1 /* 2 * Scatterlist Cryptographic API. 3 * 4 * Copyright (c) 2002 James Morris <[email protected]> 5 * Copyright (c) 2002 David S. Miller ([email protected]) 6 * Copyright (c) 2005 Herbert Xu <[email protected]> 7 * 8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]> 9 * and Nettle, by Niels Möller. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 * 16 */ 17 #ifndef _LINUX_CRYPTO_H 18 #define _LINUX_CRYPTO_H 19 20 #include <linux/atomic.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/bug.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <linux/uaccess.h> 27 #include <linux/completion.h> 28 29 /* 30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 31 * arbitrary modules to be loaded. Loading from userspace may still need the 32 * unprefixed names, so retains those aliases as well. 33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 35 * expands twice on the same line. Instead, use a separate base name for the 36 * alias. 37 */ 38 #define MODULE_ALIAS_CRYPTO(name) \ 39 __MODULE_INFO(alias, alias_userspace, name); \ 40 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 41 42 /* 43 * Algorithm masks and types. 44 */ 45 #define CRYPTO_ALG_TYPE_MASK 0x0000000f 46 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 47 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 48 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 49 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 50 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 51 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 52 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006 53 #define CRYPTO_ALG_TYPE_KPP 0x00000008 54 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 55 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 56 #define CRYPTO_ALG_TYPE_RNG 0x0000000c 57 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 58 #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e 59 #define CRYPTO_ALG_TYPE_HASH 0x0000000e 60 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e 61 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f 62 63 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 64 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 65 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c 66 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 67 68 #define CRYPTO_ALG_LARVAL 0x00000010 69 #define CRYPTO_ALG_DEAD 0x00000020 70 #define CRYPTO_ALG_DYING 0x00000040 71 #define CRYPTO_ALG_ASYNC 0x00000080 72 73 /* 74 * Set this bit if and only if the algorithm requires another algorithm of 75 * the same type to handle corner cases. 76 */ 77 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 78 79 /* 80 * This bit is set for symmetric key ciphers that have already been wrapped 81 * with a generic IV generator to prevent them from being wrapped again. 82 */ 83 #define CRYPTO_ALG_GENIV 0x00000200 84 85 /* 86 * Set if the algorithm has passed automated run-time testing. Note that 87 * if there is no run-time testing for a given algorithm it is considered 88 * to have passed. 89 */ 90 91 #define CRYPTO_ALG_TESTED 0x00000400 92 93 /* 94 * Set if the algorithm is an instance that is built from templates. 95 */ 96 #define CRYPTO_ALG_INSTANCE 0x00000800 97 98 /* Set this bit if the algorithm provided is hardware accelerated but 99 * not available to userspace via instruction set or so. 100 */ 101 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 102 103 /* 104 * Mark a cipher as a service implementation only usable by another 105 * cipher and never by a normal user of the kernel crypto API 106 */ 107 #define CRYPTO_ALG_INTERNAL 0x00002000 108 109 /* 110 * Set if the algorithm has a ->setkey() method but can be used without 111 * calling it first, i.e. there is a default key. 112 */ 113 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 114 115 /* 116 * Don't trigger module loading 117 */ 118 #define CRYPTO_NOLOAD 0x00008000 119 120 /* 121 * Transform masks and values (for crt_flags). 122 */ 123 #define CRYPTO_TFM_NEED_KEY 0x00000001 124 125 #define CRYPTO_TFM_REQ_MASK 0x000fff00 126 #define CRYPTO_TFM_RES_MASK 0xfff00000 127 128 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100 129 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 130 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 131 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 132 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 133 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 134 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 135 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 136 137 /* 138 * Miscellaneous stuff. 139 */ 140 #define CRYPTO_MAX_ALG_NAME 128 141 142 /* 143 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 144 * declaration) is used to ensure that the crypto_tfm context structure is 145 * aligned correctly for the given architecture so that there are no alignment 146 * faults for C data types. In particular, this is required on platforms such 147 * as arm where pointers are 32-bit aligned but there are data types such as 148 * u64 which require 64-bit alignment. 149 */ 150 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 151 152 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 153 154 struct scatterlist; 155 struct crypto_ablkcipher; 156 struct crypto_async_request; 157 struct crypto_blkcipher; 158 struct crypto_tfm; 159 struct crypto_type; 160 struct skcipher_givcrypt_request; 161 162 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 163 164 /** 165 * DOC: Block Cipher Context Data Structures 166 * 167 * These data structures define the operating context for each block cipher 168 * type. 169 */ 170 171 struct crypto_async_request { 172 struct list_head list; 173 crypto_completion_t complete; 174 void *data; 175 struct crypto_tfm *tfm; 176 177 u32 flags; 178 }; 179 180 struct ablkcipher_request { 181 struct crypto_async_request base; 182 183 unsigned int nbytes; 184 185 void *info; 186 187 struct scatterlist *src; 188 struct scatterlist *dst; 189 190 void *__ctx[] CRYPTO_MINALIGN_ATTR; 191 }; 192 193 struct blkcipher_desc { 194 struct crypto_blkcipher *tfm; 195 void *info; 196 u32 flags; 197 }; 198 199 struct cipher_desc { 200 struct crypto_tfm *tfm; 201 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 202 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst, 203 const u8 *src, unsigned int nbytes); 204 void *info; 205 }; 206 207 /** 208 * DOC: Block Cipher Algorithm Definitions 209 * 210 * These data structures define modular crypto algorithm implementations, 211 * managed via crypto_register_alg() and crypto_unregister_alg(). 212 */ 213 214 /** 215 * struct ablkcipher_alg - asynchronous block cipher definition 216 * @min_keysize: Minimum key size supported by the transformation. This is the 217 * smallest key length supported by this transformation algorithm. 218 * This must be set to one of the pre-defined values as this is 219 * not hardware specific. Possible values for this field can be 220 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 221 * @max_keysize: Maximum key size supported by the transformation. This is the 222 * largest key length supported by this transformation algorithm. 223 * This must be set to one of the pre-defined values as this is 224 * not hardware specific. Possible values for this field can be 225 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 226 * @setkey: Set key for the transformation. This function is used to either 227 * program a supplied key into the hardware or store the key in the 228 * transformation context for programming it later. Note that this 229 * function does modify the transformation context. This function can 230 * be called multiple times during the existence of the transformation 231 * object, so one must make sure the key is properly reprogrammed into 232 * the hardware. This function is also responsible for checking the key 233 * length for validity. In case a software fallback was put in place in 234 * the @cra_init call, this function might need to use the fallback if 235 * the algorithm doesn't support all of the key sizes. 