xref: /linux-6.15/include/linux/crypto.h (revision 86effd0d)
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <[email protected]>
5  * Copyright (c) 2002 David S. Miller ([email protected])
6  * Copyright (c) 2005 Herbert Xu <[email protected]>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
9  * and Nettle, by Niels Möller.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19 
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 
28 /*
29  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30  * arbitrary modules to be loaded. Loading from userspace may still need the
31  * unprefixed names, so retains those aliases as well.
32  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34  * expands twice on the same line. Instead, use a separate base name for the
35  * alias.
36  */
37 #define MODULE_ALIAS_CRYPTO(name)	\
38 		__MODULE_INFO(alias, alias_userspace, name);	\
39 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
40 
41 /*
42  * Algorithm masks and types.
43  */
44 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
45 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
46 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
47 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
48 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
49 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
50 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
51 #define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
52 #define CRYPTO_ALG_TYPE_KPP		0x00000008
53 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
54 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
55 #define CRYPTO_ALG_TYPE_DIGEST		0x0000000e
56 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
57 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
58 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
59 
60 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
61 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
62 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
63 
64 #define CRYPTO_ALG_LARVAL		0x00000010
65 #define CRYPTO_ALG_DEAD			0x00000020
66 #define CRYPTO_ALG_DYING		0x00000040
67 #define CRYPTO_ALG_ASYNC		0x00000080
68 
69 /*
70  * Set this bit if and only if the algorithm requires another algorithm of
71  * the same type to handle corner cases.
72  */
73 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
74 
75 /*
76  * This bit is set for symmetric key ciphers that have already been wrapped
77  * with a generic IV generator to prevent them from being wrapped again.
78  */
79 #define CRYPTO_ALG_GENIV		0x00000200
80 
81 /*
82  * Set if the algorithm has passed automated run-time testing.  Note that
83  * if there is no run-time testing for a given algorithm it is considered
84  * to have passed.
85  */
86 
87 #define CRYPTO_ALG_TESTED		0x00000400
88 
89 /*
90  * Set if the algorithm is an instance that is build from templates.
91  */
92 #define CRYPTO_ALG_INSTANCE		0x00000800
93 
94 /* Set this bit if the algorithm provided is hardware accelerated but
95  * not available to userspace via instruction set or so.
96  */
97 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
98 
99 /*
100  * Mark a cipher as a service implementation only usable by another
101  * cipher and never by a normal user of the kernel crypto API
102  */
103 #define CRYPTO_ALG_INTERNAL		0x00002000
104 
105 /*
106  * Transform masks and values (for crt_flags).
107  */
108 #define CRYPTO_TFM_REQ_MASK		0x000fff00
109 #define CRYPTO_TFM_RES_MASK		0xfff00000
110 
111 #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
112 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
113 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
114 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
115 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
116 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
117 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
118 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
119 
120 /*
121  * Miscellaneous stuff.
122  */
123 #define CRYPTO_MAX_ALG_NAME		64
124 
125 /*
126  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
127  * declaration) is used to ensure that the crypto_tfm context structure is
128  * aligned correctly for the given architecture so that there are no alignment
129  * faults for C data types.  In particular, this is required on platforms such
130  * as arm where pointers are 32-bit aligned but there are data types such as
131  * u64 which require 64-bit alignment.
132  */
133 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
134 
135 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
136 
137 struct scatterlist;
138 struct crypto_ablkcipher;
139 struct crypto_async_request;
140 struct crypto_blkcipher;
141 struct crypto_tfm;
142 struct crypto_type;
143 struct skcipher_givcrypt_request;
144 
145 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
146 
147 /**
148  * DOC: Block Cipher Context Data Structures
149  *
150  * These data structures define the operating context for each block cipher
151  * type.
152  */
153 
154 struct crypto_async_request {
155 	struct list_head list;
156 	crypto_completion_t complete;
157 	void *data;
158 	struct crypto_tfm *tfm;
159 
160 	u32 flags;
161 };
162 
163 struct ablkcipher_request {
164 	struct crypto_async_request base;
165 
166 	unsigned int nbytes;
167 
168 	void *info;
169 
170 	struct scatterlist *src;
171 	struct scatterlist *dst;
172 
173 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
174 };
175 
176 struct blkcipher_desc {
177 	struct crypto_blkcipher *tfm;
178 	void *info;
179 	u32 flags;
180 };
181 
182 struct cipher_desc {
183 	struct crypto_tfm *tfm;
184 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
185 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
186 			     const u8 *src, unsigned int nbytes);
187 	void *info;
188 };
189 
190 /**
191  * DOC: Block Cipher Algorithm Definitions
192  *
193  * These data structures define modular crypto algorithm implementations,
194  * managed via crypto_register_alg() and crypto_unregister_alg().
195  */
196 
197 /**
198  * struct ablkcipher_alg - asynchronous block cipher definition
199  * @min_keysize: Minimum key size supported by the transformation. This is the
200  *		 smallest key length supported by this transformation algorithm.
201  *		 This must be set to one of the pre-defined values as this is
202  *		 not hardware specific. Possible values for this field can be
203  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
204  * @max_keysize: Maximum key size supported by the transformation. This is the
205  *		 largest key length supported by this transformation algorithm.
206  *		 This must be set to one of the pre-defined values as this is
207  *		 not hardware specific. Possible values for this field can be
208  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
209  * @setkey: Set key for the transformation. This function is used to either
210  *	    program a supplied key into the hardware or store the key in the
211  *	    transformation context for programming it later. Note that this
212  *	    function does modify the transformation context. This function can
213  *	    be called multiple times during the existence of the transformation
214  *	    object, so one must make sure the key is properly reprogrammed into
215  *	    the hardware. This function is also responsible for checking the key
216  *	    length for validity. In case a software fallback was put in place in
217  *	    the @cra_init call, this function might need to use the fallback if
218  *	    the algorithm doesn't support all of the key sizes.
