xref: /linux-6.15/include/linux/crypto.h (revision b64d143b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Scatterlist Cryptographic API.
4  *
5  * Copyright (c) 2002 James Morris <[email protected]>
6  * Copyright (c) 2002 David S. Miller ([email protected])
7  * Copyright (c) 2005 Herbert Xu <[email protected]>
8  *
9  * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
10  * and Nettle, by Niels Möller.
11  */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14 
15 #include <linux/completion.h>
16 #include <linux/refcount.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 
20 /*
21  * Algorithm masks and types.
22  */
23 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
24 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
25 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
26 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
27 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
28 #define CRYPTO_ALG_TYPE_AKCIPHER	0x00000006
29 #define CRYPTO_ALG_TYPE_SIG		0x00000007
30 #define CRYPTO_ALG_TYPE_KPP		0x00000008
31 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
32 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
33 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
34 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
35 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
36 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
37 
38 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
39 
40 #define CRYPTO_ALG_LARVAL		0x00000010
41 #define CRYPTO_ALG_DEAD			0x00000020
42 #define CRYPTO_ALG_DYING		0x00000040
43 #define CRYPTO_ALG_ASYNC		0x00000080
44 
45 /*
46  * Set if the algorithm (or an algorithm which it uses) requires another
47  * algorithm of the same type to handle corner cases.
48  */
49 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
50 
51 /*
52  * Set if the algorithm has passed automated run-time testing.  Note that
53  * if there is no run-time testing for a given algorithm it is considered
54  * to have passed.
55  */
56 
57 #define CRYPTO_ALG_TESTED		0x00000400
58 
59 /*
60  * Set if the algorithm is an instance that is built from templates.
61  */
62 #define CRYPTO_ALG_INSTANCE		0x00000800
63 
64 /* Set this bit if the algorithm provided is hardware accelerated but
65  * not available to userspace via instruction set or so.
66  */
67 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
68 
69 /*
70  * Mark a cipher as a service implementation only usable by another
71  * cipher and never by a normal user of the kernel crypto API
72  */
73 #define CRYPTO_ALG_INTERNAL		0x00002000
74 
75 /*
76  * Set if the algorithm has a ->setkey() method but can be used without
77  * calling it first, i.e. there is a default key.
78  */
79 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
80 
81 /*
82  * Don't trigger module loading
83  */
84 #define CRYPTO_NOLOAD			0x00008000
85 
86 /*
87  * The algorithm may allocate memory during request processing, i.e. during
88  * encryption, decryption, or hashing.  Users can request an algorithm with this
89  * flag unset if they can't handle memory allocation failures.
90  *
91  * This flag is currently only implemented for algorithms of type "skcipher",
92  * "aead", "ahash", "shash", and "cipher".  Algorithms of other types might not
93  * have this flag set even if they allocate memory.
94  *
95  * In some edge cases, algorithms can allocate memory regardless of this flag.
96  * To avoid these cases, users must obey the following usage constraints:
97  *    skcipher:
98  *	- The IV buffer and all scatterlist elements must be aligned to the
99  *	  algorithm's alignmask.
100  *	- If the data were to be divided into chunks of size
101  *	  crypto_skcipher_walksize() (with any remainder going at the end), no
102  *	  chunk can cross a page boundary or a scatterlist element boundary.
103  *    aead:
104  *	- The IV buffer and all scatterlist elements must be aligned to the
105  *	  algorithm's alignmask.
106  *	- The first scatterlist element must contain all the associated data,
107  *	  and its pages must be !PageHighMem.
108  *	- If the plaintext/ciphertext were to be divided into chunks of size
109  *	  crypto_aead_walksize() (with the remainder going at the end), no chunk
110  *	  can cross a page boundary or a scatterlist element boundary.
111  *    ahash:
112  *	- The result buffer must be aligned to the algorithm's alignmask.
113  *	- crypto_ahash_finup() must not be used unless the algorithm implements
114  *	  ->finup() natively.
115  */
116 #define CRYPTO_ALG_ALLOCATES_MEMORY	0x00010000
117 
118 /*
119  * Mark an algorithm as a service implementation only usable by a
120  * template and never by a normal user of the kernel crypto API.
121  * This is intended to be used by algorithms that are themselves
122  * not FIPS-approved but may instead be used to implement parts of
123  * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)).
124  */
125 #define CRYPTO_ALG_FIPS_INTERNAL	0x00020000
126 
127 /*
128  * Transform masks and values (for crt_flags).
129  */
130 #define CRYPTO_TFM_NEED_KEY		0x00000001
131 
132 #define CRYPTO_TFM_REQ_MASK		0x000fff00
133 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100
134 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
135 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
136 
137 /*
138  * Miscellaneous stuff.
