int keylen); 721 int (*encrypt)(struct ablkcipher_request *req); 722 int (*decrypt)(struct ablkcipher_request *req); 723 724 struct crypto_ablkcipher *base; 725 726 unsigned int ivsize; 727 unsigned int reqsize; 728 }; 729 730 struct blkcipher_tfm { 731 void *iv; 732 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 733 unsigned int keylen); 734 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 735 struct scatterlist *src, unsigned int nbytes); 736 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 737 struct scatterlist *src, unsigned int nbytes); 738 }; 739 740 struct cipher_tfm { 741 int (*cit_setkey)(struct crypto_tfm *tfm, 742 const u8 *key, unsigned int keylen); 743 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 744 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 745 }; 746 747 struct compress_tfm { 748 int (*cot_compress)(struct crypto_tfm *tfm, 749 const u8 *src, unsigned int slen, 750 u8 *dst, unsigned int *dlen); 751 int (*cot_decompress)(struct crypto_tfm *tfm, 752 const u8 *src, unsigned int slen, 753 u8 *dst, unsigned int *dlen); 754 }; 755 756 #define crt_ablkcipher crt_u.ablkcipher 757 #define crt_blkcipher crt_u.blkcipher 758 #define crt_cipher crt_u.cipher 759 #define crt_compress crt_u.compress 760 761 struct crypto_tfm { 762 763 u32 crt_flags; 764 765 union { 766 struct ablkcipher_tfm ablkcipher; 767 struct blkcipher_tfm blkcipher; 768 struct cipher_tfm cipher; 769 struct compress_tfm compress; 770 } crt_u; 771 772 void (*exit)(struct crypto_tfm *tfm); 773 774 struct crypto_alg *__crt_alg; 775 776 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 777 }; 778 779 struct crypto_ablkcipher { 780 struct crypto_tfm base; 781 }; 782 783 struct crypto_blkcipher { 784 struct crypto_tfm base; 785 }; 786 787 struct crypto_cipher { 788 struct crypto_tfm base; 789 }; 790 791 struct crypto_comp { 792 struct crypto_tfm base; 793 }; 794 795 enum { 796 CRYPTOA_UNSPEC, 797 CRYPTOA_ALG, 798 CRYPTOA_TYPE, 799 CRYPTOA_U32, 800 __CRYPTOA_MAX, 801 }; 802 803 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 804 805 /* Maximum number of (rtattr) parameters for each template. */ 806 #define CRYPTO_MAX_ATTRS 32 807 808 struct crypto_attr_alg { 809 char name[CRYPTO_MAX_ALG_NAME]; 810 }; 811 812 struct crypto_attr_type { 813 u32 type; 814 u32 mask; 815 }; 816 817 struct crypto_attr_u32 { 818 u32 num; 819 }; 820 821 /* 822 * Transform user interface. 823 */ 824 825 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 826 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 827 828 static inline void crypto_free_tfm(struct crypto_tfm *tfm) 829 { 830 return crypto_destroy_tfm(tfm, tfm); 831 } 832 833 int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 834 835 /* 836 * Transform helpers which query the underlying algorithm. 837 */ 838 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 839 { 840 return tfm->__crt_alg->cra_name; 841 } 842 843 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 844 { 845 return tfm->__crt_alg->cra_driver_name; 846 } 847 848 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 849 { 850 return tfm->__crt_alg->cra_priority; 851 } 852 853 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 854 { 855 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 856 } 857 858 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 859 { 860 return tfm->__crt_alg->cra_blocksize; 861 } 862 863 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 864 { 865 return tfm->__crt_alg->cra_alignmask; 866 } 867 868 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 869 { 870 return tfm->crt_flags; 871 } 872 873 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 874 { 875 tfm->crt_flags |= flags; 876 } 877 878 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 879 { 880 tfm->crt_flags &= ~flags; 881 } 882 883 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 884 { 885 return tfm->__crt_ctx; 886 } 887 888 static inline unsigned int crypto_tfm_ctx_alignment(void) 889 { 890 struct crypto_tfm *tfm; 891 return __alignof__(tfm->__crt_ctx); 892 } 893 894 /* 895 * API wrappers. 896 */ 897 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( 898 struct crypto_tfm *tfm) 899 { 900 return (struct crypto_ablkcipher *)tfm; 901 } 902 903 static inline u32 crypto_skcipher_type(u32 type) 904 { 905 type &= ~CRYPTO_ALG_TYPE_MASK; 906 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 907 return type; 908 } 909 910 static inline u32 crypto_skcipher_mask(u32 mask) 911 { 912 mask &= ~CRYPTO_ALG_TYPE_MASK; 913 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; 914 return mask; 915 } 916 917 /** 918 * DOC: Asynchronous Block Cipher API 919 * 920 * Asynchronous block cipher API is used with the ciphers of type 921 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). 