xref: /linux-6.15/include/linux/crypto.h (revision 44f13133)
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <[email protected]>
5  * Copyright (c) 2002 David S. Miller ([email protected])
6  * Copyright (c) 2005 Herbert Xu <[email protected]>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
9  * and Nettle, by Niels Möller.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19 
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
28 
29 /*
30  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31  * arbitrary modules to be loaded. Loading from userspace may still need the
32  * unprefixed names, so retains those aliases as well.
33  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35  * expands twice on the same line. Instead, use a separate base name for the
36  * alias.
37  */
38 #define MODULE_ALIAS_CRYPTO(name)	\
39 		__MODULE_INFO(alias, alias_userspace, name);	\
40 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
41 
42 /*
43  * Algorithm masks and types.
44  */
45 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
51 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
52 #define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
53 #define CRYPTO_ALG_TYPE_KPP		0x00000008
54 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
55 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
56 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
57 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
58 #define CRYPTO_ALG_TYPE_DIGEST		0x0000000e
59 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
60 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
61 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
62 
63 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
64 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
65 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
66 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
67 
68 #define CRYPTO_ALG_LARVAL		0x00000010
69 #define CRYPTO_ALG_DEAD			0x00000020
70 #define CRYPTO_ALG_DYING		0x00000040
71 #define CRYPTO_ALG_ASYNC		0x00000080
72 
73 /*
74  * Set this bit if and only if the algorithm requires another algorithm of
75  * the same type to handle corner cases.
76  */
77 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
78 
79 /*
80  * This bit is set for symmetric key ciphers that have already been wrapped
81  * with a generic IV generator to prevent them from being wrapped again.
82  */
83 #define CRYPTO_ALG_GENIV		0x00000200
84 
85 /*
86  * Set if the algorithm has passed automated run-time testing.  Note that
87  * if there is no run-time testing for a given algorithm it is considered
88  * to have passed.
89  */
90 
91 #define CRYPTO_ALG_TESTED		0x00000400
92 
93 /*
94  * Set if the algorithm is an instance that is built from templates.
95  */
96 #define CRYPTO_ALG_INSTANCE		0x00000800
97 
98 /* Set this bit if the algorithm provided is hardware accelerated but
99  * not available to userspace via instruction set or so.
100  */
101 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
102 
103 /*
104  * Mark a cipher as a service implementation only usable by another
105  * cipher and never by a normal user of the kernel crypto API
106  */
107 #define CRYPTO_ALG_INTERNAL		0x00002000
108 
109 /*
110  * Set if the algorithm has a ->setkey() method but can be used without
111  * calling it first, i.e. there is a default key.
112  */
113 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
114 
115 /*
116  * Don't trigger module loading
117  */
118 #define CRYPTO_NOLOAD			0x00008000
119 
120 /*
121  * Transform masks and values (for crt_flags).
122  */
123 #define CRYPTO_TFM_NEED_KEY		0x00000001
124 
125 #define CRYPTO_TFM_REQ_MASK		0x000fff00
126 #define CRYPTO_TFM_RES_MASK		0xfff00000
127 
128 #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
129 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
130 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
131 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
132 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
133 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
134 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
135 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
136 
137 /*
138  * Miscellaneous stuff.
139  */
140 #define CRYPTO_MAX_ALG_NAME		128
141 
142 /*
143  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
144  * declaration) is used to ensure that the crypto_tfm context structure is
145  * aligned correctly for the given architecture so that there are no alignment
146  * faults for C data types.  In particular, this is required on platforms such
147  * as arm where pointers are 32-bit aligned but there are data types such as
148  * u64 which require 64-bit alignment.
149  */
150 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
151 
152 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
153 
154 struct scatterlist;
155 struct crypto_ablkcipher;
156 struct crypto_async_request;
157 struct crypto_blkcipher;
158 struct crypto_tfm;
159 struct crypto_type;
160 struct skcipher_givcrypt_request;
161 
162 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
163 
164 /**
165  * DOC: Block Cipher Context Data Structures
166  *
167  * These data structures define the operating context for each block cipher
168  * type.
169  */
170 
171 struct crypto_async_request {
172 	struct list_head list;
173 	crypto_completion_t complete;
174 	void *data;
175 	struct crypto_tfm *tfm;
176 
177 	u32 flags;
178 };
179 
180 struct ablkcipher_request {
181 	struct crypto_async_request base;
182 
183 	unsigned int nbytes;
184 
185 	void *info;
186 
187 	struct scatterlist *src;
188 	struct scatterlist *dst;
189 
190 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
191 };
192 
193 struct blkcipher_desc {
194 	struct crypto_blkcipher *tfm;
195 	void *info;
196 	u32 flags;
197 };
198 
199 struct cipher_desc {
200 	struct crypto_tfm *tfm;
201 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
202 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
203 			     const u8 *src, unsigned int nbytes);
204 	void *info;
205 };
206 
207 /**
208  * DOC: Block Cipher Algorithm Definitions
209  *
210  * These data structures define modular crypto algorithm implementations,
211  * managed via crypto_register_alg() and crypto_unregister_alg().
212  */
213 
214 /**
215  * struct ablkcipher_alg - asynchronous block cipher definition
216  * @min_keysize: Minimum key size supported by the transformation. This is the
217  *		 smallest key length supported by this transformation algorithm.
218  *		 This must be set to one of the pre-defined values as this is
219  *		 not hardware specific. Possible values for this field can be
220  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
221  * @max_keysize: Maximum key size supported by the transformation. This is the
222  *		 largest key length supported by this transformation algorithm.
223  *		 This must be set to one of the pre-defined values as this is
224  *		 not hardware specific. Possible values for this field can be
225  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
226  * @setkey: Set key for the transformation. This function is used to either
227  *	    program a supplied key into the hardware or store the key in the
228  *	    transformation context for programming it later. Note that this
229  *	    function does modify the transformation context. This function can
230  *	    be called multiple times during the existence of the transformation
231  *	    object, so one must make sure the key is properly reprogrammed into
232  *	    the hardware. This function is also responsible for checking the key
233  *	    length for validity. In case a software fallback was put in place in
234  *	    the @cra_init call, this function might need to use the fallback if
235  *	    the algorithm doesn't support all of the key sizes.
236  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
237  *	     the supplied scatterlist containing the blocks of data. The crypto
238  *	     API consumer is responsible for aligning the entries of the
239  *	     scatterlist properly and making sure the chunks are correctly
240  *	     sized. In case a software fallback was put in place in the
241  *	     @cra_init call, this function might need to use the fallback if
242  *	     the algorithm doesn't support all of the key sizes. In case the
243  *	     key was stored in transformation context, the key might need to be
244  *	     re-programmed into the hardware in this function. This function
245  *	     shall not modify the transformation context, as this function may
246  *	     be called in parallel with the same transformation object.
247  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
248  *	     and the conditions are exactly the same.
249  * @givencrypt: Update the IV for encryption. With this function, a cipher
250  *	        implementation may provide the function on how to update the IV
251  *	        for encryption.
252  * @givdecrypt: Update the IV for decryption. This is the reverse of
253  *	        @givencrypt .