139  */
140 #define CRYPTO_MAX_ALG_NAME		128
141 
142 /*
143  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
144  * declaration) is used to ensure that the crypto_tfm context structure is
145  * aligned correctly for the given architecture so that there are no alignment
146  * faults for C data types.  On architectures that support non-cache coherent
147  * DMA, such as ARM or arm64, it also takes into account the minimal alignment
148  * that is required to ensure that the context struct member does not share any
149  * cachelines with the rest of the struct. This is needed to ensure that cache
150  * maintenance for non-coherent DMA (cache invalidation in particular) does not
151  * affect data that may be accessed by the CPU concurrently.
152  */
153 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
154 
155 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
156 
157 struct crypto_tfm;
158 struct crypto_type;
159 struct module;
160 
161 typedef void (*crypto_completion_t)(void *req, int err);
162 
163 /**
164  * DOC: Block Cipher Context Data Structures
165  *
166  * These data structures define the operating context for each block cipher
167  * type.
168  */
169 
170 struct crypto_async_request {
171 	struct list_head list;
172 	crypto_completion_t complete;
173 	void *data;
174 	struct crypto_tfm *tfm;
175 
176 	u32 flags;
177 };
178 
179 /**
180  * DOC: Block Cipher Algorithm Definitions
181  *
182  * These data structures define modular crypto algorithm implementations,
183  * managed via crypto_register_alg() and crypto_unregister_alg().
184  */
185 
186 /**
187  * struct cipher_alg - single-block symmetric ciphers definition
188  * @cia_min_keysize: Minimum key size supported by the transformation. This is
189  *		     the smallest key length supported by this transformation
190  *		     algorithm. This must be set to one of the pre-defined
191  *		     values as this is not hardware specific. Possible values
192  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
193  *		     include/crypto/
194  * @cia_max_keysize: Maximum key size supported by the transformation. This is
195  *		    the largest key length supported by this transformation
196  *		    algorithm. This must be set to one of the pre-defined values
197  *		    as this is not hardware specific. Possible values for this
198  *		    field can be found via git grep "_MAX_KEY_SIZE"
199  *		    include/crypto/
200  * @cia_setkey: Set key for the transformation. This function is used to either
201  *	        program a supplied key into the hardware or store the key in the
202  *	        transformation context for programming it later. Note that this
203  *	        function does modify the transformation context. This function
204  *	        can be called multiple times during the existence of the
205  *	        transformation object, so one must make sure the key is properly
206  *	        reprogrammed into the hardware. This function is also
207  *	        responsible for checking the key length for validity.
208  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
209  *		 single block of data, which must be @cra_blocksize big. This
210  *		 always operates on a full @cra_blocksize and it is not possible
211  *		 to encrypt a block of smaller size. The supplied buffers must
212  *		 therefore also be at least of @cra_blocksize size. Both the
213  *		 input and output buffers are always aligned to @cra_alignmask.
214  *		 In case either of the input or output buffer supplied by user
215  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
216  *		 API will re-align the buffers. The re-alignment means that a
217  *		 new buffer will be allocated, the data will be copied into the
218  *		 new buffer, then the processing will happen on the new buffer,
219  *		 then the data will be copied back into the original buffer and
220  *		 finally the new buffer will be freed. In case a software
221  *		 fallback was put in place in the @cra_init call, this function
222  *		 might need to use the fallback if the algorithm doesn't support
223  *		 all of the key sizes. In case the key was stored in
224  *		 transformation context, the key might need to be re-programmed
225  *		 into the hardware in this function. This function shall not
226  *		 modify the transformation context, as this function may be
227  *		 called in parallel with the same transformation object.
228  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
229  *		 @cia_encrypt, and the conditions are exactly the same.
230  *
231  * All fields are mandatory and must be filled.
232  */
233 struct cipher_alg {
234 	unsigned int cia_min_keysize;
235 	unsigned int cia_max_keysize;
236 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
237 	                  unsigned int keylen);
238 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
239 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
240 };
241 
242 /**
243  * struct compress_alg - compression/decompression algorithm
244  * @coa_compress: Compress a buffer of specified length, storing the resulting
245  *		  data in the specified buffer. Return the length of the
246  *		  compressed data in dlen.
247  * @coa_decompress: Decompress the source buffer, storing the uncompressed
248  *		    data in the specified buffer. The length of the data is
249  *		    returned in dlen.
250  *
251  * All fields are mandatory.