922 * 923 * Asynchronous cipher operations imply that the function invocation for a 924 * cipher request returns immediately before the completion of the operation. 925 * The cipher request is scheduled as a separate kernel thread and therefore 926 * load-balanced on the different CPUs via the process scheduler. To allow 927 * the kernel crypto API to inform the caller about the completion of a cipher 928 * request, the caller must provide a callback function. That function is 929 * invoked with the cipher handle when the request completes. 930 * 931 * To support the asynchronous operation, additional information than just the 932 * cipher handle must be supplied to the kernel crypto API. That additional 933 * information is given by filling in the ablkcipher_request data structure. 934 * 935 * For the asynchronous block cipher API, the state is maintained with the tfm 936 * cipher handle. A single tfm can be used across multiple calls and in 937 * parallel. For asynchronous block cipher calls, context data supplied and 938 * only used by the caller can be referenced the request data structure in 939 * addition to the IV used for the cipher request. The maintenance of such 940 * state information would be important for a crypto driver implementer to 941 * have, because when calling the callback function upon completion of the 942 * cipher operation, that callback function may need some information about 943 * which operation just finished if it invoked multiple in parallel. This 944 * state information is unused by the kernel crypto API. 945 */ 946 947 static inline struct crypto_tfm *crypto_ablkcipher_tfm( 948 struct crypto_ablkcipher *tfm) 949 { 950 return &tfm->base; 951 } 952 953 /** 954 * crypto_free_ablkcipher() - zeroize and free cipher handle 955 * @tfm: cipher handle to be freed 956 */ 957 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) 958 { 959 crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); 960 } 961 962 /** 963 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. 964 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 965 * ablkcipher 966 * @type: specifies the type of the cipher 967 * @mask: specifies the mask for the cipher 968 * 969 * Return: true when the ablkcipher is known to the kernel crypto API; false 970 * otherwise 971 */ 972 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, 973 u32 mask) 974 { 975 return crypto_has_alg(alg_name, crypto_skcipher_type(type), 976 crypto_skcipher_mask(mask)); 977 } 978 979 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( 980 struct crypto_ablkcipher *tfm) 981 { 982 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; 983 } 984 985 /** 986 * crypto_ablkcipher_ivsize() - obtain IV size 987 * @tfm: cipher handle 988 * 989 * The size of the IV for the ablkcipher referenced by the cipher handle is 990 * returned. This IV size may be zero if the cipher does not need an IV. 991 * 992 * Return: IV size in bytes 993 */ 994 static inline unsigned int crypto_ablkcipher_ivsize( 995 struct crypto_ablkcipher *tfm) 996 { 997 return crypto_ablkcipher_crt(tfm)->ivsize; 998 } 999 1000 /** 1001 * crypto_ablkcipher_blocksize() - obtain block size of cipher 1002 * @tfm: cipher handle 1003 * 1004 * The block size for the ablkcipher referenced with the cipher handle is 1005 * returned. The caller may use that information to allocate appropriate 1006 * memory for the data returned by the encryption or decryption operation 1007 * 1008 * Return: block size of cipher 1009 */ 1010 static inline unsigned int crypto_ablkcipher_blocksize( 1011 struct crypto_ablkcipher *tfm) 1012 { 1013 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); 1014 } 1015 1016 static inline unsigned int crypto_ablkcipher_alignmask( 1017 struct crypto_ablkcipher *tfm) 1018 { 1019 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); 1020 } 1021 1022 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) 1023 { 1024 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); 1025 } 1026 1027 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, 1028 u32 flags) 1029 { 1030 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); 1031 } 1032 1033 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, 1034 u32 flags) 1035 { 1036 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); 1037 } 1038 1039 /** 1040 * crypto_ablkcipher_setkey() - set key for cipher 1041 * @tfm: cipher handle 1042 * @key: buffer holding the key 1043 * @keylen: length of the key in bytes 1044 * 1045 * The caller provided key is set for the ablkcipher referenced by the cipher 1046 * handle. 