1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Scatterlist Cryptographic API. 4 * 5 * Copyright (c) 2002 James Morris <[email protected]> 6 * Copyright (c) 2002 David S. Miller ([email protected]) 7 * Copyright (c) 2005 Herbert Xu <[email protected]> 8 * 9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]> 10 * and Nettle, by Niels Möller. 11 */ 12 #ifndef _LINUX_CRYPTO_H 13 #define _LINUX_CRYPTO_H 14 15 #include <linux/atomic.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/bug.h> 19 #include <linux/refcount.h> 20 #include <linux/slab.h> 21 #include <linux/completion.h> 22 23 /* 24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 25 * arbitrary modules to be loaded. Loading from userspace may still need the 26 * unprefixed names, so retains those aliases as well. 27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 29 * expands twice on the same line. Instead, use a separate base name for the 30 * alias. 31 */ 32 #define MODULE_ALIAS_CRYPTO(name) \ 33 __MODULE_INFO(alias, alias_userspace, name); \ 34 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 35 36 /* 37 * Algorithm masks and types. 38 */ 39 #define CRYPTO_ALG_TYPE_MASK 0x0000000f 40 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 41 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 42 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 43 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 44 #define CRYPTO_ALG_TYPE_KPP 0x00000008 45 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 46 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 47 #define CRYPTO_ALG_TYPE_RNG 0x0000000c 48 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 49 #define CRYPTO_ALG_TYPE_HASH 0x0000000e 50 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e 51 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f 52 53 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 54 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 56 57 #define CRYPTO_ALG_LARVAL 0x00000010 58 #define CRYPTO_ALG_DEAD 0x00000020 59 #define CRYPTO_ALG_DYING 0x00000040 60 #define CRYPTO_ALG_ASYNC 0x00000080 61 62 /* 63 * Set if the algorithm (or an algorithm which it uses) requires another 64 * algorithm of the same type to handle corner cases. 65 */ 66 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 67 68 /* 69 * Set if the algorithm has passed automated run-time testing. Note that 70 * if there is no run-time testing for a given algorithm it is considered 71 * to have passed. 72 */ 73 74 #define CRYPTO_ALG_TESTED 0x00000400 75 76 /* 77 * Set if the algorithm is an instance that is built from templates. 78 */ 79 #define CRYPTO_ALG_INSTANCE 0x00000800 80 81 /* Set this bit if the algorithm provided is hardware accelerated but 82 * not available to userspace via instruction set or so. 83 */ 84 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 85 86 /* 87 * Mark a cipher as a service implementation only usable by another 88 * cipher and never by a normal user of the kernel crypto API 89 */ 90 #define CRYPTO_ALG_INTERNAL 0x00002000 91 92 /* 93 * Set if the algorithm has a ->setkey() method but can be used without 94 * calling it first, i.e. there is a default key. 95 */ 96 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 97 98 /* 99 * Don't trigger module loading 100 */ 101 #define CRYPTO_NOLOAD 0x00008000 102 103 /* 104 * The algorithm may allocate memory during request processing, i.e. during 105 * encryption, decryption, or hashing. Users can request an algorithm with this 106 * flag unset if they can't handle memory allocation failures. 107 * 108 * This flag is currently only implemented for algorithms of type "skcipher", 109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not 110 * have this flag set even if they allocate memory. 111 * 112 * In some edge cases, algorithms can allocate memory regardless of this flag. 113 * To avoid these cases, users must obey the following usage constraints: 114 * skcipher: 115 * - The IV buffer and all scatterlist elements must be aligned to the 116 * algorithm's alignmask. 117 * - If the data were to be divided into chunks of size 118 * crypto_skcipher_walksize() (with any remainder going at the end), no 119 * chunk can cross a page boundary or a scatterlist element boundary. 120 * aead: 121 * - The IV buffer and all scatterlist elements must be aligned to the 122 * algorithm's alignmask. 123 * - The first scatterlist element must contain all the associated data, 124 * and its pages must be !PageHighMem. 125 * - If the plaintext/ciphertext were to be divided into chunks of size 126 * crypto_aead_walksize() (with the remainder going at the end), no chunk 127 * can cross a page boundary or a scatterlist element boundary. 128 * ahash: 129 * - The result buffer must be aligned to the algorithm's alignmask. 130 * - crypto_ahash_finup() must not be used unless the algorithm implements 131 * ->finup() natively. 132 */ 133 #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 134 135 /* 136 * Mark an algorithm as a service implementation only usable by a 137 * template and never by a normal user of the kernel crypto API. 138 * This is intended to be used by algorithms that are themselves 139 * not FIPS-approved but may instead be used to implement parts of 140 * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)). 141 */ 142 #define CRYPTO_ALG_FIPS_INTERNAL 0x00020000 143 144 /* 145 * Transform masks and values (for crt_flags). 146 */ 147 #define CRYPTO_TFM_NEED_KEY 0x00000001 148 149 #define CRYPTO_TFM_REQ_MASK 0x000fff00 150 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 151 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 152 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 153 154 /* 155 * Miscellaneous stuff. 156 */ 157 #define CRYPTO_MAX_ALG_NAME 128 158 159 /* 160 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 161 * declaration) is used to ensure that the crypto_tfm context structure is 162 * aligned correctly for the given architecture so that there are no alignment 163 * faults for C data types. On architectures that support non-cache coherent 164 * DMA, such as ARM or arm64, it also takes into account the minimal alignment 165 * that is required to ensure that the context struct member does not share any 166 * cachelines with the rest of the struct. This is needed to ensure that cache 167 * maintenance for non-coherent DMA (cache invalidation in particular) does not 168 * affect data that may be accessed by the CPU concurrently. 