252  */
253 struct compress_alg {
254 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
255 			    unsigned int slen, u8 *dst, unsigned int *dlen);
256 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
257 			      unsigned int slen, u8 *dst, unsigned int *dlen);
258 };
259 
260 #define cra_cipher	cra_u.cipher
261 #define cra_compress	cra_u.compress
262 
263 /**
264  * struct crypto_alg - definition of a cryptograpic cipher algorithm
265  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
266  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
267  *	       used for fine-tuning the description of the transformation
268  *	       algorithm.
269  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
270  *		   of the smallest possible unit which can be transformed with
271  *		   this algorithm. The users must respect this value.
272  *		   In case of HASH transformation, it is possible for a smaller
273  *		   block than @cra_blocksize to be passed to the crypto API for
274  *		   transformation, in case of any other transformation type, an
275  * 		   error will be returned upon any attempt to transform smaller
276  *		   than @cra_blocksize chunks.
277  * @cra_ctxsize: Size of the operational context of the transformation. This
278  *		 value informs the kernel crypto API about the memory size
279  *		 needed to be allocated for the transformation context.
280  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
281  *		   buffer containing the input data for the algorithm must be
282  *		   aligned to this alignment mask. The data buffer for the
283  *		   output data must be aligned to this alignment mask. Note that
284  *		   the Crypto API will do the re-alignment in software, but
285  *		   only under special conditions and there is a performance hit.
286  *		   The re-alignment happens at these occasions for different
287  *		   @cra_u types: cipher -- For both input data and output data
288  *		   buffer; ahash -- For output hash destination buf; shash --
289  *		   For output hash destination buf.
290  *		   This is needed on hardware which is flawed by design and
291  *		   cannot pick data from arbitrary addresses.
292  * @cra_priority: Priority of this transformation implementation. In case
293  *		  multiple transformations with same @cra_name are available to
294  *		  the Crypto API, the kernel will use the one with highest
295  *		  @cra_priority.
296  * @cra_name: Generic name (usable by multiple implementations) of the
297  *	      transformation algorithm. This is the name of the transformation
298  *	      itself. This field is used by the kernel when looking up the
299  *	      providers of particular transformation.
300  * @cra_driver_name: Unique name of the transformation provider. This is the
301  *		     name of the provider of the transformation. This can be any
302  *		     arbitrary value, but in the usual case, this contains the
303  *		     name of the chip or provider and the name of the
304  *		     transformation algorithm.
305  * @cra_type: Type of the cryptographic transformation. This is a pointer to
306  *	      struct crypto_type, which implements callbacks common for all
307  *	      transformation types. There are multiple options, such as
308  *	      &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
309  *	      This field might be empty. In that case, there are no common
310  *	      callbacks. This is the case for: cipher, compress, shash.
311  * @cra_u: Callbacks implementing the transformation. This is a union of
312  *	   multiple structures. Depending on the type of transformation selected
313  *	   by @cra_type and @cra_flags above, the associated structure must be
314  *	   filled with callbacks. This field might be empty. This is the case
315  *	   for ahash, shash.
316  * @cra_init: Initialize the cryptographic transformation object. This function
317  *	      is used to initialize the cryptographic transformation object.
318  *	      This function is called only once at the instantiation time, right
319  *	      after the transformation context was allocated. In case the
320  *	      cryptographic hardware has some special requirements which need to
321  *	      be handled by software, this function shall check for the precise
322  *	      requirement of the transformation and put any software fallbacks
323  *	      in place.
324  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
325  *	      counterpart to @cra_init, used to remove various changes set in
326  *	      @cra_init.
327  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
328  *		  definition. See @struct @cipher_alg.
329  * @cra_u.compress: Union member which contains a (de)compression algorithm.
330  *		    See @struct @compress_alg.
331  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
332  * @cra_list: internally used
333  * @cra_users: internally used
334  * @cra_refcnt: internally used
335  * @cra_destroy: internally used
336  *
337  * The struct crypto_alg describes a generic Crypto API algorithm and is common
338  * for all of the transformations. Any variable not documented here shall not
339  * be used by a cipher implementation as it is internal to the Crypto API.