1047 * 1048 * Note, the key length determines the cipher type. Many block ciphers implement 1049 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1050 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1051 * is performed. 1052 * 1053 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1054 */ 1055 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, 1056 const u8 *key, unsigned int keylen) 1057 { 1058 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); 1059 1060 return crt->setkey(crt->base, key, keylen); 1061 } 1062 1063 /** 1064 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request 1065 * @req: ablkcipher_request out of which the cipher handle is to be obtained 1066 * 1067 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request 1068 * data structure. 1069 * 1070 * Return: crypto_ablkcipher handle 1071 */ 1072 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( 1073 struct ablkcipher_request *req) 1074 { 1075 return __crypto_ablkcipher_cast(req->base.tfm); 1076 } 1077 1078 /** 1079 * crypto_ablkcipher_encrypt() - encrypt plaintext 1080 * @req: reference to the ablkcipher_request handle that holds all information 1081 * needed to perform the cipher operation 1082 * 1083 * Encrypt plaintext data using the ablkcipher_request handle. That data 1084 * structure and how it is filled with data is discussed with the 1085 * ablkcipher_request_* functions. 1086 * 1087 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1088 */ 1089 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) 1090 { 1091 struct ablkcipher_tfm *crt = 1092 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1093 struct crypto_alg *alg = crt->base->base.__crt_alg; 1094 unsigned int nbytes = req->nbytes; 1095 int ret; 1096 1097 crypto_stats_get(alg); 1098 ret = crt->encrypt(req); 1099 crypto_stats_ablkcipher_encrypt(nbytes, ret, alg); 1100 return ret; 1101 } 1102 1103 /** 1104 * crypto_ablkcipher_decrypt() - decrypt ciphertext 1105 * @req: reference to the ablkcipher_request handle that holds all information 1106 * needed to perform the cipher operation 1107 * 1108 * Decrypt ciphertext data using the ablkcipher_request handle. That data 1109 * structure and how it is filled with data is discussed with the 1110 * ablkcipher_request_* functions. 1111 * 1112 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1113 */ 1114 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) 1115 { 1116 struct ablkcipher_tfm *crt = 1117 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1118 struct crypto_alg *alg = crt->base->base.__crt_alg; 1119 unsigned int nbytes = req->nbytes; 1120 int ret; 1121 1122 crypto_stats_get(alg); 1123 ret = crt->decrypt(req); 1124 crypto_stats_ablkcipher_decrypt(nbytes, ret, alg); 1125 return ret; 1126 } 1127 1128 /** 1129 * DOC: Asynchronous Cipher Request Handle 1130 * 1131 * The ablkcipher_request data structure contains all pointers to data 1132 * required for the asynchronous cipher operation. This includes the cipher 1133 * handle (which can be used by multiple ablkcipher_request instances), pointer 1134 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 1135 * as a handle to the ablkcipher_request_* API calls in a similar way as 1136 * ablkcipher handle to the crypto_ablkcipher_* API calls. 1137 */ 1138 1139 /** 1140 * crypto_ablkcipher_reqsize() - obtain size of the request data structure 1141 * @tfm: cipher handle 1142 * 1143 * Return: number of bytes 1144 */ 1145 static inline unsigned int crypto_ablkcipher_reqsize( 1146 struct crypto_ablkcipher *tfm) 1147 { 1148 return crypto_ablkcipher_crt(tfm)->reqsize; 1149 } 1150 1151 /** 1152 * ablkcipher_request_set_tfm() - update cipher handle reference in request 1153 * @req: request handle to be modified 1154 * @tfm: cipher handle that shall be added to the request handle 1155 * 1156 * Allow the caller to replace the existing ablkcipher handle in the request 1157 * data structure with a different one. 1158 */ 1159 static inline void ablkcipher_request_set_tfm( 1160 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) 1161 { 1162 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); 1163 } 1164 1165 static inline struct ablkcipher_request *ablkcipher_request_cast( 1166 struct crypto_async_request *req) 1167 { 1168 return container_of(req, struct ablkcipher_request, base); 1169 } 1170 1171 /** 1172 * ablkcipher_request_alloc() - allocate request data structure 1173 * @tfm: cipher handle to be registered with the request 1174 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 1175 * 1176 * Allocate the request data structure that must be used with the ablkcipher 1177 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher 1178 * handle is registered in the request data structure. 