254  * @geniv: The transformation implementation may use an "IV generator" provided
255  *	   by the kernel crypto API. Several use cases have a predefined
256  *	   approach how IVs are to be updated. For such use cases, the kernel
257  *	   crypto API provides ready-to-use implementations that can be
258  *	   referenced with this variable.
259  * @ivsize: IV size applicable for transformation. The consumer must provide an
260  *	    IV of exactly that size to perform the encrypt or decrypt operation.
261  *
262  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
263  * mandatory and must be filled.
264  */
265 struct ablkcipher_alg {
266 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
267 	              unsigned int keylen);
268 	int (*encrypt)(struct ablkcipher_request *req);
269 	int (*decrypt)(struct ablkcipher_request *req);
270 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
271 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
272 
273 	const char *geniv;
274 
275 	unsigned int min_keysize;
276 	unsigned int max_keysize;
277 	unsigned int ivsize;
278 };
279 
280 /**
281  * struct blkcipher_alg - synchronous block cipher definition
282  * @min_keysize: see struct ablkcipher_alg
283  * @max_keysize: see struct ablkcipher_alg
284  * @setkey: see struct ablkcipher_alg
285  * @encrypt: see struct ablkcipher_alg
286  * @decrypt: see struct ablkcipher_alg
287  * @geniv: see struct ablkcipher_alg
288  * @ivsize: see struct ablkcipher_alg
289  *
290  * All fields except @geniv and @ivsize are mandatory and must be filled.
291  */
292 struct blkcipher_alg {
293 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
294 	              unsigned int keylen);
295 	int (*encrypt)(struct blkcipher_desc *desc,
296 		       struct scatterlist *dst, struct scatterlist *src,
297 		       unsigned int nbytes);
298 	int (*decrypt)(struct blkcipher_desc *desc,
299 		       struct scatterlist *dst, struct scatterlist *src,
300 		       unsigned int nbytes);
301 
302 	const char *geniv;
303 
304 	unsigned int min_keysize;
305 	unsigned int max_keysize;
306 	unsigned int ivsize;
307 };
308 
309 /**
310  * struct cipher_alg - single-block symmetric ciphers definition
311  * @cia_min_keysize: Minimum key size supported by the transformation. This is
312  *		     the smallest key length supported by this transformation
313  *		     algorithm. This must be set to one of the pre-defined
314  *		     values as this is not hardware specific. Possible values
315  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
316  *		     include/crypto/
317  * @cia_max_keysize: Maximum key size supported by the transformation. This is
318  *		    the largest key length supported by this transformation
319  *		    algorithm. This must be set to one of the pre-defined values
320  *		    as this is not hardware specific. Possible values for this
321  *		    field can be found via git grep "_MAX_KEY_SIZE"
322  *		    include/crypto/
323  * @cia_setkey: Set key for the transformation. This function is used to either
324  *	        program a supplied key into the hardware or store the key in the
325  *	        transformation context for programming it later. Note that this
326  *	        function does modify the transformation context. This function
327  *	        can be called multiple times during the existence of the
328  *	        transformation object, so one must make sure the key is properly
329  *	        reprogrammed into the hardware. This function is also
330  *	        responsible for checking the key length for validity.
331  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
332  *		 single block of data, which must be @cra_blocksize big. This
333  *		 always operates on a full @cra_blocksize and it is not possible
334  *		 to encrypt a block of smaller size. The supplied buffers must
335  *		 therefore also be at least of @cra_blocksize size. Both the
336  *		 input and output buffers are always aligned to @cra_alignmask.
337  *		 In case either of the input or output buffer supplied by user
338  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
339  *		 API will re-align the buffers. The re-alignment means that a
340  *		 new buffer will be allocated, the data will be copied into the
341  *		 new buffer, then the processing will happen on the new buffer,
342  *		 then the data will be copied back into the original buffer and
343  *		 finally the new buffer will be freed. In case a software
344  *		 fallback was put in place in the @cra_init call, this function
345  *		 might need to use the fallback if the algorithm doesn't support
346  *		 all of the key sizes. In case the key was stored in
347  *		 transformation context, the key might need to be re-programmed
348  *		 into the hardware in this function. This function shall not
349  *		 modify the transformation context, as this function may be
350  *		 called in parallel with the same transformation object.
351  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
352  *		 @cia_encrypt, and the conditions are exactly the same.
353  *
354  * All fields are mandatory and must be filled.
355  */
356 struct cipher_alg {
357 	unsigned int cia_min_keysize;
358 	unsigned int cia_max_keysize;
359 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
360 	                  unsigned int keylen);
361 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
362 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
363 };
364 
365 struct compress_alg {
366 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
367 			    unsigned int slen, u8 *dst, unsigned int *dlen);
368 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
369 			      unsigned int slen, u8 *dst, unsigned int *dlen);
370 };
371 
372 #ifdef CONFIG_CRYPTO_STATS
373 /*
374  * struct crypto_istat_aead - statistics for AEAD algorithm
375  * @encrypt_cnt:	number of encrypt requests
376  * @encrypt_tlen:	total data size handled by encrypt requests
377  * @decrypt_cnt:	number of decrypt requests
378  * @decrypt_tlen:	total data size handled by decrypt requests
379  * @err_cnt:		number of error for AEAD requests
380  */
381 struct crypto_istat_aead {
382 	atomic64_t encrypt_cnt;
383 	atomic64_t encrypt_tlen;
384 	atomic64_t decrypt_cnt;
385 	atomic64_t decrypt_tlen;
386 	atomic64_t err_cnt;
387 };
388 
389 /*
390  * struct crypto_istat_akcipher - statistics for akcipher algorithm
391  * @encrypt_cnt:	number of encrypt requests
392  * @encrypt_tlen:	total data size handled by encrypt requests
393  * @decrypt_cnt:	number of decrypt requests
394  * @decrypt_tlen:	total data size handled by decrypt requests
395  * @verify_cnt:		number of verify operation
396  * @sign_cnt:		number of sign requests
397  * @err_cnt:		number of error for akcipher requests
398  */
399 struct crypto_istat_akcipher {
400 	atomic64_t encrypt_cnt;
401 	atomic64_t encrypt_tlen;
402 	atomic64_t decrypt_cnt;
403 	atomic64_t decrypt_tlen;
404 	atomic64_t verify_cnt;
405 	atomic64_t sign_cnt;
406 	atomic64_t err_cnt;
407 };
408 
409 /*
410  * struct crypto_istat_cipher - statistics for cipher algorithm
411  * @encrypt_cnt:	number of encrypt requests
412  * @encrypt_tlen:	total data size handled by encrypt requests
413  * @decrypt_cnt:	number of decrypt requests
414  * @decrypt_tlen:	total data size handled by decrypt requests
415  * @err_cnt:		number of error for cipher requests
416  */
417 struct crypto_istat_cipher {
418 	atomic64_t encrypt_cnt;