219  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
220  *	     the supplied scatterlist containing the blocks of data. The crypto
221  *	     API consumer is responsible for aligning the entries of the
222  *	     scatterlist properly and making sure the chunks are correctly
223  *	     sized. In case a software fallback was put in place in the
224  *	     @cra_init call, this function might need to use the fallback if
225  *	     the algorithm doesn't support all of the key sizes. In case the
226  *	     key was stored in transformation context, the key might need to be
227  *	     re-programmed into the hardware in this function. This function
228  *	     shall not modify the transformation context, as this function may
229  *	     be called in parallel with the same transformation object.
230  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
231  *	     and the conditions are exactly the same.
232  * @givencrypt: Update the IV for encryption. With this function, a cipher
233  *	        implementation may provide the function on how to update the IV
234  *	        for encryption.
235  * @givdecrypt: Update the IV for decryption. This is the reverse of
236  *	        @givencrypt .
237  * @geniv: The transformation implementation may use an "IV generator" provided
238  *	   by the kernel crypto API. Several use cases have a predefined
239  *	   approach how IVs are to be updated. For such use cases, the kernel
240  *	   crypto API provides ready-to-use implementations that can be
241  *	   referenced with this variable.
242  * @ivsize: IV size applicable for transformation. The consumer must provide an
243  *	    IV of exactly that size to perform the encrypt or decrypt operation.
244  *
245  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
246  * mandatory and must be filled.
247  */
248 struct ablkcipher_alg {
249 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
250 	              unsigned int keylen);
251 	int (*encrypt)(struct ablkcipher_request *req);
252 	int (*decrypt)(struct ablkcipher_request *req);
253 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
254 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
255 
256 	const char *geniv;
257 
258 	unsigned int min_keysize;
259 	unsigned int max_keysize;
260 	unsigned int ivsize;
261 };
262 
263 /**
264  * struct blkcipher_alg - synchronous block cipher definition
265  * @min_keysize: see struct ablkcipher_alg
266  * @max_keysize: see struct ablkcipher_alg
267  * @setkey: see struct ablkcipher_alg
268  * @encrypt: see struct ablkcipher_alg
269  * @decrypt: see struct ablkcipher_alg
270  * @geniv: see struct ablkcipher_alg
271  * @ivsize: see struct ablkcipher_alg
272  *
273  * All fields except @geniv and @ivsize are mandatory and must be filled.
274  */
275 struct blkcipher_alg {
276 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
277 	              unsigned int keylen);
278 	int (*encrypt)(struct blkcipher_desc *desc,
279 		       struct scatterlist *dst, struct scatterlist *src,
280 		       unsigned int nbytes);
281 	int (*decrypt)(struct blkcipher_desc *desc,
282 		       struct scatterlist *dst, struct scatterlist *src,
283 		       unsigned int nbytes);
284 
285 	const char *geniv;
286 
287 	unsigned int min_keysize;
288 	unsigned int max_keysize;
289 	unsigned int ivsize;
290 };
291 
292 /**
293  * struct cipher_alg - single-block symmetric ciphers definition
294  * @cia_min_keysize: Minimum key size supported by the transformation. This is
295  *		     the smallest key length supported by this transformation
296  *		     algorithm. This must be set to one of the pre-defined
297  *		     values as this is not hardware specific. Possible values
298  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
299  *		     include/crypto/
300  * @cia_max_keysize: Maximum key size supported by the transformation. This is
301  *		    the largest key length supported by this transformation
302  *		    algorithm. This must be set to one of the pre-defined values
303  *		    as this is not hardware specific. Possible values for this
304  *		    field can be found via git grep "_MAX_KEY_SIZE"
305  *		    include/crypto/
306  * @cia_setkey: Set key for the transformation. This function is used to either
307  *	        program a supplied key into the hardware or store the key in the
308  *	        transformation context for programming it later. Note that this
309  *	        function does modify the transformation context. This function
310  *	        can be called multiple times during the existence of the
311  *	        transformation object, so one must make sure the key is properly
312  *	        reprogrammed into the hardware. This function is also
313  *	        responsible for checking the key length for validity.
314  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
315  *		 single block of data, which must be @cra_blocksize big. This
316  *		 always operates on a full @cra_blocksize and it is not possible
317  *		 to encrypt a block of smaller size. The supplied buffers must
318  *		 therefore also be at least of @cra_blocksize size. Both the
319  *		 input and output buffers are always aligned to @cra_alignmask.
320  *		 In case either of the input or output buffer supplied by user
321  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
322  *		 API will re-align the buffers. The re-alignment means that a
323  *		 new buffer will be allocated, the data will be copied into the
324  *		 new buffer, then the processing will happen on the new buffer,
325  *		 then the data will be copied back into the original buffer and
326  *		 finally the new buffer will be freed. In case a software
327  *		 fallback was put in place in the @cra_init call, this function
328  *		 might need to use the fallback if the algorithm doesn't support
329  *		 all of the key sizes. In case the key was stored in
330  *		 transformation context, the key might need to be re-programmed
331  *		 into the hardware in this function. This function shall not
332  *		 modify the transformation context, as this function may be
333  *		 called in parallel with the same transformation object.
334  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
335  *		 @cia_encrypt, and the conditions are exactly the same.
336  *
337  * All fields are mandatory and must be filled.
338  */
339 struct cipher_alg {
340 	unsigned int cia_min_keysize;
341 	unsigned int cia_max_keysize;
342 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
343 	                  unsigned int keylen);
344 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
345 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
346 };
347 
348 struct compress_alg {
349 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
350 			    unsigned int slen, u8 *dst, unsigned int *dlen);
351 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
352 			      unsigned int slen, u8 *dst, unsigned int *dlen);
353 };
354 
355 
356 #define cra_ablkcipher	cra_u.ablkcipher
357 #define cra_blkcipher	cra_u.blkcipher
358 #define cra_cipher	cra_u.cipher
359 #define cra_compress	cra_u.compress
360 
361 /**
362  * struct crypto_alg - definition of a cryptograpic cipher algorithm
363  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
364  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
365  *	       used for fine-tuning the description of the transformation
366  *	       algorithm.
367  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
368  *		   of the smallest possible unit which can be transformed with
369  *		   this algorithm. The users must respect this value.
370  *		   In case of HASH transformation, it is possible for a smaller
371  *		   block than @cra_blocksize to be passed to the crypto API for
372  *		   transformation, in case of any other transformation type, an
373  * 		   error will be returned upon any attempt to transform smaller
374  *		   than @cra_blocksize chunks.