1179 * 1180 * Return: allocated request handle in case of success, or NULL if out of memory 1181 */ 1182 static inline struct ablkcipher_request *ablkcipher_request_alloc( 1183 struct crypto_ablkcipher *tfm, gfp_t gfp) 1184 { 1185 struct ablkcipher_request *req; 1186 1187 req = kmalloc(sizeof(struct ablkcipher_request) + 1188 crypto_ablkcipher_reqsize(tfm), gfp); 1189 1190 if (likely(req)) 1191 ablkcipher_request_set_tfm(req, tfm); 1192 1193 return req; 1194 } 1195 1196 /** 1197 * ablkcipher_request_free() - zeroize and free request data structure 1198 * @req: request data structure cipher handle to be freed 1199 */ 1200 static inline void ablkcipher_request_free(struct ablkcipher_request *req) 1201 { 1202 kzfree(req); 1203 } 1204 1205 /** 1206 * ablkcipher_request_set_callback() - set asynchronous callback function 1207 * @req: request handle 1208 * @flags: specify zero or an ORing of the flags 1209 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 1210 * increase the wait queue beyond the initial maximum size; 1211 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 1212 * @compl: callback function pointer to be registered with the request handle 1213 * @data: The data pointer refers to memory that is not used by the kernel 1214 * crypto API, but provided to the callback function for it to use. Here, 1215 * the caller can provide a reference to memory the callback function can 1216 * operate on. As the callback function is invoked asynchronously to the 1217 * related functionality, it may need to access data structures of the 1218 * related functionality which can be referenced using this pointer. The 1219 * callback function can access the memory via the "data" field in the 1220 * crypto_async_request data structure provided to the callback function. 1221 * 1222 * This function allows setting the callback function that is triggered once the 1223 * cipher operation completes. 1224 * 1225 * The callback function is registered with the ablkcipher_request handle and 1226 * must comply with the following template:: 1227 * 1228 * void callback_function(struct crypto_async_request *req, int error) 1229 */ 1230 static inline void ablkcipher_request_set_callback( 1231 struct ablkcipher_request *req, 1232 u32 flags, crypto_completion_t compl, void *data) 1233 { 1234 req->base.complete = compl; 1235 req->base.data = data; 1236 req->base.flags = flags; 1237 } 1238 1239 /** 1240 * ablkcipher_request_set_crypt() - set data buffers 1241 * @req: request handle 1242 * @src: source scatter / gather list 1243 * @dst: destination scatter / gather list 1244 * @nbytes: number of bytes to process from @src 1245 * @iv: IV for the cipher operation which must comply with the IV size defined 1246 * by crypto_ablkcipher_ivsize 1247 * 1248 * This function allows setting of the source data and destination data 1249 * scatter / gather lists. 1250 * 1251 * For encryption, the source is treated as the plaintext and the 1252 * destination is the ciphertext. For a decryption operation, the use is 1253 * reversed - the source is the ciphertext and the destination is the plaintext. 1254 */ 1255 static inline void ablkcipher_request_set_crypt( 1256 struct ablkcipher_request *req, 1257 struct scatterlist *src, struct scatterlist *dst, 1258 unsigned int nbytes, void *iv) 1259 { 1260 req->src = src; 1261 req->dst = dst; 1262 req->nbytes = nbytes; 1263 req->info = iv; 1264 } 1265 1266 /** 1267 * DOC: Synchronous Block Cipher API 1268 * 1269 * The synchronous block cipher API is used with the ciphers of type 1270 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) 1271 * 1272 * Synchronous calls, have a context in the tfm. But since a single tfm can be 1273 * used in multiple calls and in parallel, this info should not be changeable 1274 * (unless a lock is used). This applies, for example, to the symmetric key. 1275 * However, the IV is changeable, so there is an iv field in blkcipher_tfm 1276 * structure for synchronous blkcipher api. So, its the only state info that can 1277 * be kept for synchronous calls without using a big lock across a tfm. 1278 * 1279 * The block cipher API allows the use of a complete cipher, i.e. a cipher 1280 * consisting of a template (a block chaining mode) and a single block cipher 1281 * primitive (e.g. AES). 1282 * 1283 * The plaintext data buffer and the ciphertext data buffer are pointed to 1284 * by using scatter/gather lists. The cipher operation is performed 1285 * on all segments of the provided scatter/gather lists. 1286 * 1287 * The kernel crypto API supports a cipher operation "in-place" which means that 1288 * the caller may provide the same scatter/gather list for the plaintext and 1289 * cipher text. After the completion of the cipher operation, the plaintext 1290 * data is replaced with the ciphertext data in case of an encryption and vice 1291 * versa for a decryption. The caller must ensure that the scatter/gather lists 1292 * for the output data point to sufficiently large buffers, i.e. multiples of 1293 * the block size of the cipher. 