236 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 237 * the supplied scatterlist containing the blocks of data. The crypto 238 * API consumer is responsible for aligning the entries of the 239 * scatterlist properly and making sure the chunks are correctly 240 * sized. In case a software fallback was put in place in the 241 * @cra_init call, this function might need to use the fallback if 242 * the algorithm doesn't support all of the key sizes. In case the 243 * key was stored in transformation context, the key might need to be 244 * re-programmed into the hardware in this function. This function 245 * shall not modify the transformation context, as this function may 246 * be called in parallel with the same transformation object. 247 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 248 * and the conditions are exactly the same. 249 * @givencrypt: Update the IV for encryption. With this function, a cipher 250 * implementation may provide the function on how to update the IV 251 * for encryption. 252 * @givdecrypt: Update the IV for decryption. This is the reverse of 253 * @givencrypt . 254 * @geniv: The transformation implementation may use an "IV generator" provided 255 * by the kernel crypto API. Several use cases have a predefined 256 * approach how IVs are to be updated. For such use cases, the kernel 257 * crypto API provides ready-to-use implementations that can be 258 * referenced with this variable. 259 * @ivsize: IV size applicable for transformation. The consumer must provide an 260 * IV of exactly that size to perform the encrypt or decrypt operation. 261 * 262 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are 263 * mandatory and must be filled. 264 */ 265 struct ablkcipher_alg { 266 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 267 unsigned int keylen); 268 int (*encrypt)(struct ablkcipher_request *req); 269 int (*decrypt)(struct ablkcipher_request *req); 270 int (*givencrypt)(struct skcipher_givcrypt_request *req); 271 int (*givdecrypt)(struct skcipher_givcrypt_request *req); 272 273 const char *geniv; 274 275 unsigned int min_keysize; 276 unsigned int max_keysize; 277 unsigned int ivsize; 278 }; 279 280 /** 281 * struct blkcipher_alg - synchronous block cipher definition 282 * @min_keysize: see struct ablkcipher_alg 283 * @max_keysize: see struct ablkcipher_alg 284 * @setkey: see struct ablkcipher_alg 285 * @encrypt: see struct ablkcipher_alg 286 * @decrypt: see struct ablkcipher_alg 287 * @geniv: see struct ablkcipher_alg 288 * @ivsize: see struct ablkcipher_alg 289 * 290 * All fields except @geniv and @ivsize are mandatory and must be filled. 291 */ 292 struct blkcipher_alg { 293 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 294 unsigned int keylen); 295 int (*encrypt)(struct blkcipher_desc *desc, 296 struct scatterlist *dst, struct scatterlist *src, 297 unsigned int nbytes); 298 int (*decrypt)(struct blkcipher_desc *desc, 299 struct scatterlist *dst, struct scatterlist *src, 300 unsigned int nbytes); 301 302 const char *geniv; 303 304 unsigned int min_keysize; 305 unsigned int max_keysize; 306 unsigned int ivsize; 307 }; 308 309 /** 310 * struct cipher_alg - single-block symmetric ciphers definition 311 * @cia_min_keysize: Minimum key size supported by the transformation. This is 312 * the smallest key length supported by this transformation 313 * algorithm. This must be set to one of the pre-defined 314 * values as this is not hardware specific. Possible values 315 * for this field can be found via git grep "_MIN_KEY_SIZE" 316 * include/crypto/ 317 * @cia_max_keysize: Maximum key size supported by the transformation. This is 318 * the largest key length supported by this transformation 319 * algorithm. This must be set to one of the pre-defined values 320 * as this is not hardware specific. Possible values for this 321 * field can be found via git grep "_MAX_KEY_SIZE" 322 * include/crypto/ 323 * @cia_setkey: Set key for the transformation. This function is used to either 324 * program a supplied key into the hardware or store the key in the 325 * transformation context for programming it later. Note that this 326 * function does modify the transformation context. This function 327 * can be called multiple times during the existence of the 328 * transformation object, so one must make sure the key is properly 329 * reprogrammed into the hardware. This function is also 330 * responsible for checking the key length for validity. 331 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 332 * single block of data, which must be @cra_blocksize big. This 333 * always operates on a full @cra_blocksize and it is not possible 334 * to encrypt a block of smaller size. The supplied buffers must 335 * therefore also be at least of @cra_blocksize size. Both the 336 * input and output buffers are always aligned to @cra_alignmask. 337 * In case either of the input or output buffer supplied by user 338 * of the crypto API is not aligned to @cra_alignmask, the crypto 339 * API will re-align the buffers. The re-alignment means that a 340 * new buffer will be allocated, the data will be copied into the 341 * new buffer, then the processing will happen on the new buffer, 342 * then the data will be copied back into the original buffer and 343 * finally the new buffer will be freed. In case a software 344 * fallback was put in place in the @cra_init call, this function 345 * might need to use the fallback if the algorithm doesn't support 346 * all of the key sizes. In case the key was stored in 347 * transformation context, the key might need to be re-programmed 348 * into the hardware in this function. This function shall not 349 * modify the transformation context, as this function may be 350 * called in parallel with the same transformation object. 351 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 352 * @cia_encrypt, and the conditions are exactly the same. 353 * 354 * All fields are mandatory and must be filled. 355 */ 356 struct cipher_alg { 357 unsigned int cia_min_keysize; 358 unsigned int cia_max_keysize; 359 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 360 unsigned int keylen); 361 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 362 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 363 }; 364 365 struct compress_alg { 366 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 367 unsigned int slen, u8 *dst, unsigned int *dlen); 368 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 369 unsigned int slen, u8 *dst, unsigned int *dlen); 370 }; 371 372 #ifdef CONFIG_CRYPTO_STATS 373 /* 374 * struct crypto_istat_aead - statistics for AEAD algorithm 375 * @encrypt_cnt: number of encrypt requests 376 * @encrypt_tlen: total data size handled by encrypt requests 377 * @decrypt_cnt: number of decrypt requests 378 * @decrypt_tlen: total data size handled by decrypt requests 379 * @err_cnt: number of error for AEAD requests 380 */ 381 struct crypto_istat_aead { 382 atomic64_t encrypt_cnt; 383 atomic64_t encrypt_tlen; 384 atomic64_t decrypt_cnt; 385 atomic64_t decrypt_tlen; 386 atomic64_t err_cnt; 387 }; 388 389 /* 390 * struct crypto_istat_akcipher - statistics for akcipher algorithm 391 * @encrypt_cnt: number of encrypt requests 392 * @encrypt_tlen: total data size handled by encrypt requests 393 * @decrypt_cnt: number of decrypt requests 394 * @decrypt_tlen: total data size handled by decrypt requests 395 * @verify_cnt: number of verify operation 396 * @sign_cnt: number of sign requests 397 * @err_cnt: number of error for akcipher requests 398 */ 399 struct crypto_istat_akcipher { 400 atomic64_t encrypt_cnt; 401 atomic64_t encrypt_tlen; 402 atomic64_t decrypt_cnt; 403 atomic64_t decrypt_tlen; 404 atomic64_t verify_cnt; 405 atomic64_t sign_cnt; 406 atomic64_t err_cnt; 407 }; 408 409 /* 410 * struct crypto_istat_cipher - statistics for cipher algorithm 411 * @encrypt_cnt: number of encrypt requests 412 * @encrypt_tlen: total data size handled by encrypt requests 413 * @decrypt_cnt: number of decrypt requests 414 * @decrypt_tlen: total data size handled by decrypt requests 415 * @err_cnt: number of error for cipher requests 416 */ 417 struct crypto_istat_cipher { 418 atomic64_t encrypt_cnt; 419 atomic64_t encrypt_tlen; 420 atomic64_t decrypt_cnt; 421 atomic64_t decrypt_tlen; 422 atomic64_t err_cnt; 423 }; 424 425 /* 426 * struct crypto_istat_compress - statistics for compress algorithm 427 * @compress_cnt: number of compress requests 428 * @compress_tlen: total data size handled by compress requests 429 * @decompress_cnt: number of decompress requests 430 * @decompress_tlen: total data size handled by decompress requests 431 * @err_cnt: number of error for compress requests 432 */ 433 struct crypto_istat_compress { 434 atomic64_t compress_cnt; 435 atomic64_t compress_tlen; 436 atomic64_t decompress_cnt; 437 atomic64_t decompress_tlen; 438 atomic64_t err_cnt; 439 }; 440 441 /* 442 * struct crypto_istat_hash - statistics for has algorithm 443 * @hash_cnt: number of hash requests 444 * @hash_tlen: total data size hashed 445 * @err_cnt: number of error for hash requests 446 */ 447 struct crypto_istat_hash { 448 atomic64_t hash_cnt; 449 atomic64_t hash_tlen; 450 atomic64_t err_cnt; 451 }; 452 453 /* 454 * struct crypto_istat_kpp - statistics for KPP algorithm 455 * @setsecret_cnt: number of setsecrey operation 456 * @generate_public_key_cnt: number of generate_public_key operation 457 * @compute_shared_secret_cnt: number of compute_shared_secret operation 458 * @err_cnt: number of error for KPP requests 459 */ 460 struct crypto_istat_kpp { 461 atomic64_t setsecret_cnt; 462 atomic64_t generate_public_key_cnt; 463 atomic64_t compute_shared_secret_cnt; 464 atomic64_t err_cnt; 465 }; 466 467 /* 468 * struct crypto_istat_rng: statistics for RNG algorithm 469 * @generate_cnt: number of RNG generate requests 470 * @generate_tlen: total data size of generated data by the RNG 471 * @seed_cnt: number of times the RNG was seeded 472 * @err_cnt: number of error for RNG requests 473 */ 474 struct crypto_istat_rng { 475 atomic64_t generate_cnt; 476 atomic64_t generate_tlen; 477 atomic64_t seed_cnt; 478 atomic64_t err_cnt; 479 }; 480 #endif /* CONFIG_CRYPTO_STATS */ 481 482 #define cra_ablkcipher cra_u.ablkcipher 483 #define cra_blkcipher cra_u.blkcipher 484 #define cra_cipher cra_u.cipher 485 #define cra_compress cra_u.compress 486 487 /** 488 * struct crypto_alg - definition of a cryptograpic cipher algorithm 489 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 490 * CRYPTO_ALG_* flags for the flags which go in here. Those are 491 * used for fine-tuning the description of the transformation 492 * algorithm. 493 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 494 * of the smallest possible unit which can be transformed with 495 * this algorithm. The users must respect this value. 496 * In case of HASH transformation, it is possible for a smaller 497 * block than @cra_blocksize to be passed to the crypto API for 498 * transformation, in case of any other transformation type, an 499 * error will be returned upon any attempt to transform smaller 500 * than @cra_blocksize chunks. 501 * @cra_ctxsize: Size of the operational context of the transformation. This 502 * value informs the kernel crypto API about the memory size 503 * needed to be allocated for the transformation context. 504 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 505 * buffer containing the input data for the algorithm must be 506 * aligned to this alignment mask. The data buffer for the 507 * output data must be aligned to this alignment mask. Note that 508 * the Crypto API will do the re-alignment in software, but 509 * only under special conditions and there is a performance hit. 510 * The re-alignment happens at these occasions for different 511 * @cra_u types: cipher -- For both input data and output data 512 * buffer; ahash -- For output hash destination buf; shash -- 513 * For output hash destination buf. 514 * This is needed on hardware which is flawed by design and 515 * cannot pick data from arbitrary addresses. 516 * @cra_priority: Priority of this transformation implementation. In case 517 * multiple transformations with same @cra_name are available to 518 * the Crypto API, the kernel will use the one with highest 519 * @cra_priority. 520 * @cra_name: Generic name (usable by multiple implementations) of the 521 * transformation algorithm. This is the name of the transformation 522 * itself. This field is used by the kernel when looking up the 523 * providers of particular transformation. 524 * @cra_driver_name: Unique name of the transformation provider. This is the 525 * name of the provider of the transformation. This can be any 526 * arbitrary value, but in the usual case, this contains the 527 * name of the chip or provider and the name of the 528 * transformation algorithm. 529 * @cra_type: Type of the cryptographic transformation. This is a pointer to 530 * struct crypto_type, which implements callbacks common for all 531 * transformation types. There are multiple options: 532 * &crypto_blkcipher_type, &crypto_ablkcipher_type, 533 * &crypto_ahash_type, &crypto_rng_type. 534 * This field might be empty. In that case, there are no common 535 * callbacks. This is the case for: cipher, compress, shash. 536 * @cra_u: Callbacks implementing the transformation. This is a union of 537 * multiple structures. Depending on the type of transformation selected 538 * by @cra_type and @cra_flags above, the associated structure must be 539 * filled with callbacks. This field might be empty. This is the case 540 * for ahash, shash. 541 * @cra_init: Initialize the cryptographic transformation object. This function 542 * is used to initialize the cryptographic transformation object. 543 * This function is called only once at the instantiation time, right 544 * after the transformation context was allocated. In case the 545 * cryptographic hardware has some special requirements which need to 546 * be handled by software, this function shall check for the precise 547 * requirement of the transformation and put any software fallbacks 548 * in place. 549 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 550 * counterpart to @cra_init, used to remove various changes set in 551 * @cra_init. 552 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher 553 * definition. See @struct @ablkcipher_alg. 554 * @cra_u.blkcipher: Union member which contains a synchronous block cipher 555 * definition See @struct @blkcipher_alg. 556 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 557 * definition. See @struct @cipher_alg. 558 * @cra_u.compress: Union member which contains a (de)compression algorithm. 559 * See @struct @compress_alg. 560 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 561 * @cra_list: internally used 562 * @cra_users: internally used 563 * @cra_refcnt: internally used 564 * @cra_destroy: internally used 565 * 566 * @stats: union of all possible crypto_istat_xxx structures 567 * 568 * The struct crypto_alg describes a generic Crypto API algorithm and is common 569 * for all of the transformations. Any variable not documented here shall not 570 * be used by a cipher implementation as it is internal to the Crypto API. 571 */ 572 struct crypto_alg { 573 struct list_head cra_list; 574 struct list_head cra_users; 575 576 u32 cra_flags; 577 unsigned int cra_blocksize; 578 unsigned int cra_ctxsize; 579 unsigned int cra_alignmask; 580 581 int cra_priority; 582 refcount_t cra_refcnt; 583 584 char cra_name[CRYPTO_MAX_ALG_NAME]; 585 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 586 587 const struct crypto_type *cra_type; 588 589 union { 590 struct ablkcipher_alg ablkcipher; 591 struct blkcipher_alg blkcipher; 592 struct cipher_alg cipher; 593 struct compress_alg compress; 594 } cra_u; 595 596 int (*cra_init)(struct crypto_tfm *tfm); 597 void (*cra_exit)(struct crypto_tfm *tfm); 598 void (*cra_destroy)(struct crypto_alg *alg); 599 600 struct module *cra_module; 601 602 #ifdef CONFIG_CRYPTO_STATS 603 union { 604 struct crypto_istat_aead aead; 605 struct crypto_istat_akcipher akcipher; 606 struct crypto_istat_cipher cipher; 607 struct crypto_istat_compress compress; 608 struct crypto_istat_hash hash; 609 struct crypto_istat_rng rng; 610 struct crypto_istat_kpp kpp; 611 } stats; 612 #endif /* CONFIG_CRYPTO_STATS */ 613 614 } CRYPTO_MINALIGN_ATTR; 615 616 #ifdef CONFIG_CRYPTO_STATS 617 void crypto_stats_get(struct crypto_alg *alg); 618 void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg); 619 void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg); 620 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 621 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 622 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 623 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 624 