375  * @cra_ctxsize: Size of the operational context of the transformation. This
376  *		 value informs the kernel crypto API about the memory size
377  *		 needed to be allocated for the transformation context.
378  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
379  *		   buffer containing the input data for the algorithm must be
380  *		   aligned to this alignment mask. The data buffer for the
381  *		   output data must be aligned to this alignment mask. Note that
382  *		   the Crypto API will do the re-alignment in software, but
383  *		   only under special conditions and there is a performance hit.
384  *		   The re-alignment happens at these occasions for different
385  *		   @cra_u types: cipher -- For both input data and output data
386  *		   buffer; ahash -- For output hash destination buf; shash --
387  *		   For output hash destination buf.
388  *		   This is needed on hardware which is flawed by design and
389  *		   cannot pick data from arbitrary addresses.
390  * @cra_priority: Priority of this transformation implementation. In case
391  *		  multiple transformations with same @cra_name are available to
392  *		  the Crypto API, the kernel will use the one with highest
393  *		  @cra_priority.
394  * @cra_name: Generic name (usable by multiple implementations) of the
395  *	      transformation algorithm. This is the name of the transformation
396  *	      itself. This field is used by the kernel when looking up the
397  *	      providers of particular transformation.
398  * @cra_driver_name: Unique name of the transformation provider. This is the
399  *		     name of the provider of the transformation. This can be any
400  *		     arbitrary value, but in the usual case, this contains the
401  *		     name of the chip or provider and the name of the
402  *		     transformation algorithm.
403  * @cra_type: Type of the cryptographic transformation. This is a pointer to
404  *	      struct crypto_type, which implements callbacks common for all
405  *	      transformation types. There are multiple options:
406  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
407  *	      &crypto_ahash_type, &crypto_rng_type.
408  *	      This field might be empty. In that case, there are no common
409  *	      callbacks. This is the case for: cipher, compress, shash.
410  * @cra_u: Callbacks implementing the transformation. This is a union of
411  *	   multiple structures. Depending on the type of transformation selected
412  *	   by @cra_type and @cra_flags above, the associated structure must be
413  *	   filled with callbacks. This field might be empty. This is the case
414  *	   for ahash, shash.
415  * @cra_init: Initialize the cryptographic transformation object. This function
416  *	      is used to initialize the cryptographic transformation object.
417  *	      This function is called only once at the instantiation time, right
418  *	      after the transformation context was allocated. In case the
419  *	      cryptographic hardware has some special requirements which need to
420  *	      be handled by software, this function shall check for the precise
421  *	      requirement of the transformation and put any software fallbacks
422  *	      in place.
423  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
424  *	      counterpart to @cra_init, used to remove various changes set in
425  *	      @cra_init.
426  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
427  * @cra_list: internally used
428  * @cra_users: internally used
429  * @cra_refcnt: internally used
430  * @cra_destroy: internally used
431  *
432  * The struct crypto_alg describes a generic Crypto API algorithm and is common
433  * for all of the transformations. Any variable not documented here shall not
434  * be used by a cipher implementation as it is internal to the Crypto API.
435  */
436 struct crypto_alg {
437 	struct list_head cra_list;
438 	struct list_head cra_users;
439 
440 	u32 cra_flags;
441 	unsigned int cra_blocksize;
442 	unsigned int cra_ctxsize;
443 	unsigned int cra_alignmask;
444 
445 	int cra_priority;
446 	atomic_t cra_refcnt;
447 
448 	char cra_name[CRYPTO_MAX_ALG_NAME];
449 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
450 
451 	const struct crypto_type *cra_type;
452 
453 	union {
454 		struct ablkcipher_alg ablkcipher;
455 		struct blkcipher_alg blkcipher;
456 		struct cipher_alg cipher;
457 		struct compress_alg compress;
458 	} cra_u;
459 
460 	int (*cra_init)(struct crypto_tfm *tfm);
461 	void (*cra_exit)(struct crypto_tfm *tfm);
462 	void (*cra_destroy)(struct crypto_alg *alg);
463 
464 	struct module *cra_module;
465 } CRYPTO_MINALIGN_ATTR;
466 
467 /*
468  * Algorithm registration interface.
469  */
470 int crypto_register_alg(struct crypto_alg *alg);
471 int crypto_unregister_alg(struct crypto_alg *alg);
472 int crypto_register_algs(struct crypto_alg *algs, int count);
473 int crypto_unregister_algs(struct crypto_alg *algs, int count);
474 
475 /*
476  * Algorithm query interface.
477  */
478 int crypto_has_alg(const char *name, u32 type, u32 mask);
479 
480 /*
481  * Transforms: user-instantiated objects which encapsulate algorithms
482  * and core processing logic.  Managed via crypto_alloc_*() and
483  * crypto_free_*(), as well as the various helpers below.