419 	atomic64_t encrypt_tlen;
420 	atomic64_t decrypt_cnt;
421 	atomic64_t decrypt_tlen;
422 	atomic64_t err_cnt;
423 };
424 
425 /*
426  * struct crypto_istat_compress - statistics for compress algorithm
427  * @compress_cnt:	number of compress requests
428  * @compress_tlen:	total data size handled by compress requests
429  * @decompress_cnt:	number of decompress requests
430  * @decompress_tlen:	total data size handled by decompress requests
431  * @err_cnt:		number of error for compress requests
432  */
433 struct crypto_istat_compress {
434 	atomic64_t compress_cnt;
435 	atomic64_t compress_tlen;
436 	atomic64_t decompress_cnt;
437 	atomic64_t decompress_tlen;
438 	atomic64_t err_cnt;
439 };
440 
441 /*
442  * struct crypto_istat_hash - statistics for has algorithm
443  * @hash_cnt:		number of hash requests
444  * @hash_tlen:		total data size hashed
445  * @err_cnt:		number of error for hash requests
446  */
447 struct crypto_istat_hash {
448 	atomic64_t hash_cnt;
449 	atomic64_t hash_tlen;
450 	atomic64_t err_cnt;
451 };
452 
453 /*
454  * struct crypto_istat_kpp - statistics for KPP algorithm
455  * @setsecret_cnt:		number of setsecrey operation
456  * @generate_public_key_cnt:	number of generate_public_key operation
457  * @compute_shared_secret_cnt:	number of compute_shared_secret operation
458  * @err_cnt:			number of error for KPP requests
459  */
460 struct crypto_istat_kpp {
461 	atomic64_t setsecret_cnt;
462 	atomic64_t generate_public_key_cnt;
463 	atomic64_t compute_shared_secret_cnt;
464 	atomic64_t err_cnt;
465 };
466 
467 /*
468  * struct crypto_istat_rng: statistics for RNG algorithm
469  * @generate_cnt:	number of RNG generate requests
470  * @generate_tlen:	total data size of generated data by the RNG
471  * @seed_cnt:		number of times the RNG was seeded
472  * @err_cnt:		number of error for RNG requests
473  */
474 struct crypto_istat_rng {
475 	atomic64_t generate_cnt;
476 	atomic64_t generate_tlen;
477 	atomic64_t seed_cnt;
478 	atomic64_t err_cnt;
479 };
480 #endif /* CONFIG_CRYPTO_STATS */
481 
482 #define cra_ablkcipher	cra_u.ablkcipher
483 #define cra_blkcipher	cra_u.blkcipher
484 #define cra_cipher	cra_u.cipher
485 #define cra_compress	cra_u.compress
486 
487 /**
488  * struct crypto_alg - definition of a cryptograpic cipher algorithm
489  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
490  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
491  *	       used for fine-tuning the description of the transformation
492  *	       algorithm.
493  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
494  *		   of the smallest possible unit which can be transformed with
495  *		   this algorithm. The users must respect this value.
496  *		   In case of HASH transformation, it is possible for a smaller
497  *		   block than @cra_blocksize to be passed to the crypto API for
498  *		   transformation, in case of any other transformation type, an
499  * 		   error will be returned upon any attempt to transform smaller
500  *		   than @cra_blocksize chunks.
501  * @cra_ctxsize: Size of the operational context of the transformation. This
502  *		 value informs the kernel crypto API about the memory size
503  *		 needed to be allocated for the transformation context.
504  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
505  *		   buffer containing the input data for the algorithm must be
506  *		   aligned to this alignment mask. The data buffer for the
507  *		   output data must be aligned to this alignment mask. Note that
508  *		   the Crypto API will do the re-alignment in software, but
509  *		   only under special conditions and there is a performance hit.
510  *		   The re-alignment happens at these occasions for different
511  *		   @cra_u types: cipher -- For both input data and output data
512  *		   buffer; ahash -- For output hash destination buf; shash --
513  *		   For output hash destination buf.
514  *		   This is needed on hardware which is flawed by design and
515  *		   cannot pick data from arbitrary addresses.
516  * @cra_priority: Priority of this transformation implementation. In case
517  *		  multiple transformations with same @cra_name are available to
518  *		  the Crypto API, the kernel will use the one with highest
519  *		  @cra_priority.
520  * @cra_name: Generic name (usable by multiple implementations) of the
521  *	      transformation algorithm. This is the name of the transformation
522  *	      itself. This field is used by the kernel when looking up the
523  *	      providers of particular transformation.
524  * @cra_driver_name: Unique name of the transformation provider. This is the
525  *		     name of the provider of the transformation. This can be any
526  *		     arbitrary value, but in the usual case, this contains the
527  *		     name of the chip or provider and the name of the
528  *		     transformation algorithm.
529  * @cra_type: Type of the cryptographic transformation. This is a pointer to
530  *	      struct crypto_type, which implements callbacks common for all
531  *	      transformation types. There are multiple options:
532  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
533  *	      &crypto_ahash_type, &crypto_rng_type.
534  *	      This field might be empty. In that case, there are no common
535  *	      callbacks. This is the case for: cipher, compress, shash.
536  * @cra_u: Callbacks implementing the transformation. This is a union of
537  *	   multiple structures. Depending on the type of transformation selected
538  *	   by @cra_type and @cra_flags above, the associated structure must be
539  *	   filled with callbacks. This field might be empty. This is the case
540  *	   for ahash, shash.
541  * @cra_init: Initialize the cryptographic transformation object. This function
542  *	      is used to initialize the cryptographic transformation object.
543  *	      This function is called only once at the instantiation time, right
544  *	      after the transformation context was allocated. In case the
545  *	      cryptographic hardware has some special requirements which need to
546  *	      be handled by software, this function shall check for the precise
547  *	      requirement of the transformation and put any software fallbacks
548  *	      in place.
549  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
550  *	      counterpart to @cra_init, used to remove various changes set in
551  *	      @cra_init.
552  * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
553  *		      definition. See @struct @ablkcipher_alg.
554  * @cra_u.blkcipher: Union member which contains a synchronous block cipher
555  * 		     definition See @struct @blkcipher_alg.
556  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
557  *		  definition. See @struct @cipher_alg.
558  * @cra_u.compress: Union member which contains a (de)compression algorithm.
559  *		    See @struct @compress_alg.
560  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
561  * @cra_list: internally used
562  * @cra_users: internally used
563  * @cra_refcnt: internally used
564  * @cra_destroy: internally used
565  *
566  * @stats: union of all possible crypto_istat_xxx structures
567  *
568  * The struct crypto_alg describes a generic Crypto API algorithm and is common
569  * for all of the transformations. Any variable not documented here shall not
570  * be used by a cipher implementation as it is internal to the Crypto API.