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 625 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 626 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 627 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 628 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 629 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 630 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 631 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 632 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 633 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 634 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 635 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 636 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 637 #else 638 static inline void crypto_stats_get(struct crypto_alg *alg) 639 {} 640 static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg) 641 {} 642 static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg) 643 {} 644 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 645 {} 646 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 647 {} 648 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 649 {} 650 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 651 {} 652 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 653 {} 654 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 655 {} 656 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 657 {} 658 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 659 {} 660 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 661 {} 662 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 663 {} 664 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 665 {} 666 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 667 {} 668 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 669 {} 670 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 671 {} 672 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 673 {} 674 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 675 {} 676 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 677 {} 678 #endif 679 /* 680 * A helper struct for waiting for completion of async crypto ops 681 */ 682 struct crypto_wait { 683 struct completion completion; 684 int err; 685 }; 686 687 /* 688 * Macro for declaring a crypto op async wait object on stack 689 */ 690 #define DECLARE_CRYPTO_WAIT(_wait) \ 691 struct crypto_wait _wait = { \ 692 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 693 694 /* 695 * Async ops completion helper functioons 696 */ 697 void crypto_req_done(struct crypto_async_request *req, int err); 698 699 static inline int crypto_wait_req(int err, struct crypto_wait *wait) 700 { 701 switch (err) { 702 case -EINPROGRESS: 703 case -EBUSY: 704 wait_for_completion(&wait->completion); 705 reinit_completion(&wait->completion); 706 err = wait->err; 707 break; 708 }; 709 710 return err; 711 } 712 713 static inline void crypto_init_wait(struct crypto_wait *wait) 714 { 715 init_completion(&wait->completion); 716 } 717 718 /* 719 * Algorithm registration interface. 720 */ 721 int crypto_register_alg(struct crypto_alg *alg); 722 int crypto_unregister_alg(struct crypto_alg *alg); 723 int crypto_register_algs(struct crypto_alg *algs, int count); 724 int crypto_unregister_algs(struct crypto_alg *algs, int count); 725 726 /* 727 * Algorithm query interface. 728 */ 729 int crypto_has_alg(const char *name, u32 type, u32 mask); 730 731 /* 732 * Transforms: user-instantiated objects which encapsulate algorithms 733 * and core processing logic. Managed via crypto_alloc_*() and 734 * crypto_free_*(), as well as the various helpers below. 735 */ 736 737 struct ablkcipher_tfm { 738 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 739 unsigned int keylen); 740 int (*encrypt)(struct ablkcipher_request *req); 741 int (*decrypt)(struct ablkcipher_request *req); 742 743 struct crypto_ablkcipher *base; 744 745 unsigned int ivsize; 746 unsigned int reqsize; 747 }; 748 749 struct blkcipher_tfm { 750 void *iv; 751 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 752 unsigned int keylen); 753 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 754 struct scatterlist *src, unsigned int nbytes); 755 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 756 struct scatterlist *src, unsigned int nbytes); 757 }; 758 759 struct cipher_tfm { 760 int (*cit_setkey)(struct crypto_tfm *tfm, 761 const u8 *key, unsigned int keylen); 762 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 763 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 764 }; 765 766 struct compress_tfm { 767 int (*cot_compress)(struct crypto_tfm *tfm, 768 const u8 *src, unsigned int slen, 769 u8 *dst, unsigned int *dlen); 770 int (*cot_decompress)(struct crypto_tfm *tfm, 771 const u8 *src, unsigned int slen, 772 u8 *dst, unsigned int *dlen); 773 }; 774 775 #define crt_ablkcipher crt_u.ablkcipher 776 #define crt_blkcipher crt_u.blkcipher 777 #define crt_cipher crt_u.cipher 778 #define crt_compress crt_u.compress 779 780 struct crypto_tfm { 781 782 u32 crt_flags; 783 784 union { 785 struct ablkcipher_tfm ablkcipher; 786 struct blkcipher_tfm blkcipher; 787 struct cipher_tfm cipher; 788 struct compress_tfm compress; 789 } crt_u; 790 791 void (*exit)(struct crypto_tfm *tfm); 792 793 struct crypto_alg *__crt_alg; 794 795 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 796 }; 797 798 struct crypto_ablkcipher { 799 struct crypto_tfm base; 800 }; 801 802 struct crypto_blkcipher { 803 struct crypto_tfm base; 804 }; 805 806 struct crypto_cipher { 807 struct crypto_tfm base; 808 }; 809 810 struct crypto_comp { 811 struct crypto_tfm base; 812 }; 813 814 enum { 815 CRYPTOA_UNSPEC, 816 CRYPTOA_ALG, 817 CRYPTOA_TYPE, 818 CRYPTOA_U32, 819 __CRYPTOA_MAX, 820 }; 821 822 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 823 824 /* Maximum number of (rtattr) parameters for each template. */ 825 #define CRYPTO_MAX_ATTRS 32 826 827 struct crypto_attr_alg { 828 char name[CRYPTO_MAX_ALG_NAME]; 829 }; 830 831 struct crypto_attr_type { 832 u32 type; 833 u32 mask; 834 }; 835 836 struct crypto_attr_u32 { 837 u32 num; 838 }; 839 840 /* 841 * Transform user interface. 842 */ 843 844 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 845 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 846 847 static inline void crypto_free_tfm(struct crypto_tfm *tfm) 848 { 849 return crypto_destroy_tfm(tfm, tfm); 850 } 851 852 int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 853 854 /* 855 * Transform helpers which query the underlying algorithm. 856 */ 857 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 858 { 859 return tfm->__crt_alg->cra_name; 860 } 861 862 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 863 { 864 return tfm->__crt_alg->cra_driver_name; 865 } 866 867 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 868 { 869 return tfm->__crt_alg->cra_priority; 870 } 871 872 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 873 { 874 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 875 } 876 877 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 878 { 879 return tfm->__crt_alg->cra_blocksize; 880 } 881 882 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 883 { 884 return tfm->__crt_alg->cra_alignmask; 885 } 886 887 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 888 { 889 return tfm->crt_flags; 890 } 891 892 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 893 { 894 tfm->crt_flags |= flags; 895 } 896 897 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 898 { 899 tfm->crt_flags &= ~flags; 900 } 901 902 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 903 { 904 return tfm->__crt_ctx; 905 } 906 907 static inline unsigned int crypto_tfm_ctx_alignment(void) 908 { 909 struct crypto_tfm *tfm; 910 return __alignof__(tfm->__crt_ctx); 911 } 912 913 /* 914 * API wrappers. 915 */ 916 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( 917 struct crypto_tfm *tfm) 918 { 919 return (struct crypto_ablkcipher *)tfm; 920 } 921 922 static inline u32 crypto_skcipher_type(u32 type) 923 { 924 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); 925 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 926 return type; 927 } 928 929 static inline u32 crypto_skcipher_mask(u32 mask) 930 { 931 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); 932 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; 933 return mask; 934 } 935 936 /** 937 * DOC: Asynchronous Block Cipher API 938 * 939 * Asynchronous block cipher API is used with the ciphers of type 940 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). 