484  */
485 
486 struct ablkcipher_tfm {
487 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
488 	              unsigned int keylen);
489 	int (*encrypt)(struct ablkcipher_request *req);
490 	int (*decrypt)(struct ablkcipher_request *req);
491 
492 	struct crypto_ablkcipher *base;
493 
494 	unsigned int ivsize;
495 	unsigned int reqsize;
496 };
497 
498 struct blkcipher_tfm {
499 	void *iv;
500 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
501 		      unsigned int keylen);
502 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
503 		       struct scatterlist *src, unsigned int nbytes);
504 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
505 		       struct scatterlist *src, unsigned int nbytes);
506 };
507 
508 struct cipher_tfm {
509 	int (*cit_setkey)(struct crypto_tfm *tfm,
510 	                  const u8 *key, unsigned int keylen);
511 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
512 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
513 };
514 
515 struct compress_tfm {
516 	int (*cot_compress)(struct crypto_tfm *tfm,
517 	                    const u8 *src, unsigned int slen,
518 	                    u8 *dst, unsigned int *dlen);
519 	int (*cot_decompress)(struct crypto_tfm *tfm,
520 	                      const u8 *src, unsigned int slen,
521 	                      u8 *dst, unsigned int *dlen);
522 };
523 
524 #define crt_ablkcipher	crt_u.ablkcipher
525 #define crt_blkcipher	crt_u.blkcipher
526 #define crt_cipher	crt_u.cipher
527 #define crt_compress	crt_u.compress
528 
529 struct crypto_tfm {
530 
531 	u32 crt_flags;
532 
533 	union {
534 		struct ablkcipher_tfm ablkcipher;
535 		struct blkcipher_tfm blkcipher;
536 		struct cipher_tfm cipher;
537 		struct compress_tfm compress;
538 	} crt_u;
539 
540 	void (*exit)(struct crypto_tfm *tfm);
541 
542 	struct crypto_alg *__crt_alg;
543 
544 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
545 };
546 
547 struct crypto_ablkcipher {
548 	struct crypto_tfm base;
549 };
550 
551 struct crypto_blkcipher {
552 	struct crypto_tfm base;
553 };
554 
555 struct crypto_cipher {
556 	struct crypto_tfm base;
557 };
558 
559 struct crypto_comp {
560 	struct crypto_tfm base;
561 };
562 
563 enum {
564 	CRYPTOA_UNSPEC,
565 	CRYPTOA_ALG,
566 	CRYPTOA_TYPE,
567 	CRYPTOA_U32,
568 	__CRYPTOA_MAX,
569 };
570 
571 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
572 
573 /* Maximum number of (rtattr) parameters for each template. */
574 #define CRYPTO_MAX_ATTRS 32
575 
576 struct crypto_attr_alg {
577 	char name[CRYPTO_MAX_ALG_NAME];
578 };
579 
580 struct crypto_attr_type {
581 	u32 type;
582 	u32 mask;
583 };
584 
585 struct crypto_attr_u32 {
586 	u32 num;
587 };
588 
589 /*
590  * Transform user interface.
591  */
592 
593 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
594 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
595 
596 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
597 {
598 	return crypto_destroy_tfm(tfm, tfm);
599 }
600 
601 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
602 
603 /*
604  * Transform helpers which query the underlying algorithm.
605  */
606 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
607 {
608 	return tfm->__crt_alg->cra_name;
609 }
610 
611 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
612 {
613 	return tfm->__crt_alg->cra_driver_name;
614 }
615 
616 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
617 {
618 	return tfm->__crt_alg->cra_priority;
619 }
620 
621 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
622 {
623 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
624 }
625 
626 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
627 {
628 	return tfm->__crt_alg->cra_blocksize;
629 }
630 
631 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
632 {
633 	return tfm->__crt_alg->cra_alignmask;
634 }
635 
636 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
637 {
638 	return tfm->crt_flags;
639 }
640 
641 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
642 {
643 	tfm->crt_flags |= flags;
644 }
645 
646 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
647 {
648 	tfm->crt_flags &= ~flags;
649 }
650 
651 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
652 {
653 	return tfm->__crt_ctx;
654 }
655 
656 static inline unsigned int crypto_tfm_ctx_alignment(void)
657 {
658 	struct crypto_tfm *tfm;
659 	return __alignof__(tfm->__crt_ctx);
660 }
661 
662 /*
663  * API wrappers.
664  */
665 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
666 	struct crypto_tfm *tfm)
667 {
668 	return (struct crypto_ablkcipher *)tfm;
669 }
670 
671 static inline u32 crypto_skcipher_type(u32 type)
672 {
673 	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
674 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
675 	return type;
676 }
677 
678 static inline u32 crypto_skcipher_mask(u32 mask)
679 {
680 	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
681 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
682 	return mask;
683 }
684 
685 /**
686  * DOC: Asynchronous Block Cipher API
687  *
688  * Asynchronous block cipher API is used with the ciphers of type
689  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
690  *
691  * Asynchronous cipher operations imply that the function invocation for a
692  * cipher request returns immediately before the completion of the operation.
693  * The cipher request is scheduled as a separate kernel thread and therefore
694  * load-balanced on the different CPUs via the process scheduler. To allow
695  * the kernel crypto API to inform the caller about the completion of a cipher
696  * request, the caller must provide a callback function. That function is
697  * invoked with the cipher handle when the request completes.
698  *
699  * To support the asynchronous operation, additional information than just the
700  * cipher handle must be supplied to the kernel crypto API. That additional
701  * information is given by filling in the ablkcipher_request data structure.
702  *
703  * For the asynchronous block cipher API, the state is maintained with the tfm
704  * cipher handle. A single tfm can be used across multiple calls and in
705  * parallel. For asynchronous block cipher calls, context data supplied and
706  * only used by the caller can be referenced the request data structure in
707  * addition to the IV used for the cipher request. The maintenance of such
708  * state information would be important for a crypto driver implementer to
709  * have, because when calling the callback function upon completion of the
710  * cipher operation, that callback function may need some information about
711  * which operation just finished if it invoked multiple in parallel. This
712  * state information is unused by the kernel crypto API.
713  */
714 
715 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
716 	struct crypto_ablkcipher *tfm)
717 {
718 	return &tfm->base;
719 }
720 
721 /**
722  * crypto_free_ablkcipher() - zeroize and free cipher handle
723  * @tfm: cipher handle to be freed
724  */
725 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
726 {
727 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
728 }
729 
730 /**
731  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
732  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
733  *	      ablkcipher
734  * @type: specifies the type of the cipher
735  * @mask: specifies the mask for the cipher
736  *
737  * Return: true when the ablkcipher is known to the kernel crypto API; false
738  *	   otherwise
739  */
740 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
741 					u32 mask)
742 {
743 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
744 			      crypto_skcipher_mask(mask));
745 }
746 
747 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
748 	struct crypto_ablkcipher *tfm)
749 {
750 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
751 }
752 
753 /**
754  * crypto_ablkcipher_ivsize() - obtain IV size
755  * @tfm: cipher handle
756  *
757  * The size of the IV for the ablkcipher referenced by the cipher handle is
758  * returned. This IV size may be zero if the cipher does not need an IV.