571  */
572 struct crypto_alg {
573 	struct list_head cra_list;
574 	struct list_head cra_users;
575 
576 	u32 cra_flags;
577 	unsigned int cra_blocksize;
578 	unsigned int cra_ctxsize;
579 	unsigned int cra_alignmask;
580 
581 	int cra_priority;
582 	refcount_t cra_refcnt;
583 
584 	char cra_name[CRYPTO_MAX_ALG_NAME];
585 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
586 
587 	const struct crypto_type *cra_type;
588 
589 	union {
590 		struct ablkcipher_alg ablkcipher;
591 		struct blkcipher_alg blkcipher;
592 		struct cipher_alg cipher;
593 		struct compress_alg compress;
594 	} cra_u;
595 
596 	int (*cra_init)(struct crypto_tfm *tfm);
597 	void (*cra_exit)(struct crypto_tfm *tfm);
598 	void (*cra_destroy)(struct crypto_alg *alg);
599 
600 	struct module *cra_module;
601 
602 #ifdef CONFIG_CRYPTO_STATS
603 	union {
604 		struct crypto_istat_aead aead;
605 		struct crypto_istat_akcipher akcipher;
606 		struct crypto_istat_cipher cipher;
607 		struct crypto_istat_compress compress;
608 		struct crypto_istat_hash hash;
609 		struct crypto_istat_rng rng;
610 		struct crypto_istat_kpp kpp;
611 	} stats;
612 #endif /* CONFIG_CRYPTO_STATS */
613 
614 } CRYPTO_MINALIGN_ATTR;
615 
616 #ifdef CONFIG_CRYPTO_STATS
617 void crypto_stats_get(struct crypto_alg *alg);
618 void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
619 void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
620 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
621 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
622 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
623 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
624 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
625 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
626 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
627 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
628 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
629 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
630 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
631 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
632 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
633 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
634 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
635 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
636 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
637 #else
638 static inline void crypto_stats_get(struct crypto_alg *alg)
639 {}
640 static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
641 {}
642 static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
643 {}
644 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
645 {}
646 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
647 {}
648 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
649 {}
650 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
651 {}
652 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
653 {}
654 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
655 {}
656 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
657 {}
658 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
659 {}
660 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
661 {}
662 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
663 {}
664 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
665 {}
666 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
667 {}
668 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
669 {}
670 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
671 {}
672 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
673 {}
674 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
675 {}
676 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
677 {}
678 #endif
679 /*
680  * A helper struct for waiting for completion of async crypto ops
681  */
682 struct crypto_wait {
683 	struct completion completion;
684 	int err;
685 };
686 
687 /*
688  * Macro for declaring a crypto op async wait object on stack
689  */
690 #define DECLARE_CRYPTO_WAIT(_wait) \
691 	struct crypto_wait _wait = { \
692 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
693 
694 /*
695  * Async ops completion helper functioons
696  */
697 void crypto_req_done(struct crypto_async_request *req, int err);
698 
699 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
700 {
701 	switch (err) {
702 	case -EINPROGRESS:
703 	case -EBUSY:
704 		wait_for_completion(&wait->completion);
705 		reinit_completion(&wait->completion);
706 		err = wait->err;
707 		break;
708 	};
709 
710 	return err;
711 }
712 
713 static inline void crypto_init_wait(struct crypto_wait *wait)
714 {
715 	init_completion(&wait->completion);
716 }
717 
718 /*
719  * Algorithm registration interface.
720  */
721 int crypto_register_alg(struct crypto_alg *alg);
722 int crypto_unregister_alg(struct crypto_alg *alg);
723 int crypto_register_algs(struct crypto_alg *algs, int count);
724 int crypto_unregister_algs(struct crypto_alg *algs, int count);
725 
726 /*
727  * Algorithm query interface.
728  */
729 int crypto_has_alg(const char *name, u32 type, u32 mask);
730 
731 /*
732  * Transforms: user-instantiated objects which encapsulate algorithms
733  * and core processing logic.  Managed via crypto_alloc_*() and
734  * crypto_free_*(), as well as the various helpers below.
735  */
736 
737 struct ablkcipher_tfm {
738 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
739 	              unsigned int keylen);
740 	int (*encrypt)(struct ablkcipher_request *req);
741 	int (*decrypt)(struct ablkcipher_request *req);
742 
743 	struct crypto_ablkcipher *base;
744 
745 	unsigned int ivsize;
746 	unsigned int reqsize;
747 };
748 
749 struct blkcipher_tfm {
750 	void *iv;
751 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
752 		      unsigned int keylen);
753 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
754 		       struct scatterlist *src, unsigned int nbytes);
755 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
756 		       struct scatterlist *src, unsigned int nbytes);
757 };
758 
759 struct cipher_tfm {
760 	int (*cit_setkey)(struct crypto_tfm *tfm,
761 	                  const u8 *key, unsigned int keylen);
762 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
763 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
764 };
765 
766 struct compress_tfm {
767 	int (*cot_compress)(struct crypto_tfm *tfm,
768 	                    const u8 *src, unsigned int slen,
769 	                    u8 *dst, unsigned int *dlen);
770 	int (*cot_decompress)(struct crypto_tfm *tfm,
771 	                      const u8 *src, unsigned int slen,
772 	                      u8 *dst, unsigned int *dlen);
773 };
774 
775 #define crt_ablkcipher	crt_u.ablkcipher
776 #define crt_blkcipher	crt_u.blkcipher
777 #define crt_cipher	crt_u.cipher
778 #define crt_compress	crt_u.compress
779 
780 struct crypto_tfm {
781 
782 	u32 crt_flags;
783 
784 	union {
785 		struct ablkcipher_tfm ablkcipher;
786 		struct blkcipher_tfm blkcipher;
787 		struct cipher_tfm cipher;
788 		struct compress_tfm compress;
789 	} crt_u;
790 
791 	void (*exit)(struct crypto_tfm *tfm);
792 
793 	struct crypto_alg *__crt_alg;
794 
795 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
796 };
797 
798 struct crypto_ablkcipher {
799 	struct crypto_tfm base;
800 };
801 
802 struct crypto_blkcipher {
803 	struct crypto_tfm base;
804 };
805 
806 struct crypto_cipher {
807 	struct crypto_tfm base;
808 };
809 
810 struct crypto_comp {
811 	struct crypto_tfm base;
812 };
813 
814 enum {
815 	CRYPTOA_UNSPEC,
816 	CRYPTOA_ALG,
817 	CRYPTOA_TYPE,
818 	CRYPTOA_U32,
819 	__CRYPTOA_MAX,
820 };
821 
822 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
823 
824 /* Maximum number of (rtattr) parameters for each template. */
825 #define CRYPTO_MAX_ATTRS 32
826 
827 struct crypto_attr_alg {
828 	char name[CRYPTO_MAX_ALG_NAME];
829 };
830 
831 struct crypto_attr_type {
832 	u32 type;
833 	u32 mask;
834 };
835 
836 struct crypto_attr_u32 {
837 	u32 num;
838 };
839 
840 /*
841  * Transform user interface.
842  */
843 
844 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
845 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
846 
847 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
848 {
849 	return crypto_destroy_tfm(tfm, tfm);
850 }
851 
852 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
853 
854 /*
855  * Transform helpers which query the underlying algorithm.
856  */
857 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
858 {
859 	return tfm->__crt_alg->cra_name;
860 }
861 
862 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
863 {
864 	return tfm->__crt_alg->cra_driver_name;
865 }
866 
867 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
868 {
869 	return tfm->__crt_alg->cra_priority;
870 }
871 
872 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
873 {
874 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
875 }
876 
877 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
878 {
879 	return tfm->__crt_alg->cra_blocksize;
880 }
881 
882 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
883 {
884 	return tfm->__crt_alg->cra_alignmask;
885 }
886 
887 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
888 {
889 	return tfm->crt_flags;
890 }
891 
892 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
893 {
894 	tfm->crt_flags |= flags;
895 }
896 
897 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
898 {
899 	tfm->crt_flags &= ~flags;
900 }
901 
902 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
903 {
904 	return tfm->__crt_ctx;
905 }
906 
907 static inline unsigned int crypto_tfm_ctx_alignment(void)
908 {
909 	struct crypto_tfm *tfm;
910 	return __alignof__(tfm->__crt_ctx);
911 }
912 
913 /*
914  * API wrappers.