941 * 942 * Asynchronous cipher operations imply that the function invocation for a 943 * cipher request returns immediately before the completion of the operation. 944 * The cipher request is scheduled as a separate kernel thread and therefore 945 * load-balanced on the different CPUs via the process scheduler. To allow 946 * the kernel crypto API to inform the caller about the completion of a cipher 947 * request, the caller must provide a callback function. That function is 948 * invoked with the cipher handle when the request completes. 949 * 950 * To support the asynchronous operation, additional information than just the 951 * cipher handle must be supplied to the kernel crypto API. That additional 952 * information is given by filling in the ablkcipher_request data structure. 953 * 954 * For the asynchronous block cipher API, the state is maintained with the tfm 955 * cipher handle. A single tfm can be used across multiple calls and in 956 * parallel. For asynchronous block cipher calls, context data supplied and 957 * only used by the caller can be referenced the request data structure in 958 * addition to the IV used for the cipher request. The maintenance of such 959 * state information would be important for a crypto driver implementer to 960 * have, because when calling the callback function upon completion of the 961 * cipher operation, that callback function may need some information about 962 * which operation just finished if it invoked multiple in parallel. This 963 * state information is unused by the kernel crypto API. 964 */ 965 966 static inline struct crypto_tfm *crypto_ablkcipher_tfm( 967 struct crypto_ablkcipher *tfm) 968 { 969 return &tfm->base; 970 } 971 972 /** 973 * crypto_free_ablkcipher() - zeroize and free cipher handle 974 * @tfm: cipher handle to be freed 975 */ 976 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) 977 { 978 crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); 979 } 980 981 /** 982 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. 983 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 984 * ablkcipher 985 * @type: specifies the type of the cipher 986 * @mask: specifies the mask for the cipher 987 * 988 * Return: true when the ablkcipher is known to the kernel crypto API; false 989 * otherwise 990 */ 991 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, 992 u32 mask) 993 { 994 return crypto_has_alg(alg_name, crypto_skcipher_type(type), 995 crypto_skcipher_mask(mask)); 996 } 997 998 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( 999 struct crypto_ablkcipher *tfm) 1000 { 1001 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; 1002 } 1003 1004 /** 1005 * crypto_ablkcipher_ivsize() - obtain IV size 1006 * @tfm: cipher handle 1007 * 1008 * The size of the IV for the ablkcipher referenced by the cipher handle is 1009 * returned. This IV size may be zero if the cipher does not need an IV. 1010 * 1011 * Return: IV size in bytes 1012 */ 1013 static inline unsigned int crypto_ablkcipher_ivsize( 1014 struct crypto_ablkcipher *tfm) 1015 { 1016 return crypto_ablkcipher_crt(tfm)->ivsize; 1017 } 1018 1019 /** 1020 * crypto_ablkcipher_blocksize() - obtain block size of cipher 1021 * @tfm: cipher handle 1022 * 1023 * The block size for the ablkcipher referenced with the cipher handle is 1024 * returned. The caller may use that information to allocate appropriate 1025 * memory for the data returned by the encryption or decryption operation 1026 * 1027 * Return: block size of cipher 1028 */ 1029 static inline unsigned int crypto_ablkcipher_blocksize( 1030 struct crypto_ablkcipher *tfm) 1031 { 1032 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); 1033 } 1034 1035 static inline unsigned int crypto_ablkcipher_alignmask( 1036 struct crypto_ablkcipher *tfm) 1037 { 1038 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); 1039 } 1040 1041 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) 1042 { 1043 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); 1044 } 1045 1046 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, 1047 u32 flags) 1048 { 1049 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); 1050 } 1051 1052 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, 1053 u32 flags) 1054 { 1055 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); 1056 } 1057 1058 /** 1059 * crypto_ablkcipher_setkey() - set key for cipher 1060 * @tfm: cipher handle 1061 * @key: buffer holding the key 1062 * @keylen: length of the key in bytes 1063 * 1064 * The caller provided key is set for the ablkcipher referenced by the cipher 1065 * handle. 1066 * 1067 * Note, the key length determines the cipher type. Many block ciphers implement 1068 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1069 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1070 * is performed. 1071 * 1072 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1073 */ 1074 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, 1075 const u8 *key, unsigned int keylen) 1076 { 1077 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); 1078 1079 return crt->setkey(crt->base, key, keylen); 1080 } 1081 1082 /** 1083 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request 1084 * @req: ablkcipher_request out of which the cipher handle is to be obtained 1085 * 1086 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request 1087 * data structure. 1088 * 1089 * Return: crypto_ablkcipher handle 1090 */ 1091 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( 1092 struct ablkcipher_request *req) 1093 { 1094 return __crypto_ablkcipher_cast(req->base.tfm); 1095 } 1096 1097 /** 1098 * crypto_ablkcipher_encrypt() - encrypt plaintext 1099 * @req: reference to the ablkcipher_request handle that holds all information 1100 * needed to perform the cipher operation 1101 * 1102 * Encrypt plaintext data using the ablkcipher_request handle. That data 1103 * structure and how it is filled with data is discussed with the 1104 * ablkcipher_request_* functions. 1105 * 1106 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1107 */ 1108 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) 1109 { 1110 struct ablkcipher_tfm *crt = 1111 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1112 struct crypto_alg *alg = crt->base->base.__crt_alg; 1113 unsigned int nbytes = req->nbytes; 1114 int ret; 1115 1116 crypto_stats_get(alg); 1117 ret = crt->encrypt(req); 1118 crypto_stats_ablkcipher_encrypt(nbytes, ret, alg); 1119 return ret; 1120 } 1121 1122 /** 1123 * crypto_ablkcipher_decrypt() - decrypt ciphertext 1124 * @req: reference to the ablkcipher_request handle that holds all information 1125 * needed to perform the cipher operation 1126 * 1127 * Decrypt ciphertext data using the ablkcipher_request handle. That data 1128 * structure and how it is filled with data is discussed with the 1129 * ablkcipher_request_* functions. 1130 * 1131 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1132 */ 1133 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) 1134 { 1135 struct ablkcipher_tfm *crt = 1136 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1137 struct crypto_alg *alg = crt->base->base.__crt_alg; 1138 unsigned int nbytes = req->nbytes; 1139 int ret; 1140 1141 crypto_stats_get(alg); 1142 ret = crt->decrypt(req); 1143 crypto_stats_ablkcipher_decrypt(nbytes, ret, alg); 1144 return ret; 1145 } 1146 1147 /** 1148 * DOC: Asynchronous Cipher Request Handle 1149 * 1150 * The ablkcipher_request data structure contains all pointers to data 1151 * required for the asynchronous cipher operation. This includes the cipher 1152 * handle (which can be used by multiple ablkcipher_request instances), pointer 1153 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 1154 * as a handle to the ablkcipher_request_* API calls in a similar way as 1155 * ablkcipher handle to the crypto_ablkcipher_* API calls. 