759  *
760  * Return: IV size in bytes
761  */
762 static inline unsigned int crypto_ablkcipher_ivsize(
763 	struct crypto_ablkcipher *tfm)
764 {
765 	return crypto_ablkcipher_crt(tfm)->ivsize;
766 }
767 
768 /**
769  * crypto_ablkcipher_blocksize() - obtain block size of cipher
770  * @tfm: cipher handle
771  *
772  * The block size for the ablkcipher referenced with the cipher handle is
773  * returned. The caller may use that information to allocate appropriate
774  * memory for the data returned by the encryption or decryption operation
775  *
776  * Return: block size of cipher
777  */
778 static inline unsigned int crypto_ablkcipher_blocksize(
779 	struct crypto_ablkcipher *tfm)
780 {
781 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
782 }
783 
784 static inline unsigned int crypto_ablkcipher_alignmask(
785 	struct crypto_ablkcipher *tfm)
786 {
787 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
788 }
789 
790 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
791 {
792 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
793 }
794 
795 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
796 					       u32 flags)
797 {
798 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
799 }
800 
801 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
802 						 u32 flags)
803 {
804 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
805 }
806 
807 /**
808  * crypto_ablkcipher_setkey() - set key for cipher
809  * @tfm: cipher handle
810  * @key: buffer holding the key
811  * @keylen: length of the key in bytes
812  *
813  * The caller provided key is set for the ablkcipher referenced by the cipher
814  * handle.
815  *
816  * Note, the key length determines the cipher type. Many block ciphers implement
817  * different cipher modes depending on the key size, such as AES-128 vs AES-192
818  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
819  * is performed.
820  *
821  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
822  */
823 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
824 					   const u8 *key, unsigned int keylen)
825 {
826 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
827 
828 	return crt->setkey(crt->base, key, keylen);
829 }
830 
831 /**
832  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
833  * @req: ablkcipher_request out of which the cipher handle is to be obtained
834  *
835  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
836  * data structure.
837  *
838  * Return: crypto_ablkcipher handle
839  */
840 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
841 	struct ablkcipher_request *req)
842 {
843 	return __crypto_ablkcipher_cast(req->base.tfm);
844 }
845 
846 /**
847  * crypto_ablkcipher_encrypt() - encrypt plaintext
848  * @req: reference to the ablkcipher_request handle that holds all information
849  *	 needed to perform the cipher operation
850  *
851  * Encrypt plaintext data using the ablkcipher_request handle. That data
852  * structure and how it is filled with data is discussed with the
853  * ablkcipher_request_* functions.
854  *
855  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
856  */
857 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
858 {
859 	struct ablkcipher_tfm *crt =
860 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
861 	return crt->encrypt(req);
862 }
863 
864 /**
865  * crypto_ablkcipher_decrypt() - decrypt ciphertext
866  * @req: reference to the ablkcipher_request handle that holds all information
867  *	 needed to perform the cipher operation
868  *
869  * Decrypt ciphertext data using the ablkcipher_request handle. That data
870  * structure and how it is filled with data is discussed with the
871  * ablkcipher_request_* functions.
872  *
873  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
874  */
875 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
876 {
877 	struct ablkcipher_tfm *crt =
878 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
879 	return crt->decrypt(req);
880 }
881 
882 /**
883  * DOC: Asynchronous Cipher Request Handle
884  *
885  * The ablkcipher_request data structure contains all pointers to data
886  * required for the asynchronous cipher operation. This includes the cipher
887  * handle (which can be used by multiple ablkcipher_request instances), pointer
888  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
889  * as a handle to the ablkcipher_request_* API calls in a similar way as
890  * ablkcipher handle to the crypto_ablkcipher_* API calls.
891  */
892 
893 /**
894  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
895  * @tfm: cipher handle
896  *
897  * Return: number of bytes
898  */
899 static inline unsigned int crypto_ablkcipher_reqsize(
900 	struct crypto_ablkcipher *tfm)
901 {
902 	return crypto_ablkcipher_crt(tfm)->reqsize;
903 }
904 
905 /**
906  * ablkcipher_request_set_tfm() - update cipher handle reference in request
907  * @req: request handle to be modified
908  * @tfm: cipher handle that shall be added to the request handle
909  *
910  * Allow the caller to replace the existing ablkcipher handle in the request
911  * data structure with a different one.
912  */
913 static inline void ablkcipher_request_set_tfm(
914 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
915 {
916 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
917 }
918 
919 static inline struct ablkcipher_request *ablkcipher_request_cast(
920 	struct crypto_async_request *req)
921 {
922 	return container_of(req, struct ablkcipher_request, base);
923 }
924 
925 /**
926  * ablkcipher_request_alloc() - allocate request data structure
927  * @tfm: cipher handle to be registered with the request
928  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
929  *
930  * Allocate the request data structure that must be used with the ablkcipher
931  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
932  * handle is registered in the request data structure.
933  *
934  * Return: allocated request handle in case of success, or NULL if out of memory
935  */
936 static inline struct ablkcipher_request *ablkcipher_request_alloc(
937 	struct crypto_ablkcipher *tfm, gfp_t gfp)
938 {
939 	struct ablkcipher_request *req;
940 
941 	req = kmalloc(sizeof(struct ablkcipher_request) +
942 		      crypto_ablkcipher_reqsize(tfm), gfp);
943 
944 	if (likely(req))
945 		ablkcipher_request_set_tfm(req, tfm);
946 
947 	return req;
948 }
949 
950 /**
951  * ablkcipher_request_free() - zeroize and free request data structure
952  * @req: request data structure cipher handle to be freed
953  */
954 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
955 {
956 	kzfree(req);
957 }
958 
959 /**
960  * ablkcipher_request_set_callback() - set asynchronous callback function
961  * @req: request handle
962  * @flags: specify zero or an ORing of the flags
963  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
964  *	   increase the wait queue beyond the initial maximum size;
965  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
966  * @compl: callback function pointer to be registered with the request handle
967  * @data: The data pointer refers to memory that is not used by the kernel
968  *	  crypto API, but provided to the callback function for it to use. Here,
969  *	  the caller can provide a reference to memory the callback function can
970  *	  operate on. As the callback function is invoked asynchronously to the
971  *	  related functionality, it may need to access data structures of the
972  *	  related functionality which can be referenced using this pointer. The
973  *	  callback function can access the memory via the "data" field in the
974  *	  crypto_async_request data structure provided to the callback function.