915  */
916 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
917 	struct crypto_tfm *tfm)
918 {
919 	return (struct crypto_ablkcipher *)tfm;
920 }
921 
922 static inline u32 crypto_skcipher_type(u32 type)
923 {
924 	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
925 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
926 	return type;
927 }
928 
929 static inline u32 crypto_skcipher_mask(u32 mask)
930 {
931 	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
932 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
933 	return mask;
934 }
935 
936 /**
937  * DOC: Asynchronous Block Cipher API
938  *
939  * Asynchronous block cipher API is used with the ciphers of type
940  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
941  *
942  * Asynchronous cipher operations imply that the function invocation for a
943  * cipher request returns immediately before the completion of the operation.
944  * The cipher request is scheduled as a separate kernel thread and therefore
945  * load-balanced on the different CPUs via the process scheduler. To allow
946  * the kernel crypto API to inform the caller about the completion of a cipher
947  * request, the caller must provide a callback function. That function is
948  * invoked with the cipher handle when the request completes.
949  *
950  * To support the asynchronous operation, additional information than just the
951  * cipher handle must be supplied to the kernel crypto API. That additional
952  * information is given by filling in the ablkcipher_request data structure.
953  *
954  * For the asynchronous block cipher API, the state is maintained with the tfm
955  * cipher handle. A single tfm can be used across multiple calls and in
956  * parallel. For asynchronous block cipher calls, context data supplied and
957  * only used by the caller can be referenced the request data structure in
958  * addition to the IV used for the cipher request. The maintenance of such
959  * state information would be important for a crypto driver implementer to
960  * have, because when calling the callback function upon completion of the
961  * cipher operation, that callback function may need some information about
962  * which operation just finished if it invoked multiple in parallel. This
963  * state information is unused by the kernel crypto API.
964  */
965 
966 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
967 	struct crypto_ablkcipher *tfm)
968 {
969 	return &tfm->base;
970 }
971 
972 /**
973  * crypto_free_ablkcipher() - zeroize and free cipher handle
974  * @tfm: cipher handle to be freed
975  */
976 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
977 {
978 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
979 }
980 
981 /**
982  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
983  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
984  *	      ablkcipher
985  * @type: specifies the type of the cipher
986  * @mask: specifies the mask for the cipher
987  *
988  * Return: true when the ablkcipher is known to the kernel crypto API; false
989  *	   otherwise
990  */
991 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
992 					u32 mask)
993 {
994 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
995 			      crypto_skcipher_mask(mask));
996 }
997 
998 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
999 	struct crypto_ablkcipher *tfm)
1000 {
1001 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
1002 }
1003 
1004 /**
1005  * crypto_ablkcipher_ivsize() - obtain IV size
1006  * @tfm: cipher handle
1007  *
1008  * The size of the IV for the ablkcipher referenced by the cipher handle is
1009  * returned. This IV size may be zero if the cipher does not need an IV.
1010  *
1011  * Return: IV size in bytes
1012  */
1013 static inline unsigned int crypto_ablkcipher_ivsize(
1014 	struct crypto_ablkcipher *tfm)
1015 {
1016 	return crypto_ablkcipher_crt(tfm)->ivsize;
1017 }
1018 
1019 /**
1020  * crypto_ablkcipher_blocksize() - obtain block size of cipher
1021  * @tfm: cipher handle
1022  *
1023  * The block size for the ablkcipher referenced with the cipher handle is
1024  * returned. The caller may use that information to allocate appropriate
1025  * memory for the data returned by the encryption or decryption operation
1026  *
1027  * Return: block size of cipher
1028  */
1029 static inline unsigned int crypto_ablkcipher_blocksize(
1030 	struct crypto_ablkcipher *tfm)
1031 {
1032 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
1033 }
1034 
1035 static inline unsigned int crypto_ablkcipher_alignmask(
1036 	struct crypto_ablkcipher *tfm)
1037 {
1038 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
1039 }
1040 
1041 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
1042 {
1043 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
1044 }
1045 
1046 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
1047 					       u32 flags)
1048 {
1049 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
1050 }
1051 
1052 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
1053 						 u32 flags)
1054 {
1055 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
1056 }
1057 
1058 /**
1059  * crypto_ablkcipher_setkey() - set key for cipher
1060  * @tfm: cipher handle
1061  * @key: buffer holding the key
1062  * @keylen: length of the key in bytes
1063  *
1064  * The caller provided key is set for the ablkcipher referenced by the cipher
1065  * handle.
1066  *
1067  * Note, the key length determines the cipher type. Many block ciphers implement
1068  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1069  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1070  * is performed.
1071  *
1072  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1073  */
1074 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
1075 					   const u8 *key, unsigned int keylen)
1076 {
1077 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
1078 
1079 	return crt->setkey(crt->base, key, keylen);
1080 }
1081 
1082 /**
1083  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1084  * @req: ablkcipher_request out of which the cipher handle is to be obtained
1085  *
1086  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1087  * data structure.
1088  *
1089  * Return: crypto_ablkcipher handle
1090  */
1091 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1092 	struct ablkcipher_request *req)
1093 {
1094 	return __crypto_ablkcipher_cast(req->base.tfm);
1095 }
1096 
1097 /**
1098  * crypto_ablkcipher_encrypt() - encrypt plaintext
1099  * @req: reference to the ablkcipher_request handle that holds all information
1100  *	 needed to perform the cipher operation
1101  *
1102  * Encrypt plaintext data using the ablkcipher_request handle. That data
1103  * structure and how it is filled with data is discussed with the
1104  * ablkcipher_request_* functions.
1105  *
1106  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1107  */
1108 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1109 {
1110 	struct ablkcipher_tfm *crt =
1111 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1112 	struct crypto_alg *alg = crt->base->base.__crt_alg;
1113 	unsigned int nbytes = req->nbytes;
1114 	int ret;
1115 
1116 	crypto_stats_get(alg);
1117 	ret = crt->encrypt(req);
1118 	crypto_stats_ablkcipher_encrypt(nbytes, ret, alg);
1119 	return ret;
1120 }
1121 
1122 /**
1123  * crypto_ablkcipher_decrypt() - decrypt ciphertext
1124  * @req: reference to the ablkcipher_request handle that holds all information
1125  *	 needed to perform the cipher operation
1126  *
1127  * Decrypt ciphertext data using the ablkcipher_request handle. That data
1128  * structure and how it is filled with data is discussed with the
1129  * ablkcipher_request_* functions.
1130  *
1131  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1132  */
1133 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1134 {
1135 	struct ablkcipher_tfm *crt =
1136 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1137 	struct crypto_alg *alg = crt->base->base.__crt_alg;
1138 	unsigned int nbytes = req->nbytes;
1139 	int ret;
1140 
1141 	crypto_stats_get(alg);
1142 	ret = crt->decrypt(req);
1143 	crypto_stats_ablkcipher_decrypt(nbytes, ret, alg);
1144 	return ret;
1145 }
1146 
1147 /**
1148  * DOC: Asynchronous Cipher Request Handle
1149  *
1150  * The ablkcipher_request data structure contains all pointers to data
1151  * required for the asynchronous cipher operation. This includes the cipher
1152  * handle (which can be used by multiple ablkcipher_request instances), pointer
1153  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1154  * as a handle to the ablkcipher_request_* API calls in a similar way as
1155  * ablkcipher handle to the crypto_ablkcipher_* API calls.