1156 */ 1157 1158 /** 1159 * crypto_ablkcipher_reqsize() - obtain size of the request data structure 1160 * @tfm: cipher handle 1161 * 1162 * Return: number of bytes 1163 */ 1164 static inline unsigned int crypto_ablkcipher_reqsize( 1165 struct crypto_ablkcipher *tfm) 1166 { 1167 return crypto_ablkcipher_crt(tfm)->reqsize; 1168 } 1169 1170 /** 1171 * ablkcipher_request_set_tfm() - update cipher handle reference in request 1172 * @req: request handle to be modified 1173 * @tfm: cipher handle that shall be added to the request handle 1174 * 1175 * Allow the caller to replace the existing ablkcipher handle in the request 1176 * data structure with a different one. 1177 */ 1178 static inline void ablkcipher_request_set_tfm( 1179 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) 1180 { 1181 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); 1182 } 1183 1184 static inline struct ablkcipher_request *ablkcipher_request_cast( 1185 struct crypto_async_request *req) 1186 { 1187 return container_of(req, struct ablkcipher_request, base); 1188 } 1189 1190 /** 1191 * ablkcipher_request_alloc() - allocate request data structure 1192 * @tfm: cipher handle to be registered with the request 1193 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 1194 * 1195 * Allocate the request data structure that must be used with the ablkcipher 1196 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher 1197 * handle is registered in the request data structure. 1198 * 1199 * Return: allocated request handle in case of success, or NULL if out of memory 1200 */ 1201 static inline struct ablkcipher_request *ablkcipher_request_alloc( 1202 struct crypto_ablkcipher *tfm, gfp_t gfp) 1203 { 1204 struct ablkcipher_request *req; 1205 1206 req = kmalloc(sizeof(struct ablkcipher_request) + 1207 crypto_ablkcipher_reqsize(tfm), gfp); 1208 1209 if (likely(req)) 1210 ablkcipher_request_set_tfm(req, tfm); 1211 1212 return req; 1213 } 1214 1215 /** 1216 * ablkcipher_request_free() - zeroize and free request data structure 1217 * @req: request data structure cipher handle to be freed 1218 */ 1219 static inline void ablkcipher_request_free(struct ablkcipher_request *req) 1220 { 1221 kzfree(req); 1222 } 1223 1224 /** 1225 * ablkcipher_request_set_callback() - set asynchronous callback function 1226 * @req: request handle 1227 * @flags: specify zero or an ORing of the flags 1228 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 1229 * increase the wait queue beyond the initial maximum size; 1230 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 1231 * @compl: callback function pointer to be registered with the request handle 1232 * @data: The data pointer refers to memory that is not used by the kernel 1233 * crypto API, but provided to the callback function for it to use. Here, 1234 * the caller can provide a reference to memory the callback function can 1235 * operate on. As the callback function is invoked asynchronously to the 1236 * related functionality, it may need to access data structures of the 1237 * related functionality which can be referenced using this pointer. The 1238 * callback function can access the memory via the "data" field in the 1239 * crypto_async_request data structure provided to the callback function. 1240 * 1241 * This function allows setting the callback function that is triggered once the 1242 * cipher operation completes. 1243 * 1244 * The callback function is registered with the ablkcipher_request handle and 1245 * must comply with the following template:: 1246 * 1247 * void callback_function(struct crypto_async_request *req, int error) 1248 */ 1249 static inline void ablkcipher_request_set_callback( 1250 struct ablkcipher_request *req, 1251 u32 flags, crypto_completion_t compl, void *data) 1252 { 1253 req->base.complete = compl; 1254 req->base.data = data; 1255 req->base.flags = flags; 1256 } 1257 1258 /** 1259 * ablkcipher_request_set_crypt() - set data buffers 1260 * @req: request handle 1261 * @src: source scatter / gather list 1262 * @dst: destination scatter / gather list 1263 * @nbytes: number of bytes to process from @src 1264 * @iv: IV for the cipher operation which must comply with the IV size defined 1265 * by crypto_ablkcipher_ivsize 1266 * 1267 * This function allows setting of the source data and destination data 1268 * scatter / gather lists. 1269 * 1270 * For encryption, the source is treated as the plaintext and the 1271 * destination is the ciphertext. For a decryption operation, the use is 1272 * reversed - the source is the ciphertext and the destination is the plaintext. 1273 */ 1274 static inline void ablkcipher_request_set_crypt( 1275 struct ablkcipher_request *req, 1276 struct scatterlist *src, struct scatterlist *dst, 1277 unsigned int nbytes, void *iv) 1278 { 1279 req->src = src; 1280 req->dst = dst; 1281 req->nbytes = nbytes; 1282 req->info = iv; 1283 } 1284 1285 /** 1286 * DOC: Synchronous Block Cipher API 1287 * 1288 * The synchronous block cipher API is used with the ciphers of type 1289 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) 1290 * 1291 * Synchronous calls, have a context in the tfm. But since a single tfm can be 1292 * used in multiple calls and in parallel, this info should not be changeable 1293 * (unless a lock is used). This applies, for example, to the symmetric key. 1294 * However, the IV is changeable, so there is an iv field in blkcipher_tfm 1295 * structure for synchronous blkcipher api. So, its the only state info that can 1296 * be kept for synchronous calls without using a big lock across a tfm. 1297 * 1298 * The block cipher API allows the use of a complete cipher, i.e. a cipher 1299 * consisting of a template (a block chaining mode) and a single block cipher 1300 * primitive (e.g. AES). 1301 * 1302 * The plaintext data buffer and the ciphertext data buffer are pointed to 1303 * by using scatter/gather lists. The cipher operation is performed 1304 * on all segments of the provided scatter/gather lists. 1305 * 1306 * The kernel crypto API supports a cipher operation "in-place" which means that 1307 * the caller may provide the same scatter/gather list for the plaintext and 1308 * cipher text. After the completion of the cipher operation, the plaintext 1309 * data is replaced with the ciphertext data in case of an encryption and vice 1310 * versa for a decryption. The caller must ensure that the scatter/gather lists 1311 * for the output data point to sufficiently large buffers, i.e. multiples of 1312 * the block size of the cipher. 1313 */ 1314 1315 static inline struct crypto_blkcipher *__crypto_blkcipher_cast( 1316 struct crypto_tfm *tfm) 1317 { 1318 return (struct crypto_blkcipher *)tfm; 1319 } 1320 1321 static inline struct crypto_blkcipher *crypto_blkcipher_cast( 1322 struct crypto_tfm *tfm) 1323 { 1324 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); 1325 return __crypto_blkcipher_cast(tfm); 1326 } 1327 1328 /** 1329 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle 1330 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1331 * blkcipher cipher 1332 * @type: specifies the type of the cipher 1333 * @mask: specifies the mask for the cipher 1334 * 1335 * Allocate a cipher handle for a block cipher. The returned struct 1336 * crypto_blkcipher is the cipher handle that is required for any subsequent 1337 * API invocation for that block cipher. 