975  *
976  * This function allows setting the callback function that is triggered once the
977  * cipher operation completes.
978  *
979  * The callback function is registered with the ablkcipher_request handle and
980  * must comply with the following template
981  *
982  *	void callback_function(struct crypto_async_request *req, int error)
983  */
984 static inline void ablkcipher_request_set_callback(
985 	struct ablkcipher_request *req,
986 	u32 flags, crypto_completion_t compl, void *data)
987 {
988 	req->base.complete = compl;
989 	req->base.data = data;
990 	req->base.flags = flags;
991 }
992 
993 /**
994  * ablkcipher_request_set_crypt() - set data buffers
995  * @req: request handle
996  * @src: source scatter / gather list
997  * @dst: destination scatter / gather list
998  * @nbytes: number of bytes to process from @src
999  * @iv: IV for the cipher operation which must comply with the IV size defined
1000  *      by crypto_ablkcipher_ivsize
1001  *
1002  * This function allows setting of the source data and destination data
1003  * scatter / gather lists.
1004  *
1005  * For encryption, the source is treated as the plaintext and the
1006  * destination is the ciphertext. For a decryption operation, the use is
1007  * reversed - the source is the ciphertext and the destination is the plaintext.
1008  */
1009 static inline void ablkcipher_request_set_crypt(
1010 	struct ablkcipher_request *req,
1011 	struct scatterlist *src, struct scatterlist *dst,
1012 	unsigned int nbytes, void *iv)
1013 {
1014 	req->src = src;
1015 	req->dst = dst;
1016 	req->nbytes = nbytes;
1017 	req->info = iv;
1018 }
1019 
1020 /**
1021  * DOC: Synchronous Block Cipher API
1022  *
1023  * The synchronous block cipher API is used with the ciphers of type
1024  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1025  *
1026  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1027  * used in multiple calls and in parallel, this info should not be changeable
1028  * (unless a lock is used). This applies, for example, to the symmetric key.
1029  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1030  * structure for synchronous blkcipher api. So, its the only state info that can
1031  * be kept for synchronous calls without using a big lock across a tfm.
1032  *
1033  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1034  * consisting of a template (a block chaining mode) and a single block cipher
1035  * primitive (e.g. AES).
1036  *
1037  * The plaintext data buffer and the ciphertext data buffer are pointed to
1038  * by using scatter/gather lists. The cipher operation is performed
1039  * on all segments of the provided scatter/gather lists.
1040  *
1041  * The kernel crypto API supports a cipher operation "in-place" which means that
1042  * the caller may provide the same scatter/gather list for the plaintext and
1043  * cipher text. After the completion of the cipher operation, the plaintext
1044  * data is replaced with the ciphertext data in case of an encryption and vice
1045  * versa for a decryption. The caller must ensure that the scatter/gather lists
1046  * for the output data point to sufficiently large buffers, i.e. multiples of
1047  * the block size of the cipher.
1048  */
1049 
1050 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1051 	struct crypto_tfm *tfm)
1052 {
1053 	return (struct crypto_blkcipher *)tfm;
1054 }
1055 
1056 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1057 	struct crypto_tfm *tfm)
1058 {
1059 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1060 	return __crypto_blkcipher_cast(tfm);
1061 }
1062 
1063 /**
1064  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1065  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1066  *	      blkcipher cipher
1067  * @type: specifies the type of the cipher
1068  * @mask: specifies the mask for the cipher
1069  *
1070  * Allocate a cipher handle for a block cipher. The returned struct
1071  * crypto_blkcipher is the cipher handle that is required for any subsequent
1072  * API invocation for that block cipher.
1073  *
1074  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1075  *	   of an error, PTR_ERR() returns the error code.
1076  */
1077 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1078 	const char *alg_name, u32 type, u32 mask)
1079 {
1080 	type &= ~CRYPTO_ALG_TYPE_MASK;
1081 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1082 	mask |= CRYPTO_ALG_TYPE_MASK;
1083 
1084 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1085 }
1086 
1087 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1088 	struct crypto_blkcipher *tfm)
1089 {
1090 	return &tfm->base;
1091 }
1092 
1093 /**
1094  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1095  * @tfm: cipher handle to be freed
1096  */
1097 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1098 {
1099 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1100 }
1101 
1102 /**
1103  * crypto_has_blkcipher() - Search for the availability of a block cipher
1104  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1105  *	      block cipher
1106  * @type: specifies the type of the cipher
1107  * @mask: specifies the mask for the cipher
1108  *
1109  * Return: true when the block cipher is known to the kernel crypto API; false
1110  *	   otherwise
1111  */
1112 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1113 {
1114 	type &= ~CRYPTO_ALG_TYPE_MASK;
1115 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1116 	mask |= CRYPTO_ALG_TYPE_MASK;
1117 
1118 	return crypto_has_alg(alg_name, type, mask);
1119 }
1120 
1121 /**
1122  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1123  * @tfm: cipher handle
1124  *
1125  * Return: The character string holding the name of the cipher
1126  */
1127 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1128 {
1129 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1130 }
1131 
1132 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1133 	struct crypto_blkcipher *tfm)
1134 {
1135 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1136 }
1137 
1138 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1139 	struct crypto_blkcipher *tfm)
1140 {
1141 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1142 }
1143 
1144 /**
1145  * crypto_blkcipher_ivsize() - obtain IV size
1146  * @tfm: cipher handle
1147  *
1148  * The size of the IV for the block cipher referenced by the cipher handle is
1149  * returned. This IV size may be zero if the cipher does not need an IV.
1150  *
1151  * Return: IV size in bytes
1152  */
1153 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1154 {
1155 	return crypto_blkcipher_alg(tfm)->ivsize;
1156 }
1157 
1158 /**
1159  * crypto_blkcipher_blocksize() - obtain block size of cipher
1160  * @tfm: cipher handle
1161  *
1162  * The block size for the block cipher referenced with the cipher handle is
1163  * returned. The caller may use that information to allocate appropriate
1164  * memory for the data returned by the encryption or decryption operation.