340  */
341 struct crypto_alg {
342 	struct list_head cra_list;
343 	struct list_head cra_users;
344 
345 	u32 cra_flags;
346 	unsigned int cra_blocksize;
347 	unsigned int cra_ctxsize;
348 	unsigned int cra_alignmask;
349 
350 	int cra_priority;
351 	refcount_t cra_refcnt;
352 
353 	char cra_name[CRYPTO_MAX_ALG_NAME];
354 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
355 
356 	const struct crypto_type *cra_type;
357 
358 	union {
359 		struct cipher_alg cipher;
360 		struct compress_alg compress;
361 	} cra_u;
362 
363 	int (*cra_init)(struct crypto_tfm *tfm);
364 	void (*cra_exit)(struct crypto_tfm *tfm);
365 	void (*cra_destroy)(struct crypto_alg *alg);
366 
367 	struct module *cra_module;
368 } CRYPTO_MINALIGN_ATTR;
369 
370 /*
371  * A helper struct for waiting for completion of async crypto ops
372  */
373 struct crypto_wait {
374 	struct completion completion;
375 	int err;
376 };
377 
378 /*
379  * Macro for declaring a crypto op async wait object on stack
380  */
381 #define DECLARE_CRYPTO_WAIT(_wait) \
382 	struct crypto_wait _wait = { \
383 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
384 
385 /*
386  * Async ops completion helper functioons
387  */
388 void crypto_req_done(void *req, int err);
389 
390 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
391 {
392 	switch (err) {
393 	case -EINPROGRESS:
394 	case -EBUSY:
395 		wait_for_completion(&wait->completion);
396 		reinit_completion(&wait->completion);
397 		err = wait->err;
398 		break;
399 	}
400 
401 	return err;
402 }
403 
404 static inline void crypto_init_wait(struct crypto_wait *wait)
405 {
406 	init_completion(&wait->completion);
407 }
408 
409 /*
410  * Algorithm query interface.
411  */
412 int crypto_has_alg(const char *name, u32 type, u32 mask);
413 
414 /*
415  * Transforms: user-instantiated objects which encapsulate algorithms
416  * and core processing logic.  Managed via crypto_alloc_*() and
417  * crypto_free_*(), as well as the various helpers below.
418  */
419 
420 struct crypto_tfm {
421 	refcount_t refcnt;
422 
423 	u32 crt_flags;
424 
425 	int node;
426 
427 	void (*exit)(struct crypto_tfm *tfm);
428 
429 	struct crypto_alg *__crt_alg;
430 
431 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
432 };
433 
434 struct crypto_comp {
435 	struct crypto_tfm base;
436 };
437 
438 /*
439  * Transform user interface.
440  */
441 
442 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
443 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
444 
445 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
446 {
447 	return crypto_destroy_tfm(tfm, tfm);
448 }
449 
450 /*
451  * Transform helpers which query the underlying algorithm.
452  */
453 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
454 {
455 	return tfm->__crt_alg->cra_name;
456 }
457 
458 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
459 {
460 	return tfm->__crt_alg->cra_driver_name;
461 }
462 
463 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
464 {
465 	return tfm->__crt_alg->cra_blocksize;
466 }
467 
468 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
469 {
470 	return tfm->__crt_alg->cra_alignmask;
471 }
472 
473 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
474 {
475 	return tfm->crt_flags;
476 }
477 
478 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
479 {
480 	tfm->crt_flags |= flags;
481 }
482 
483 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
484 {
485 	tfm->crt_flags &= ~flags;
486 }
487 
488 static inline unsigned int crypto_tfm_ctx_alignment(void)
489 {
490 	struct crypto_tfm *tfm;
491 	return __alignof__(tfm->__crt_ctx);
492 }
493 
494 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
495 {
496 	return (struct crypto_comp *)tfm;
497 }
498 
499 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
500 						    u32 type, u32 mask)
501 {
502 	type &= ~CRYPTO_ALG_TYPE_MASK;
503 	type |= CRYPTO_ALG_TYPE_COMPRESS;
504 	mask |= CRYPTO_ALG_TYPE_MASK;
505 
506 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
507 }
508 
509 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
510 {
511 	return &tfm->base;
512 }
513 
514 static inline void crypto_free_comp(struct crypto_comp *tfm)
515 {
516 	crypto_free_tfm(crypto_comp_tfm(tfm));
517 }
518 
519 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
520 {
521 	type &= ~CRYPTO_ALG_TYPE_MASK;
522 	type |= CRYPTO_ALG_TYPE_COMPRESS;
523 	mask |= CRYPTO_ALG_TYPE_MASK;
524 
525 	return crypto_has_alg(alg_name, type, mask);
526 }
527 
528 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
529 {
530 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
531 }
532 
533 int crypto_comp_compress(struct crypto_comp *tfm,
534 			 const u8 *src, unsigned int slen,
535 			 u8 *dst, unsigned int *dlen);
536 
537 int crypto_comp_decompress(struct crypto_comp *tfm,
538 			   const u8 *src, unsigned int slen,
539 			   u8 *dst, unsigned int *dlen);
540 
541 #endif	/* _LINUX_CRYPTO_H */
542 
543