1294 */ 1295 1296 static inline struct crypto_blkcipher *__crypto_blkcipher_cast( 1297 struct crypto_tfm *tfm) 1298 { 1299 return (struct crypto_blkcipher *)tfm; 1300 } 1301 1302 static inline struct crypto_blkcipher *crypto_blkcipher_cast( 1303 struct crypto_tfm *tfm) 1304 { 1305 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); 1306 return __crypto_blkcipher_cast(tfm); 1307 } 1308 1309 /** 1310 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle 1311 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1312 * blkcipher cipher 1313 * @type: specifies the type of the cipher 1314 * @mask: specifies the mask for the cipher 1315 * 1316 * Allocate a cipher handle for a block cipher. The returned struct 1317 * crypto_blkcipher is the cipher handle that is required for any subsequent 1318 * API invocation for that block cipher. 1319 * 1320 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1321 * of an error, PTR_ERR() returns the error code. 1322 */ 1323 static inline struct crypto_blkcipher *crypto_alloc_blkcipher( 1324 const char *alg_name, u32 type, u32 mask) 1325 { 1326 type &= ~CRYPTO_ALG_TYPE_MASK; 1327 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1328 mask |= CRYPTO_ALG_TYPE_MASK; 1329 1330 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); 1331 } 1332 1333 static inline struct crypto_tfm *crypto_blkcipher_tfm( 1334 struct crypto_blkcipher *tfm) 1335 { 1336 return &tfm->base; 1337 } 1338 1339 /** 1340 * crypto_free_blkcipher() - zeroize and free the block cipher handle 1341 * @tfm: cipher handle to be freed 1342 */ 1343 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) 1344 { 1345 crypto_free_tfm(crypto_blkcipher_tfm(tfm)); 1346 } 1347 1348 /** 1349 * crypto_has_blkcipher() - Search for the availability of a block cipher 1350 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1351 * block cipher 1352 * @type: specifies the type of the cipher 1353 * @mask: specifies the mask for the cipher 1354 * 1355 * Return: true when the block cipher is known to the kernel crypto API; false 1356 * otherwise 1357 */ 1358 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) 1359 { 1360 type &= ~CRYPTO_ALG_TYPE_MASK; 1361 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1362 mask |= CRYPTO_ALG_TYPE_MASK; 1363 1364 return crypto_has_alg(alg_name, type, mask); 1365 } 1366 1367 /** 1368 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle 1369 * @tfm: cipher handle 1370 * 1371 * Return: The character string holding the name of the cipher 1372 */ 1373 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) 1374 { 1375 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); 1376 } 1377 1378 static inline struct blkcipher_tfm *crypto_blkcipher_crt( 1379 struct crypto_blkcipher *tfm) 1380 { 1381 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; 1382 } 1383 1384 static inline struct blkcipher_alg *crypto_blkcipher_alg( 1385 struct crypto_blkcipher *tfm) 1386 { 1387 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; 1388 } 1389 1390 /** 1391 * crypto_blkcipher_ivsize() - obtain IV size 1392 * @tfm: cipher handle 1393 * 1394 * The size of the IV for the block cipher referenced by the cipher handle is 1395 * returned. This IV size may be zero if the cipher does not need an IV. 1396 * 1397 * Return: IV size in bytes 1398 */ 1399 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) 1400 { 1401 return crypto_blkcipher_alg(tfm)->ivsize; 1402 } 1403 1404 /** 1405 * crypto_blkcipher_blocksize() - obtain block size of cipher 1406 * @tfm: cipher handle 1407 * 1408 * The block size for the block cipher referenced with the cipher handle is 1409 * returned. The caller may use that information to allocate appropriate 1410 * memory for the data returned by the encryption or decryption operation. 1411 * 1412 * Return: block size of cipher 1413 */ 1414 static inline unsigned int crypto_blkcipher_blocksize( 1415 struct crypto_blkcipher *tfm) 1416 { 1417 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); 1418 } 1419 1420 static inline unsigned int crypto_blkcipher_alignmask( 1421 struct crypto_blkcipher *tfm) 1422 { 1423 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); 1424 } 1425 1426 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) 1427 { 1428 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); 1429 } 1430 1431 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, 1432 u32 flags) 1433 { 1434 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); 1435 } 1436 1437 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, 1438 u32 flags) 1439 { 1440 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); 1441 } 1442 1443 /** 1444 * crypto_blkcipher_setkey() - set key for cipher 1445 * @tfm: cipher handle 1446 * @key: buffer holding the key 1447 * @keylen: length of the key in bytes 1448 * 1449 * The caller provided key is set for the block cipher referenced by the cipher 1450 * handle. 