1165  *
1166  * Return: block size of cipher
1167  */
1168 static inline unsigned int crypto_blkcipher_blocksize(
1169 	struct crypto_blkcipher *tfm)
1170 {
1171 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1172 }
1173 
1174 static inline unsigned int crypto_blkcipher_alignmask(
1175 	struct crypto_blkcipher *tfm)
1176 {
1177 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1178 }
1179 
1180 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1181 {
1182 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1183 }
1184 
1185 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1186 					      u32 flags)
1187 {
1188 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1189 }
1190 
1191 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1192 						u32 flags)
1193 {
1194 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1195 }
1196 
1197 /**
1198  * crypto_blkcipher_setkey() - set key for cipher
1199  * @tfm: cipher handle
1200  * @key: buffer holding the key
1201  * @keylen: length of the key in bytes
1202  *
1203  * The caller provided key is set for the block cipher referenced by the cipher
1204  * handle.
1205  *
1206  * Note, the key length determines the cipher type. Many block ciphers implement
1207  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1208  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1209  * is performed.
1210  *
1211  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1212  */
1213 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1214 					  const u8 *key, unsigned int keylen)
1215 {
1216 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1217 						 key, keylen);
1218 }
1219 
1220 /**
1221  * crypto_blkcipher_encrypt() - encrypt plaintext
1222  * @desc: reference to the block cipher handle with meta data
1223  * @dst: scatter/gather list that is filled by the cipher operation with the
1224  *	ciphertext
1225  * @src: scatter/gather list that holds the plaintext
1226  * @nbytes: number of bytes of the plaintext to encrypt.
1227  *
1228  * Encrypt plaintext data using the IV set by the caller with a preceding
1229  * call of crypto_blkcipher_set_iv.
1230  *
1231  * The blkcipher_desc data structure must be filled by the caller and can
1232  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1233  * with the block cipher handle; desc.flags is filled with either
1234  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1235  *
1236  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1237  */
1238 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1239 					   struct scatterlist *dst,
1240 					   struct scatterlist *src,
1241 					   unsigned int nbytes)
1242 {
1243 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1244 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1245 }
1246 
1247 /**
1248  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1249  * @desc: reference to the block cipher handle with meta data
1250  * @dst: scatter/gather list that is filled by the cipher operation with the
1251  *	ciphertext
1252  * @src: scatter/gather list that holds the plaintext
1253  * @nbytes: number of bytes of the plaintext to encrypt.
1254  *
1255  * Encrypt plaintext data with the use of an IV that is solely used for this
1256  * cipher operation. Any previously set IV is not used.
1257  *
1258  * The blkcipher_desc data structure must be filled by the caller and can
1259  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1260  * with the block cipher handle; desc.info is filled with the IV to be used for
1261  * the current operation; desc.flags is filled with either
1262  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1263  *
1264  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1265  */
1266 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1267 					      struct scatterlist *dst,
1268 					      struct scatterlist *src,
1269 					      unsigned int nbytes)
1270 {
1271 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1272 }
1273 
1274 /**
1275  * crypto_blkcipher_decrypt() - decrypt ciphertext
1276  * @desc: reference to the block cipher handle with meta data
1277  * @dst: scatter/gather list that is filled by the cipher operation with the
1278  *	plaintext
1279  * @src: scatter/gather list that holds the ciphertext
1280  * @nbytes: number of bytes of the ciphertext to decrypt.
1281  *
1282  * Decrypt ciphertext data using the IV set by the caller with a preceding
1283  * call of crypto_blkcipher_set_iv.
1284  *
1285  * The blkcipher_desc data structure must be filled by the caller as documented
1286  * for the crypto_blkcipher_encrypt call above.
1287  *
1288  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1289  *
1290  */
1291 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1292 					   struct scatterlist *dst,
1293 					   struct scatterlist *src,
1294 					   unsigned int nbytes)
1295 {
1296 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1297 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1298 }
1299 
1300 /**
1301  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1302  * @desc: reference to the block cipher handle with meta data
1303  * @dst: scatter/gather list that is filled by the cipher operation with the
1304  *	plaintext
1305  * @src: scatter/gather list that holds the ciphertext
1306  * @nbytes: number of bytes of the ciphertext to decrypt.
1307  *
1308  * Decrypt ciphertext data with the use of an IV that is solely used for this
1309  * cipher operation. Any previously set IV is not used.
1310  *
1311  * The blkcipher_desc data structure must be filled by the caller as documented
1312  * for the crypto_blkcipher_encrypt_iv call above.
1313  *
1314  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1315  */
1316 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1317 					      struct scatterlist *dst,
1318 					      struct scatterlist *src,
1319 					      unsigned int nbytes)
1320 {
1321 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1322 }
1323 
1324 /**
1325  * crypto_blkcipher_set_iv() - set IV for cipher
1326  * @tfm: cipher handle
1327  * @src: buffer holding the IV
1328  * @len: length of the IV in bytes
1329  *
1330  * The caller provided IV is set for the block cipher referenced by the cipher
1331  * handle.
1332  */
1333 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1334 					   const u8 *src, unsigned int len)
1335 {
1336 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1337 }
1338 
1339 /**
1340  * crypto_blkcipher_get_iv() - obtain IV from cipher
1341  * @tfm: cipher handle
1342  * @dst: buffer filled with the IV
1343  * @len: length of the buffer dst
1344  *
1345  * The caller can obtain the IV set for the block cipher referenced by the
1346  * cipher handle and store it into the user-provided buffer. If the buffer
1347  * has an insufficient space, the IV is truncated to fit the buffer.
1348  */
1349 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1350 					   u8 *dst, unsigned int len)
1351 {
1352 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1353 }
1354 
1355 /**
1356  * DOC: Single Block Cipher API
1357  *
1358  * The single block cipher API is used with the ciphers of type
1359  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1360  *
1361  * Using the single block cipher API calls, operations with the basic cipher
1362  * primitive can be implemented. These cipher primitives exclude any block
1363  * chaining operations including IV handling.
1364  *
1365  * The purpose of this single block cipher API is to support the implementation
1366  * of templates or other concepts that only need to perform the cipher operation
1367  * on one block at a time. Templates invoke the underlying cipher primitive
1368  * block-wise and process either the input or the output data of these cipher
1369  * operations.