1338 * 1339 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1340 * of an error, PTR_ERR() returns the error code. 1341 */ 1342 static inline struct crypto_blkcipher *crypto_alloc_blkcipher( 1343 const char *alg_name, u32 type, u32 mask) 1344 { 1345 type &= ~CRYPTO_ALG_TYPE_MASK; 1346 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1347 mask |= CRYPTO_ALG_TYPE_MASK; 1348 1349 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); 1350 } 1351 1352 static inline struct crypto_tfm *crypto_blkcipher_tfm( 1353 struct crypto_blkcipher *tfm) 1354 { 1355 return &tfm->base; 1356 } 1357 1358 /** 1359 * crypto_free_blkcipher() - zeroize and free the block cipher handle 1360 * @tfm: cipher handle to be freed 1361 */ 1362 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) 1363 { 1364 crypto_free_tfm(crypto_blkcipher_tfm(tfm)); 1365 } 1366 1367 /** 1368 * crypto_has_blkcipher() - Search for the availability of a block cipher 1369 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1370 * block cipher 1371 * @type: specifies the type of the cipher 1372 * @mask: specifies the mask for the cipher 1373 * 1374 * Return: true when the block cipher is known to the kernel crypto API; false 1375 * otherwise 1376 */ 1377 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) 1378 { 1379 type &= ~CRYPTO_ALG_TYPE_MASK; 1380 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1381 mask |= CRYPTO_ALG_TYPE_MASK; 1382 1383 return crypto_has_alg(alg_name, type, mask); 1384 } 1385 1386 /** 1387 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle 1388 * @tfm: cipher handle 1389 * 1390 * Return: The character string holding the name of the cipher 1391 */ 1392 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) 1393 { 1394 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); 1395 } 1396 1397 static inline struct blkcipher_tfm *crypto_blkcipher_crt( 1398 struct crypto_blkcipher *tfm) 1399 { 1400 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; 1401 } 1402 1403 static inline struct blkcipher_alg *crypto_blkcipher_alg( 1404 struct crypto_blkcipher *tfm) 1405 { 1406 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; 1407 } 1408 1409 /** 1410 * crypto_blkcipher_ivsize() - obtain IV size 1411 * @tfm: cipher handle 1412 * 1413 * The size of the IV for the block cipher referenced by the cipher handle is 1414 * returned. This IV size may be zero if the cipher does not need an IV. 1415 * 1416 * Return: IV size in bytes 1417 */ 1418 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) 1419 { 1420 return crypto_blkcipher_alg(tfm)->ivsize; 1421 } 1422 1423 /** 1424 * crypto_blkcipher_blocksize() - obtain block size of cipher 1425 * @tfm: cipher handle 1426 * 1427 * The block size for the block cipher referenced with the cipher handle is 1428 * returned. The caller may use that information to allocate appropriate 1429 * memory for the data returned by the encryption or decryption operation. 1430 * 1431 * Return: block size of cipher 1432 */ 1433 static inline unsigned int crypto_blkcipher_blocksize( 1434 struct crypto_blkcipher *tfm) 1435 { 1436 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); 1437 } 1438 1439 static inline unsigned int crypto_blkcipher_alignmask( 1440 struct crypto_blkcipher *tfm) 1441 { 1442 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); 1443 } 1444 1445 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) 1446 { 1447 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); 1448 } 1449 1450 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, 1451 u32 flags) 1452 { 1453 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); 1454 } 1455 1456 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, 1457 u32 flags) 1458 { 1459 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); 1460 } 1461 1462 /** 1463 * crypto_blkcipher_setkey() - set key for cipher 1464 * @tfm: cipher handle 1465 * @key: buffer holding the key 1466 * @keylen: length of the key in bytes 1467 * 1468 * The caller provided key is set for the block cipher referenced by the cipher 1469 * handle. 1470 * 1471 * Note, the key length determines the cipher type. Many block ciphers implement 1472 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1473 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1474 * is performed. 1475 * 1476 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1477 */ 1478 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, 1479 const u8 *key, unsigned int keylen) 1480 { 1481 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), 1482 key, keylen); 1483 } 1484 1485 /** 1486 * crypto_blkcipher_encrypt() - encrypt plaintext 1487 * @desc: reference to the block cipher handle with meta data 1488 * @dst: scatter/gather list that is filled by the cipher operation with the 1489 * ciphertext 1490 * @src: scatter/gather list that holds the plaintext 1491 * @nbytes: number of bytes of the plaintext to encrypt. 1492 * 1493 * Encrypt plaintext data using the IV set by the caller with a preceding 1494 * call of crypto_blkcipher_set_iv. 1495 * 1496 * The blkcipher_desc data structure must be filled by the caller and can 1497 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1498 * with the block cipher handle; desc.flags is filled with either 1499 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1500 * 1501 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1502 */ 1503 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, 1504 struct scatterlist *dst, 1505 struct scatterlist *src, 1506 unsigned int nbytes) 1507 { 1508 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1509 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1510 } 1511 1512 /** 1513 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV 1514 * @desc: reference to the block cipher handle with meta data 1515 * @dst: scatter/gather list that is filled by the cipher operation with the 1516 * ciphertext 1517 * @src: scatter/gather list that holds the plaintext 1518 * @nbytes: number of bytes of the plaintext to encrypt. 1519 * 1520 * Encrypt plaintext data with the use of an IV that is solely used for this 1521 * cipher operation. Any previously set IV is not used. 1522 * 1523 * The blkcipher_desc data structure must be filled by the caller and can 1524 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1525 * with the block cipher handle; desc.info is filled with the IV to be used for 1526 * the current operation; desc.flags is filled with either 1527 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1528 * 1529 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1530 */ 1531 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, 1532 struct scatterlist *dst, 1533 struct scatterlist *src, 1534 unsigned int nbytes) 1535 { 1536 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1537 } 1538 1539 /** 1540 * crypto_blkcipher_decrypt() - decrypt ciphertext 1541 * @desc: reference to the block cipher handle with meta data 1542 * @dst: scatter/gather list that is filled by the cipher operation with the 1543 * plaintext 1544 * @src: scatter/gather list that holds the ciphertext 1545 * @nbytes: number of bytes of the ciphertext to decrypt. 1546 * 1547 * Decrypt ciphertext data using the IV set by the caller with a preceding 1548 * call of crypto_blkcipher_set_iv. 1549 * 1550 * The blkcipher_desc data structure must be filled by the caller as documented 1551 * for the crypto_blkcipher_encrypt call above. 1552 * 1553 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1554 * 1555 */ 1556 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, 1557 struct scatterlist *dst, 1558 struct scatterlist *src, 1559 unsigned int nbytes) 1560 { 1561 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1562 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1563 } 1564 1565 /** 1566 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV 1567 * @desc: reference to the block cipher handle with meta data 1568 * @dst: scatter/gather list that is filled by the cipher operation with the 1569 * plaintext 1570 * @src: scatter/gather list that holds the ciphertext 1571 * @nbytes: number of bytes of the ciphertext to decrypt. 1572 * 1573 * Decrypt ciphertext data with the use of an IV that is solely used for this 1574 * cipher operation. Any previously set IV is not used. 1575 * 1576 * The blkcipher_desc data structure must be filled by the caller as documented 1577 * for the crypto_blkcipher_encrypt_iv call above. 1578 * 1579 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1580 */ 1581 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, 1582 struct scatterlist *dst, 1583 struct scatterlist *src, 1584 unsigned int nbytes) 1585 { 1586 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1587 } 1588 1589 /** 1590 * crypto_blkcipher_set_iv() - set IV for cipher 1591 * @tfm: cipher handle 1592 * @src: buffer holding the IV 1593 * @len: length of the IV in bytes 1594 * 1595 * The caller provided IV is set for the block cipher referenced by the cipher 1596 * handle. 1597 */ 1598 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, 1599 const u8 *src, unsigned int len) 1600 { 1601 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); 1602 } 1603 1604 /** 1605 * crypto_blkcipher_get_iv() - obtain IV from cipher 1606 * @tfm: cipher handle 1607 * @dst: buffer filled with the IV 1608 * @len: length of the buffer dst 1609 * 1610 * The caller can obtain the IV set for the block cipher referenced by the 1611 * cipher handle and store it into the user-provided buffer. If the buffer 1612 * has an insufficient space, the IV is truncated to fit the buffer. 