1451 * 1452 * Note, the key length determines the cipher type. Many block ciphers implement 1453 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1454 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1455 * is performed. 1456 * 1457 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1458 */ 1459 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, 1460 const u8 *key, unsigned int keylen) 1461 { 1462 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), 1463 key, keylen); 1464 } 1465 1466 /** 1467 * crypto_blkcipher_encrypt() - encrypt plaintext 1468 * @desc: reference to the block cipher handle with meta data 1469 * @dst: scatter/gather list that is filled by the cipher operation with the 1470 * ciphertext 1471 * @src: scatter/gather list that holds the plaintext 1472 * @nbytes: number of bytes of the plaintext to encrypt. 1473 * 1474 * Encrypt plaintext data using the IV set by the caller with a preceding 1475 * call of crypto_blkcipher_set_iv. 1476 * 1477 * The blkcipher_desc data structure must be filled by the caller and can 1478 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1479 * with the block cipher handle; desc.flags is filled with either 1480 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1481 * 1482 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1483 */ 1484 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, 1485 struct scatterlist *dst, 1486 struct scatterlist *src, 1487 unsigned int nbytes) 1488 { 1489 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1490 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1491 } 1492 1493 /** 1494 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV 1495 * @desc: reference to the block cipher handle with meta data 1496 * @dst: scatter/gather list that is filled by the cipher operation with the 1497 * ciphertext 1498 * @src: scatter/gather list that holds the plaintext 1499 * @nbytes: number of bytes of the plaintext to encrypt. 1500 * 1501 * Encrypt plaintext data with the use of an IV that is solely used for this 1502 * cipher operation. Any previously set IV is not used. 1503 * 1504 * The blkcipher_desc data structure must be filled by the caller and can 1505 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1506 * with the block cipher handle; desc.info is filled with the IV to be used for 1507 * the current operation; desc.flags is filled with either 1508 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1509 * 1510 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1511 */ 1512 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, 1513 struct scatterlist *dst, 1514 struct scatterlist *src, 1515 unsigned int nbytes) 1516 { 1517 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1518 } 1519 1520 /** 1521 * crypto_blkcipher_decrypt() - decrypt ciphertext 1522 * @desc: reference to the block cipher handle with meta data 1523 * @dst: scatter/gather list that is filled by the cipher operation with the 1524 * plaintext 1525 * @src: scatter/gather list that holds the ciphertext 1526 * @nbytes: number of bytes of the ciphertext to decrypt. 1527 * 1528 * Decrypt ciphertext data using the IV set by the caller with a preceding 1529 * call of crypto_blkcipher_set_iv. 1530 * 1531 * The blkcipher_desc data structure must be filled by the caller as documented 1532 * for the crypto_blkcipher_encrypt call above. 1533 * 1534 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1535 * 1536 */ 1537 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, 1538 struct scatterlist *dst, 1539 struct scatterlist *src, 1540 unsigned int nbytes) 1541 { 1542 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1543 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1544 } 1545 1546 /** 1547 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV 1548 * @desc: reference to the block cipher handle with meta data 1549 * @dst: scatter/gather list that is filled by the cipher operation with the 1550 * plaintext 1551 * @src: scatter/gather list that holds the ciphertext 1552 * @nbytes: number of bytes of the ciphertext to decrypt. 1553 * 1554 * Decrypt ciphertext data with the use of an IV that is solely used for this 1555 * cipher operation. Any previously set IV is not used. 1556 * 1557 * The blkcipher_desc data structure must be filled by the caller as documented 1558 * for the crypto_blkcipher_encrypt_iv call above. 