1370  */
1371 
1372 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1373 {
1374 	return (struct crypto_cipher *)tfm;
1375 }
1376 
1377 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1378 {
1379 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1380 	return __crypto_cipher_cast(tfm);
1381 }
1382 
1383 /**
1384  * crypto_alloc_cipher() - allocate single block cipher handle
1385  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1386  *	     single block cipher
1387  * @type: specifies the type of the cipher
1388  * @mask: specifies the mask for the cipher
1389  *
1390  * Allocate a cipher handle for a single block cipher. The returned struct
1391  * crypto_cipher is the cipher handle that is required for any subsequent API
1392  * invocation for that single block cipher.
1393  *
1394  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1395  *	   of an error, PTR_ERR() returns the error code.
1396  */
1397 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1398 							u32 type, u32 mask)
1399 {
1400 	type &= ~CRYPTO_ALG_TYPE_MASK;
1401 	type |= CRYPTO_ALG_TYPE_CIPHER;
1402 	mask |= CRYPTO_ALG_TYPE_MASK;
1403 
1404 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1405 }
1406 
1407 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1408 {
1409 	return &tfm->base;
1410 }
1411 
1412 /**
1413  * crypto_free_cipher() - zeroize and free the single block cipher handle
1414  * @tfm: cipher handle to be freed
1415  */
1416 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1417 {
1418 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1419 }
1420 
1421 /**
1422  * crypto_has_cipher() - Search for the availability of a single block cipher
1423  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1424  *	     single block cipher
1425  * @type: specifies the type of the cipher
1426  * @mask: specifies the mask for the cipher
1427  *
1428  * Return: true when the single block cipher is known to the kernel crypto API;
1429  *	   false otherwise
1430  */
1431 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1432 {
1433 	type &= ~CRYPTO_ALG_TYPE_MASK;
1434 	type |= CRYPTO_ALG_TYPE_CIPHER;
1435 	mask |= CRYPTO_ALG_TYPE_MASK;
1436 
1437 	return crypto_has_alg(alg_name, type, mask);
1438 }
1439 
1440 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1441 {
1442 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1443 }
1444 
1445 /**
1446  * crypto_cipher_blocksize() - obtain block size for cipher
1447  * @tfm: cipher handle
1448  *
1449  * The block size for the single block cipher referenced with the cipher handle
1450  * tfm is returned. The caller may use that information to allocate appropriate
1451  * memory for the data returned by the encryption or decryption operation
1452  *
1453  * Return: block size of cipher
1454  */
1455 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1456 {
1457 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1458 }
1459 
1460 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1461 {
1462 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1463 }
1464 
1465 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1466 {
1467 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1468 }
1469 
1470 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1471 					   u32 flags)
1472 {
1473 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1474 }
1475 
1476 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1477 					     u32 flags)
1478 {
1479 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1480 }
1481 
1482 /**
1483  * crypto_cipher_setkey() - set key for cipher
1484  * @tfm: cipher handle
1485  * @key: buffer holding the key
1486  * @keylen: length of the key in bytes
1487  *
1488  * The caller provided key is set for the single block cipher referenced by the
1489  * cipher handle.
1490  *
1491  * Note, the key length determines the cipher type. Many block ciphers implement
1492  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1493  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1494  * is performed.
1495  *
1496  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1497  */
1498 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1499                                        const u8 *key, unsigned int keylen)
1500 {
1501 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1502 						  key, keylen);
1503 }
1504 
1505 /**
1506  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1507  * @tfm: cipher handle
1508  * @dst: points to the buffer that will be filled with the ciphertext
1509  * @src: buffer holding the plaintext to be encrypted
1510  *
1511  * Invoke the encryption operation of one block. The caller must ensure that
1512  * the plaintext and ciphertext buffers are at least one block in size.
1513  */
1514 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1515 					     u8 *dst, const u8 *src)
1516 {
1517 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1518 						dst, src);
1519 }
1520 
1521 /**
1522  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1523  * @tfm: cipher handle
1524  * @dst: points to the buffer that will be filled with the plaintext
1525  * @src: buffer holding the ciphertext to be decrypted
1526  *
1527  * Invoke the decryption operation of one block. The caller must ensure that
1528  * the plaintext and ciphertext buffers are at least one block in size.
1529  */
1530 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1531 					     u8 *dst, const u8 *src)
1532 {
1533 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1534 						dst, src);
1535 }
1536 
1537 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1538 {
1539 	return (struct crypto_comp *)tfm;
1540 }
1541 
1542 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1543 {
1544 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1545 	       CRYPTO_ALG_TYPE_MASK);
1546 	return __crypto_comp_cast(tfm);
1547 }
1548 
1549 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1550 						    u32 type, u32 mask)
1551 {
1552 	type &= ~CRYPTO_ALG_TYPE_MASK;
1553 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1554 	mask |= CRYPTO_ALG_TYPE_MASK;
1555 
1556 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1557 }
1558 
1559 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1560 {
1561 	return &tfm->base;
1562 }
1563 
1564 static inline void crypto_free_comp(struct crypto_comp *tfm)
1565 {
1566 	crypto_free_tfm(crypto_comp_tfm(tfm));
1567 }
1568 
1569 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1570 {
1571 	type &= ~CRYPTO_ALG_TYPE_MASK;
1572 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1573 	mask |= CRYPTO_ALG_TYPE_MASK;
1574 
1575 	return crypto_has_alg(alg_name, type, mask);
1576 }
1577 
1578 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1579 {
1580 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1581 }
1582 
1583 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1584 {
1585 	return &crypto_comp_tfm(tfm)->crt_compress;
1586 }
1587 
1588 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1589                                        const u8 *src, unsigned int slen,
1590                                        u8 *dst, unsigned int *dlen)
1591 {
1592 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1593 						  src, slen, dst, dlen);
1594 }
1595 
1596 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1597                                          const u8 *src, unsigned int slen,
1598                                          u8 *dst, unsigned int *dlen)
1599 {
1600 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1601 						    src, slen, dst, dlen);
1602 }
1603 
1604 #endif	/* _LINUX_CRYPTO_H */
1605 
1606