1156  */
1157 
1158 /**
1159  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1160  * @tfm: cipher handle
1161  *
1162  * Return: number of bytes
1163  */
1164 static inline unsigned int crypto_ablkcipher_reqsize(
1165 	struct crypto_ablkcipher *tfm)
1166 {
1167 	return crypto_ablkcipher_crt(tfm)->reqsize;
1168 }
1169 
1170 /**
1171  * ablkcipher_request_set_tfm() - update cipher handle reference in request
1172  * @req: request handle to be modified
1173  * @tfm: cipher handle that shall be added to the request handle
1174  *
1175  * Allow the caller to replace the existing ablkcipher handle in the request
1176  * data structure with a different one.
1177  */
1178 static inline void ablkcipher_request_set_tfm(
1179 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1180 {
1181 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1182 }
1183 
1184 static inline struct ablkcipher_request *ablkcipher_request_cast(
1185 	struct crypto_async_request *req)
1186 {
1187 	return container_of(req, struct ablkcipher_request, base);
1188 }
1189 
1190 /**
1191  * ablkcipher_request_alloc() - allocate request data structure
1192  * @tfm: cipher handle to be registered with the request
1193  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1194  *
1195  * Allocate the request data structure that must be used with the ablkcipher
1196  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1197  * handle is registered in the request data structure.
1198  *
1199  * Return: allocated request handle in case of success, or NULL if out of memory
1200  */
1201 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1202 	struct crypto_ablkcipher *tfm, gfp_t gfp)
1203 {
1204 	struct ablkcipher_request *req;
1205 
1206 	req = kmalloc(sizeof(struct ablkcipher_request) +
1207 		      crypto_ablkcipher_reqsize(tfm), gfp);
1208 
1209 	if (likely(req))
1210 		ablkcipher_request_set_tfm(req, tfm);
1211 
1212 	return req;
1213 }
1214 
1215 /**
1216  * ablkcipher_request_free() - zeroize and free request data structure
1217  * @req: request data structure cipher handle to be freed
1218  */
1219 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1220 {
1221 	kzfree(req);
1222 }
1223 
1224 /**
1225  * ablkcipher_request_set_callback() - set asynchronous callback function
1226  * @req: request handle
1227  * @flags: specify zero or an ORing of the flags
1228  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1229  *	   increase the wait queue beyond the initial maximum size;
1230  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1231  * @compl: callback function pointer to be registered with the request handle
1232  * @data: The data pointer refers to memory that is not used by the kernel
1233  *	  crypto API, but provided to the callback function for it to use. Here,
1234  *	  the caller can provide a reference to memory the callback function can
1235  *	  operate on. As the callback function is invoked asynchronously to the
1236  *	  related functionality, it may need to access data structures of the
1237  *	  related functionality which can be referenced using this pointer. The
1238  *	  callback function can access the memory via the "data" field in the
1239  *	  crypto_async_request data structure provided to the callback function.
1240  *
1241  * This function allows setting the callback function that is triggered once the
1242  * cipher operation completes.
1243  *
1244  * The callback function is registered with the ablkcipher_request handle and
1245  * must comply with the following template::
1246  *
1247  *	void callback_function(struct crypto_async_request *req, int error)
1248  */
1249 static inline void ablkcipher_request_set_callback(
1250 	struct ablkcipher_request *req,
1251 	u32 flags, crypto_completion_t compl, void *data)
1252 {
1253 	req->base.complete = compl;
1254 	req->base.data = data;
1255 	req->base.flags = flags;
1256 }
1257 
1258 /**
1259  * ablkcipher_request_set_crypt() - set data buffers
1260  * @req: request handle
1261  * @src: source scatter / gather list
1262  * @dst: destination scatter / gather list
1263  * @nbytes: number of bytes to process from @src
1264  * @iv: IV for the cipher operation which must comply with the IV size defined
1265  *      by crypto_ablkcipher_ivsize
1266  *
1267  * This function allows setting of the source data and destination data
1268  * scatter / gather lists.
1269  *
1270  * For encryption, the source is treated as the plaintext and the
1271  * destination is the ciphertext. For a decryption operation, the use is
1272  * reversed - the source is the ciphertext and the destination is the plaintext.
1273  */
1274 static inline void ablkcipher_request_set_crypt(
1275 	struct ablkcipher_request *req,
1276 	struct scatterlist *src, struct scatterlist *dst,
1277 	unsigned int nbytes, void *iv)
1278 {
1279 	req->src = src;
1280 	req->dst = dst;
1281 	req->nbytes = nbytes;
1282 	req->info = iv;
1283 }
1284 
1285 /**
1286  * DOC: Synchronous Block Cipher API
1287  *
1288  * The synchronous block cipher API is used with the ciphers of type
1289  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1290  *
1291  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1292  * used in multiple calls and in parallel, this info should not be changeable
1293  * (unless a lock is used). This applies, for example, to the symmetric key.
1294  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1295  * structure for synchronous blkcipher api. So, its the only state info that can
1296  * be kept for synchronous calls without using a big lock across a tfm.
1297  *
1298  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1299  * consisting of a template (a block chaining mode) and a single block cipher
1300  * primitive (e.g. AES).
1301  *
1302  * The plaintext data buffer and the ciphertext data buffer are pointed to
1303  * by using scatter/gather lists. The cipher operation is performed
1304  * on all segments of the provided scatter/gather lists.
1305  *
1306  * The kernel crypto API supports a cipher operation "in-place" which means that
1307  * the caller may provide the same scatter/gather list for the plaintext and
1308  * cipher text. After the completion of the cipher operation, the plaintext
1309  * data is replaced with the ciphertext data in case of an encryption and vice
1310  * versa for a decryption. The caller must ensure that the scatter/gather lists
1311  * for the output data point to sufficiently large buffers, i.e. multiples of
1312  * the block size of the cipher.
1313  */
1314 
1315 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1316 	struct crypto_tfm *tfm)
1317 {
1318 	return (struct crypto_blkcipher *)tfm;
1319 }
1320 
1321 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1322 	struct crypto_tfm *tfm)
1323 {
1324 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1325 	return __crypto_blkcipher_cast(tfm);
1326 }
1327 
1328 /**
1329  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1330  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1331  *	      blkcipher cipher
1332  * @type: specifies the type of the cipher
1333  * @mask: specifies the mask for the cipher
1334  *
1335  * Allocate a cipher handle for a block cipher. The returned struct
1336  * crypto_blkcipher is the cipher handle that is required for any subsequent
1337  * API invocation for that block cipher.
1338  *
1339  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1340  *	   of an error, PTR_ERR() returns the error code.