1613 */ 1614 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, 1615 u8 *dst, unsigned int len) 1616 { 1617 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); 1618 } 1619 1620 /** 1621 * DOC: Single Block Cipher API 1622 * 1623 * The single block cipher API is used with the ciphers of type 1624 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 1625 * 1626 * Using the single block cipher API calls, operations with the basic cipher 1627 * primitive can be implemented. These cipher primitives exclude any block 1628 * chaining operations including IV handling. 1629 * 1630 * The purpose of this single block cipher API is to support the implementation 1631 * of templates or other concepts that only need to perform the cipher operation 1632 * on one block at a time. Templates invoke the underlying cipher primitive 1633 * block-wise and process either the input or the output data of these cipher 1634 * operations. 1635 */ 1636 1637 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 1638 { 1639 return (struct crypto_cipher *)tfm; 1640 } 1641 1642 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) 1643 { 1644 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); 1645 return __crypto_cipher_cast(tfm); 1646 } 1647 1648 /** 1649 * crypto_alloc_cipher() - allocate single block cipher handle 1650 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1651 * single block cipher 1652 * @type: specifies the type of the cipher 1653 * @mask: specifies the mask for the cipher 1654 * 1655 * Allocate a cipher handle for a single block cipher. The returned struct 1656 * crypto_cipher is the cipher handle that is required for any subsequent API 1657 * invocation for that single block cipher. 1658 * 1659 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1660 * of an error, PTR_ERR() returns the error code. 1661 */ 1662 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 1663 u32 type, u32 mask) 1664 { 1665 type &= ~CRYPTO_ALG_TYPE_MASK; 1666 type |= CRYPTO_ALG_TYPE_CIPHER; 1667 mask |= CRYPTO_ALG_TYPE_MASK; 1668 1669 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 1670 } 1671 1672 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 1673 { 1674 return &tfm->base; 1675 } 1676 1677 /** 1678 * crypto_free_cipher() - zeroize and free the single block cipher handle 1679 * @tfm: cipher handle to be freed 1680 */ 1681 static inline void crypto_free_cipher(struct crypto_cipher *tfm) 1682 { 1683 crypto_free_tfm(crypto_cipher_tfm(tfm)); 1684 } 1685 1686 /** 1687 * crypto_has_cipher() - Search for the availability of a single block cipher 1688 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1689 * single block cipher 1690 * @type: specifies the type of the cipher 1691 * @mask: specifies the mask for the cipher 1692 * 1693 * Return: true when the single block cipher is known to the kernel crypto API; 1694 * false otherwise 1695 */ 1696 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 1697 { 1698 type &= ~CRYPTO_ALG_TYPE_MASK; 1699 type |= CRYPTO_ALG_TYPE_CIPHER; 1700 mask |= CRYPTO_ALG_TYPE_MASK; 1701 1702 return crypto_has_alg(alg_name, type, mask); 1703 } 1704 1705 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) 1706 { 1707 return &crypto_cipher_tfm(tfm)->crt_cipher; 1708 } 1709 1710 /** 1711 * crypto_cipher_blocksize() - obtain block size for cipher 1712 * @tfm: cipher handle 1713 * 1714 * The block size for the single block cipher referenced with the cipher handle 1715 * tfm is returned. The caller may use that information to allocate appropriate 1716 * memory for the data returned by the encryption or decryption operation 1717 * 1718 * Return: block size of cipher 1719 */ 1720 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 1721 { 1722 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 1723 } 1724 1725 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 1726 { 1727 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 1728 } 1729 1730 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 1731 { 1732 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 1733 } 1734 1735 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 1736 u32 flags) 1737 { 1738 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 1739 } 1740 1741 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 1742 u32 flags) 1743 { 1744 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 1745 } 1746 1747 /** 1748 * crypto_cipher_setkey() - set key for cipher 1749 * @tfm: cipher handle 1750 * @key: buffer holding the key 1751 * @keylen: length of the key in bytes 1752 * 1753 * The caller provided key is set for the single block cipher referenced by the 1754 * cipher handle. 1755 * 1756 * Note, the key length determines the cipher type. Many block ciphers implement 1757 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1758 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1759 * is performed. 1760 * 1761 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1762 */ 1763 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 1764 const u8 *key, unsigned int keylen) 1765 { 1766 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), 1767 key, keylen); 1768 } 1769 1770 /** 1771 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 1772 * @tfm: cipher handle 1773 * @dst: points to the buffer that will be filled with the ciphertext 1774 * @src: buffer holding the plaintext to be encrypted 1775 * 1776 * Invoke the encryption operation of one block. The caller must ensure that 1777 * the plaintext and ciphertext buffers are at least one block in size. 1778 */ 1779 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 1780 u8 *dst, const u8 *src) 1781 { 1782 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), 1783 dst, src); 1784 } 1785 1786 /** 1787 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 1788 * @tfm: cipher handle 1789 * @dst: points to the buffer that will be filled with the plaintext 1790 * @src: buffer holding the ciphertext to be decrypted 1791 * 1792 * Invoke the decryption operation of one block. The caller must ensure that 1793 * the plaintext and ciphertext buffers are at least one block in size. 1794 */ 1795 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 1796 u8 *dst, const u8 *src) 1797 { 1798 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), 1799 dst, src); 1800 } 1801 1802 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 1803 { 1804 return (struct crypto_comp *)tfm; 1805 } 1806 1807 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) 1808 { 1809 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & 1810 CRYPTO_ALG_TYPE_MASK); 1811 return __crypto_comp_cast(tfm); 1812 } 1813 1814 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 1815 u32 type, u32 mask) 1816 { 1817 type &= ~CRYPTO_ALG_TYPE_MASK; 1818 type |= CRYPTO_ALG_TYPE_COMPRESS; 1819 mask |= CRYPTO_ALG_TYPE_MASK; 1820 1821 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 1822 } 1823 1824 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 1825 { 1826 return &tfm->base; 1827 } 1828 1829 static inline void crypto_free_comp(struct crypto_comp *tfm) 1830 { 1831 crypto_free_tfm(crypto_comp_tfm(tfm)); 1832 } 1833 1834 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 1835 { 1836 type &= ~CRYPTO_ALG_TYPE_MASK; 1837 type |= CRYPTO_ALG_TYPE_COMPRESS; 1838 mask |= CRYPTO_ALG_TYPE_MASK; 1839 1840 return crypto_has_alg(alg_name, type, mask); 1841 } 1842 1843 static inline const char *crypto_comp_name(struct crypto_comp *tfm) 1844 { 1845 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 1846 } 1847 1848 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) 1849 { 1850 return &crypto_comp_tfm(tfm)->crt_compress; 1851 } 1852 1853 static inline int crypto_comp_compress(struct crypto_comp *tfm, 1854 const u8 *src, unsigned int slen, 1855 u8 *dst, unsigned int *dlen) 1856 { 1857 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), 1858 src, slen, dst, dlen); 1859 } 1860 1861 static inline int crypto_comp_decompress(struct crypto_comp *tfm, 1862 const u8 *src, unsigned int slen, 1863 u8 *dst, unsigned int *dlen) 1864 { 1865 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), 1866 src, slen, dst, dlen); 1867 } 1868 1869 #endif /* _LINUX_CRYPTO_H */ 1870 1871