1559 * 1560 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1561 */ 1562 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, 1563 struct scatterlist *dst, 1564 struct scatterlist *src, 1565 unsigned int nbytes) 1566 { 1567 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1568 } 1569 1570 /** 1571 * crypto_blkcipher_set_iv() - set IV for cipher 1572 * @tfm: cipher handle 1573 * @src: buffer holding the IV 1574 * @len: length of the IV in bytes 1575 * 1576 * The caller provided IV is set for the block cipher referenced by the cipher 1577 * handle. 1578 */ 1579 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, 1580 const u8 *src, unsigned int len) 1581 { 1582 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); 1583 } 1584 1585 /** 1586 * crypto_blkcipher_get_iv() - obtain IV from cipher 1587 * @tfm: cipher handle 1588 * @dst: buffer filled with the IV 1589 * @len: length of the buffer dst 1590 * 1591 * The caller can obtain the IV set for the block cipher referenced by the 1592 * cipher handle and store it into the user-provided buffer. If the buffer 1593 * has an insufficient space, the IV is truncated to fit the buffer. 1594 */ 1595 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, 1596 u8 *dst, unsigned int len) 1597 { 1598 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); 1599 } 1600 1601 /** 1602 * DOC: Single Block Cipher API 1603 * 1604 * The single block cipher API is used with the ciphers of type 1605 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 1606 * 1607 * Using the single block cipher API calls, operations with the basic cipher 1608 * primitive can be implemented. These cipher primitives exclude any block 1609 * chaining operations including IV handling. 1610 * 1611 * The purpose of this single block cipher API is to support the implementation 1612 * of templates or other concepts that only need to perform the cipher operation 1613 * on one block at a time. Templates invoke the underlying cipher primitive 1614 * block-wise and process either the input or the output data of these cipher 1615 * operations. 1616 */ 1617 1618 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 1619 { 1620 return (struct crypto_cipher *)tfm; 1621 } 1622 1623 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) 1624 { 1625 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); 1626 return __crypto_cipher_cast(tfm); 1627 } 1628 1629 /** 1630 * crypto_alloc_cipher() - allocate single block cipher handle 1631 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1632 * single block cipher 1633 * @type: specifies the type of the cipher 1634 * @mask: specifies the mask for the cipher 1635 * 1636 * Allocate a cipher handle for a single block cipher. The returned struct 1637 * crypto_cipher is the cipher handle that is required for any subsequent API 1638 * invocation for that single block cipher. 1639 * 1640 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1641 * of an error, PTR_ERR() returns the error code. 1642 */ 1643 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 1644 u32 type, u32 mask) 1645 { 1646 type &= ~CRYPTO_ALG_TYPE_MASK; 1647 type |= CRYPTO_ALG_TYPE_CIPHER; 1648 mask |= CRYPTO_ALG_TYPE_MASK; 1649 1650 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 1651 } 1652 1653 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 1654 { 1655 return &tfm->base; 1656 } 1657 1658 /** 1659 * crypto_free_cipher() - zeroize and free the single block cipher handle 1660 * @tfm: cipher handle to be freed 1661 */ 1662 static inline void crypto_free_cipher(struct crypto_cipher *tfm) 1663 { 1664 crypto_free_tfm(crypto_cipher_tfm(tfm)); 1665 } 1666 1667 /** 1668 * crypto_has_cipher() - Search for the availability of a single block cipher 1669 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1670 * single block cipher 1671 * @type: specifies the type of the cipher 1672 * @mask: specifies the mask for the cipher 1673 * 1674 * Return: true when the single block cipher is known to the kernel crypto API; 1675 * false otherwise 1676 */ 1677 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 1678 { 1679 type &= ~CRYPTO_ALG_TYPE_MASK; 1680 type |= CRYPTO_ALG_TYPE_CIPHER; 1681 mask |= CRYPTO_ALG_TYPE_MASK; 1682 1683 return crypto_has_alg(alg_name, type, mask); 1684 } 1685 1686 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) 1687 { 1688 return &crypto_cipher_tfm(tfm)->crt_cipher; 1689 } 1690 1691 /** 1692 * crypto_cipher_blocksize() - obtain block size for cipher 1693 * @tfm: cipher handle 1694 * 1695 * The block size for the single block cipher referenced with the cipher handle 1696 * tfm is returned. The caller may use that