1341  */
1342 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1343 	const char *alg_name, u32 type, u32 mask)
1344 {
1345 	type &= ~CRYPTO_ALG_TYPE_MASK;
1346 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1347 	mask |= CRYPTO_ALG_TYPE_MASK;
1348 
1349 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1350 }
1351 
1352 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1353 	struct crypto_blkcipher *tfm)
1354 {
1355 	return &tfm->base;
1356 }
1357 
1358 /**
1359  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1360  * @tfm: cipher handle to be freed
1361  */
1362 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1363 {
1364 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1365 }
1366 
1367 /**
1368  * crypto_has_blkcipher() - Search for the availability of a block cipher
1369  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1370  *	      block cipher
1371  * @type: specifies the type of the cipher
1372  * @mask: specifies the mask for the cipher
1373  *
1374  * Return: true when the block cipher is known to the kernel crypto API; false
1375  *	   otherwise
1376  */
1377 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1378 {
1379 	type &= ~CRYPTO_ALG_TYPE_MASK;
1380 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1381 	mask |= CRYPTO_ALG_TYPE_MASK;
1382 
1383 	return crypto_has_alg(alg_name, type, mask);
1384 }
1385 
1386 /**
1387  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1388  * @tfm: cipher handle
1389  *
1390  * Return: The character string holding the name of the cipher
1391  */
1392 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1393 {
1394 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1395 }
1396 
1397 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1398 	struct crypto_blkcipher *tfm)
1399 {
1400 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1401 }
1402 
1403 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1404 	struct crypto_blkcipher *tfm)
1405 {
1406 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1407 }
1408 
1409 /**
1410  * crypto_blkcipher_ivsize() - obtain IV size
1411  * @tfm: cipher handle
1412  *
1413  * The size of the IV for the block cipher referenced by the cipher handle is
1414  * returned. This IV size may be zero if the cipher does not need an IV.
1415  *
1416  * Return: IV size in bytes
1417  */
1418 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1419 {
1420 	return crypto_blkcipher_alg(tfm)->ivsize;
1421 }
1422 
1423 /**
1424  * crypto_blkcipher_blocksize() - obtain block size of cipher
1425  * @tfm: cipher handle
1426  *
1427  * The block size for the block cipher referenced with the cipher handle is
1428  * returned. The caller may use that information to allocate appropriate
1429  * memory for the data returned by the encryption or decryption operation.
1430  *
1431  * Return: block size of cipher
1432  */
1433 static inline unsigned int crypto_blkcipher_blocksize(
1434 	struct crypto_blkcipher *tfm)
1435 {
1436 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1437 }
1438 
1439 static inline unsigned int crypto_blkcipher_alignmask(
1440 	struct crypto_blkcipher *tfm)
1441 {
1442 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1443 }
1444 
1445 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1446 {
1447 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1448 }
1449 
1450 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1451 					      u32 flags)
1452 {
1453 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1454 }
1455 
1456 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1457 						u32 flags)
1458 {
1459 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1460 }
1461 
1462 /**
1463  * crypto_blkcipher_setkey() - set key for cipher
1464  * @tfm: cipher handle
1465  * @key: buffer holding the key
1466  * @keylen: length of the key in bytes
1467  *
1468  * The caller provided key is set for the block cipher referenced by the cipher
1469  * handle.
1470  *
1471  * Note, the key length determines the cipher type. Many block ciphers implement
1472  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1473  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1474  * is performed.
1475  *
1476  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1477  */
1478 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1479 					  const u8 *key, unsigned int keylen)
1480 {
1481 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1482 						 key, keylen);
1483 }
1484 
1485 /**
1486  * crypto_blkcipher_encrypt() - encrypt plaintext
1487  * @desc: reference to the block cipher handle with meta data
1488  * @dst: scatter/gather list that is filled by the cipher operation with the
1489  *	ciphertext
1490  * @src: scatter/gather list that holds the plaintext
1491  * @nbytes: number of bytes of the plaintext to encrypt.
1492  *
1493  * Encrypt plaintext data using the IV set by the caller with a preceding
1494  * call of crypto_blkcipher_set_iv.
1495  *
1496  * The blkcipher_desc data structure must be filled by the caller and can
1497  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1498  * with the block cipher handle; desc.flags is filled with either
1499  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1500  *
1501  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1502  */
1503 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1504 					   struct scatterlist *dst,
1505 					   struct scatterlist *src,
1506 					   unsigned int nbytes)
1507 {
1508 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1509 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1510 }
1511 
1512 /**
1513  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1514  * @desc: reference to the block cipher handle with meta data
1515  * @dst: scatter/gather list that is filled by the cipher operation with the
1516  *	ciphertext
1517  * @src: scatter/gather list that holds the plaintext
1518  * @nbytes: number of bytes of the plaintext to encrypt.
1519  *
1520  * Encrypt plaintext data with the use of an IV that is solely used for this
1521  * cipher operation. Any previously set IV is not used.
1522  *
1523  * The blkcipher_desc data structure must be filled by the caller and can
1524  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1525  * with the block cipher handle; desc.info is filled with the IV to be used for
1526  * the current operation; desc.flags is filled with either
1527  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1528  *
1529  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1530  */
1531 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1532 					      struct scatterlist *dst,
1533 					      struct scatterlist *src,
1534 					      unsigned int nbytes)
1535 {
1536 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1537 }
1538 
1539 /**
1540  * crypto_blkcipher_decrypt() - decrypt ciphertext
1541  * @desc: reference to the block cipher handle with meta data
1542  * @dst: scatter/gather list that is filled by the cipher operation with the
1543  *	plaintext
1544  * @src: scatter/gather list that holds the ciphertext
1545  * @nbytes: number of bytes of the ciphertext to decrypt.
1546  *
1547  * Decrypt ciphertext data using the IV set by the caller with a preceding
1548  * call of crypto_blkcipher_set_iv.
1549  *
1550  * The blkcipher_desc data structure must be filled by the caller as documented
1551  * for the crypto_blkcipher_encrypt call above.
1552  *
1553  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1554  *
1555  */
1556 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1557 					   struct scatterlist *dst,
1558 					   struct scatterlist *src,
1559 					   unsigned int nbytes)
1560 {
1561 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1562 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1563 }
1564 
1565 /**
1566  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1567  * @desc: reference to the block cipher handle with meta data
1568  * @dst: scatter/gather list that is filled by the cipher operation with the
1569  *	plaintext
1570  * @src: scatter/gather list that holds the ciphertext
1571  * @nbytes: number of bytes of the ciphertext to decrypt.
1572  *
1573  * Decrypt ciphertext data with the use of an IV that is solely used for this
1574  * cipher operation. Any previously set IV is not used.
1575  *
1576  * The blkcipher_desc data structure must be filled by the caller as documented
1577  * for the crypto_blkcipher_encrypt_iv call above.
1578  *
1579  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1580  */
1581 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1582 					      struct scatterlist *dst,
1583 					      struct scatterlist *src,
1584 					      unsigned int nbytes)
1585 {
1586 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1587 }
1588 
1589 /**
1590  * crypto_blkcipher_set_iv() - set IV for cipher
1591  * @tfm: cipher handle
1592  * @src: buffer holding the IV
1593  * @len: length of the IV in bytes
1594  *
1595  * The caller provided IV is set for the block cipher referenced by the cipher
1596  * handle.
1597  */
1598 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1599 					   const u8 *src, unsigned int len)
1600 {
1601 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1602 }
1603 
1604 /**
1605  * crypto_blkcipher_get_iv() - obtain IV from cipher
1606  * @tfm: cipher handle
1607  * @dst: buffer filled with the IV
1608  * @len: length of the buffer dst
1609  *
1610  * The caller can obtain the IV set for the block cipher referenced by the
1611  * cipher handle and store it into the user-provided buffer. If the buffer
1612  * has an insufficient space, the IV is truncated to fit the buffer.
1613  */
1614 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1615 					   u8 *dst, unsigned int len)
1616 {
1617 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1618 }
1619 
1620 /**
1621  * DOC: Single Block Cipher API
1622  *
1623  * The single block cipher API is used with the ciphers of type
1624  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1625  *
1626  * Using the single block cipher API calls, operations with the basic cipher
1627  * primitive can be implemented. These cipher primitives exclude any block
1628  * chaining operations including IV handling.
1629  *
1630  * The purpose of this single block cipher API is to support the implementation
1631  * of templates or other concepts that only need to perform the cipher operation
1632  * on one block at a time. Templates invoke the underlying cipher primitive
1633  * block-wise and process either the input or the output data of these cipher
1634  * operations.
1635  */
1636 
1637 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1638 {
1639 	return (struct crypto_cipher *)tfm;
1640 }
1641 
1642 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1643 {
1644 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1645 	return __crypto_cipher_cast(tfm);
1646 }
1647 
1648 /**
1649  * crypto_alloc_cipher() - allocate single block cipher handle
1650  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1651  *	     single block cipher
1652  * @type: specifies the type of the cipher
1653  * @mask: specifies the mask for the cipher
1654  *
1655  * Allocate a cipher handle for a single block cipher. The returned struct
1656  * crypto_cipher is the cipher handle that is required for any subsequent API
1657  * invocation for that single block cipher.
1658  *
1659  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1660  *	   of an error, PTR_ERR() returns the error code.
1661  */
1662 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1663 							u32 type, u32 mask)
1664 {
1665 	type &= ~CRYPTO_ALG_TYPE_MASK;
1666 	type |= CRYPTO_ALG_TYPE_CIPHER;
1667 	mask |= CRYPTO_ALG_TYPE_MASK;
1668 
1669 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1670 }
1671 
1672 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1673 {
1674 	return &tfm->base;
1675 }
1676 
1677 /**
1678  * crypto_free_cipher() - zeroize and free the single block cipher handle
1679  * @tfm: cipher handle to be freed
1680  */
1681 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1682 {
1683 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1684 }
1685 
1686 /**
1687  * crypto_has_cipher() - Search for the availability of a single block cipher
1688  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1689  *	     single block cipher
1690  * @type: specifies the type of the cipher
1691  * @mask: specifies the mask for the cipher
1692  *
1693  * Return: true when the single block cipher is known to the kernel crypto API;
1694  *	   false otherwise
1695  */
1696 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1697 {
1698 	type &= ~CRYPTO_ALG_TYPE_MASK;
1699 	type |= CRYPTO_ALG_TYPE_CIPHER;
1700 	mask |= CRYPTO_ALG_TYPE_MASK;
1701 
1702 	return crypto_has_alg(alg_name, type, mask);
1703 }
1704 
1705 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1706 {
1707 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1708 }
1709 
1710 /**
1711  * crypto_cipher_blocksize() - obtain block size for cipher
1712  * @tfm: cipher handle
1713  *
1714  * The block size for the single block cipher referenced with the cipher handle
1715  * tfm is returned. The caller may use that information to allocate appropriate
1716  * memory for the data returned by the encryption or decryption operation
1717  *
1718  * Return: block size of cipher
1719  */
1720 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1721 {
1722 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1723 }
1724 
1725 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1726 {
1727 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1728 }
1729 
1730 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1731 {
1732 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1733 }
1734 
1735 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1736 					   u32 flags)
1737 {
1738 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1739 }
1740 
1741 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1742 					     u32 flags)
1743 {
1744 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1745 }
1746 
1747 /**
1748  * crypto_cipher_setkey() - set key for cipher
1749  * @tfm: cipher handle
1750  * @key: buffer holding the key
1751  * @keylen: length of the key in bytes
1752  *
1753  * The caller provided key is set for the single block cipher referenced by the
1754  * cipher handle.
1755  *
1756  * Note, the key length determines the cipher type. Many block ciphers implement
1757  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1758  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1759  * is performed.
1760  *
1761  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1762  */
1763 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1764                                        const u8 *key, unsigned int keylen)
1765 {
1766 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1767 						  key, keylen);
1768 }
1769 
1770 /**
1771  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1772  * @tfm: cipher handle
1773  * @dst: points to the buffer that will be filled with the ciphertext
1774  * @src: buffer holding the plaintext to be encrypted
1775  *
1776  * Invoke the encryption operation of one block. The caller must ensure that
1777  * the plaintext and ciphertext buffers are at least one block in size.
1778  */
1779 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1780 					     u8 *dst, const u8 *src)
1781 {
1782 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1783 						dst, src);
1784 }
1785 
1786 /**
1787  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1788  * @tfm: cipher handle
1789  * @dst: points to the buffer that will be filled with the plaintext
1790  * @src: buffer holding the ciphertext to be decrypted
1791  *
1792  * Invoke the decryption operation of one block. The caller must ensure that
1793  * the plaintext and ciphertext buffers are at least one block in size.
1794  */
1795 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1796 					     u8 *dst, const u8 *src)
1797 {
1798 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1799 						dst, src);
1800 }
1801 
1802 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1803 {
1804 	return (struct crypto_comp *)tfm;
1805 }
1806 
1807 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1808 {
1809 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1810 	       CRYPTO_ALG_TYPE_MASK);
1811 	return __crypto_comp_cast(tfm);
1812 }
1813 
1814 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1815 						    u32 type, u32 mask)
1816 {
1817 	type &= ~CRYPTO_ALG_TYPE_MASK;
1818 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1819 	mask |= CRYPTO_ALG_TYPE_MASK;
1820 
1821 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1822 }
1823 
1824 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1825 {
1826 	return &tfm->base;
1827 }
1828 
1829 static inline void crypto_free_comp(struct crypto_comp *tfm)
1830 {
1831 	crypto_free_tfm(crypto_comp_tfm(tfm));
1832 }
1833 
1834 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1835 {
1836 	type &= ~CRYPTO_ALG_TYPE_MASK;
1837 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1838 	mask |= CRYPTO_ALG_TYPE_MASK;
1839 
1840 	return crypto_has_alg(alg_name, type, mask);
1841 }
1842 
1843 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1844 {
1845 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1846 }
1847 
1848 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1849 {
1850 	return &crypto_comp_tfm(tfm)->crt_compress;
1851 }
1852 
1853 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1854                                        const u8 *src, unsigned int slen,
1855                                        u8 *dst, unsigned int *dlen)
1856 {
1857 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1858 						  src, slen, dst, dlen);
1859 }
1860 
1861 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1862                                          const u8 *src, unsigned int slen,
1863                                          u8 *dst, unsigned int *dlen)
1864 {
1865 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1866 						    src, slen, dst, dlen);
1867 }
1868 
1869 #endif	/* _LINUX_CRYPTO_H */
1870 
1871