information to allocate appropriate 1697 * memory for the data returned by the encryption or decryption operation 1698 * 1699 * Return: block size of cipher 1700 */ 1701 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 1702 { 1703 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 1704 } 1705 1706 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 1707 { 1708 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 1709 } 1710 1711 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 1712 { 1713 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 1714 } 1715 1716 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 1717 u32 flags) 1718 { 1719 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 1720 } 1721 1722 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 1723 u32 flags) 1724 { 1725 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 1726 } 1727 1728 /** 1729 * crypto_cipher_setkey() - set key for cipher 1730 * @tfm: cipher handle 1731 * @key: buffer holding the key 1732 * @keylen: length of the key in bytes 1733 * 1734 * The caller provided key is set for the single block cipher referenced by the 1735 * cipher handle. 1736 * 1737 * Note, the key length determines the cipher type. Many block ciphers implement 1738 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1739 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1740 * is performed. 1741 * 1742 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1743 */ 1744 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 1745 const u8 *key, unsigned int keylen) 1746 { 1747 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), 1748 key, keylen); 1749 } 1750 1751 /** 1752 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 1753 * @tfm: cipher handle 1754 * @dst: points to the buffer that will be filled with the ciphertext 1755 * @src: buffer holding the plaintext to be encrypted 1756 * 1757 * Invoke the encryption operation of one block. The caller must ensure that 1758 * the plaintext and ciphertext buffers are at least one block in size. 1759 */ 1760 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 1761 u8 *dst, const u8 *src) 1762 { 1763 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), 1764 dst, src); 1765 } 1766 1767 /** 1768 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 1769 * @tfm: cipher handle 1770 * @dst: points to the buffer that will be filled with the plaintext 1771 * @src: buffer holding the ciphertext to be decrypted 1772 * 1773 * Invoke the decryption operation of one block. The caller must ensure that 1774 * the plaintext and ciphertext buffers are at least one block in size. 1775 */ 1776 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 1777 u8 *dst, const u8 *src) 1778 { 1779 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), 1780 dst, src); 1781 } 1782 1783 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 1784 { 1785 return (struct crypto_comp *)tfm; 1786 } 1787 1788 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) 1789 { 1790 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & 1791 CRYPTO_ALG_TYPE_MASK); 1792 return __crypto_comp_cast(tfm); 1793 } 1794 1795 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 1796 u32 type, u32 mask) 1797 { 1798 type &= ~CRYPTO_ALG_TYPE_MASK; 1799 type |= CRYPTO_ALG_TYPE_COMPRESS; 1800 mask |= CRYPTO_ALG_TYPE_MASK; 1801 1802 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 1803 } 1804 1805 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 1806 { 1807 return &tfm->base; 1808 } 1809 1810 static inline void crypto_free_comp(struct crypto_comp *tfm) 1811 { 1812 crypto_free_tfm(crypto_comp_tfm(tfm)); 1813 } 1814 1815 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 1816 { 1817 type &= ~CRYPTO_ALG_TYPE_MASK; 1818 type |= CRYPTO_ALG_TYPE_COMPRESS; 1819 mask |= CRYPTO_ALG_TYPE_MASK; 1820 1821 return crypto_has_alg(alg_name, type, mask); 1822 } 1823 1824 static inline const char *crypto_comp_name(struct crypto_comp *tfm) 1825 { 1826 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 1827 } 1828 1829 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) 1830 { 1831 return &crypto_comp_tfm(tfm)->crt_compress; 1832 } 1833 1834 static inline int crypto_comp_compress(struct crypto_comp *tfm, 1835 const u8 *src, unsigned int slen, 1836 u8 *dst, unsigned int *dlen) 1837 { 1838 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), 1839 src, slen, dst, dlen); 1840 } 1841 1842 static inline int crypto_comp_decompress(struct crypto_comp *tfm, 1843 const u8 *src, unsigned int slen, 1844 u8 *dst, unsigned int *dlen) 1845 { 1846 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), 1847 src, slen, dst, dlen); 1848 } 1849 1850 #endif /* _LINUX_CRYPTO_H */ 1851 1852