169 */ 170 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 171 172 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 173 174 struct scatterlist; 175 struct crypto_async_request; 176 struct crypto_tfm; 177 struct crypto_type; 178 179 typedef void crypto_completion_data_t; 180 typedef void (*crypto_completion_t)(void *req, int err); 181 182 /** 183 * DOC: Block Cipher Context Data Structures 184 * 185 * These data structures define the operating context for each block cipher 186 * type. 187 */ 188 189 struct crypto_async_request { 190 struct list_head list; 191 crypto_completion_t complete; 192 void *data; 193 struct crypto_tfm *tfm; 194 195 u32 flags; 196 }; 197 198 /** 199 * DOC: Block Cipher Algorithm Definitions 200 * 201 * These data structures define modular crypto algorithm implementations, 202 * managed via crypto_register_alg() and crypto_unregister_alg(). 203 */ 204 205 /** 206 * struct cipher_alg - single-block symmetric ciphers definition 207 * @cia_min_keysize: Minimum key size supported by the transformation. This is 208 * the smallest key length supported by this transformation 209 * algorithm. This must be set to one of the pre-defined 210 * values as this is not hardware specific. Possible values 211 * for this field can be found via git grep "_MIN_KEY_SIZE" 212 * include/crypto/ 213 * @cia_max_keysize: Maximum key size supported by the transformation. This is 214 * the largest key length supported by this transformation 215 * algorithm. This must be set to one of the pre-defined values 216 * as this is not hardware specific. Possible values for this 217 * field can be found via git grep "_MAX_KEY_SIZE" 218 * include/crypto/ 219 * @cia_setkey: Set key for the transformation. This function is used to either 220 * program a supplied key into the hardware or store the key in the 221 * transformation context for programming it later. Note that this 222 * function does modify the transformation context. This function 223 * can be called multiple times during the existence of the 224 * transformation object, so one must make sure the key is properly 225 * reprogrammed into the hardware. This function is also 226 * responsible for checking the key length for validity. 227 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 228 * single block of data, which must be @cra_blocksize big. This 229 * always operates on a full @cra_blocksize and it is not possible 230 * to encrypt a block of smaller size. The supplied buffers must 231 * therefore also be at least of @cra_blocksize size. Both the 232 * input and output buffers are always aligned to @cra_alignmask. 233 * In case either of the input or output buffer supplied by user 234 * of the crypto API is not aligned to @cra_alignmask, the crypto 235 * API will re-align the buffers. The re-alignment means that a 236 * new buffer will be allocated, the data will be copied into the 237 * new buffer, then the processing will happen on the new buffer, 238 * then the data will be copied back into the original buffer and 239 * finally the new buffer will be freed. In case a software 240 * fallback was put in place in the @cra_init call, this function 241 * might need to use the fallback if the algorithm doesn't support 242 * all of the key sizes. In case the key was stored in 243 * transformation context, the key might need to be re-programmed 244 * into the hardware in this function. This function shall not 245 * modify the transformation context, as this function may be 246 * called in parallel with the same transformation object. 247 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 248 * @cia_encrypt, and the conditions are exactly the same. 249 * 250 * All fields are mandatory and must be filled. 251 */ 252 struct cipher_alg { 253 unsigned int cia_min_keysize; 254 unsigned int cia_max_keysize; 255 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 256 unsigned int keylen); 257 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 258 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 259 }; 260 261 /** 262 * struct compress_alg - compression/decompression algorithm 263 * @coa_compress: Compress a buffer of specified length, storing the resulting 264 * data in the specified buffer. Return the length of the 265 * compressed data in dlen. 266 * @coa_decompress: Decompress the source buffer, storing the uncompressed 267 * data in the specified buffer. The length of the data is 268 * returned in dlen. 269 * 270 * All fields are mandatory. 271 */ 272 struct compress_alg { 273 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 274 unsigned int slen, u8 *dst, unsigned int *dlen); 275 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 276 unsigned int slen, u8 *dst, unsigned int *dlen); 277 }; 278 279 #ifdef CONFIG_CRYPTO_STATS 280 /* 281 * struct crypto_istat_aead - statistics for AEAD algorithm 282 * @encrypt_cnt: number of encrypt requests 283 * @encrypt_tlen: total data size handled by encrypt requests 284 * @decrypt_cnt: number of decrypt requests 285 * @decrypt_tlen: total data size handled by decrypt requests 286 * @err_cnt: number of error for AEAD requests 287 */ 288 struct crypto_istat_aead { 289 atomic64_t encrypt_cnt; 290 atomic64_t encrypt_tlen; 291 atomic64_t decrypt_cnt; 292 atomic64_t decrypt_tlen; 293 atomic64_t err_cnt; 294 }; 295 296 /* 297 * struct crypto_istat_akcipher - statistics for akcipher algorithm 298 * @encrypt_cnt: number of encrypt requests 299 * @encrypt_tlen: total data size handled by encrypt requests 300 * @decrypt_cnt: number of decrypt requests 301 * @decrypt_tlen: total data size handled by decrypt requests 302 * @verify_cnt: number of verify operation 303 * @sign_cnt: number of sign requests 304 * @err_cnt: number of error for akcipher requests 305 */ 306 struct crypto_istat_akcipher { 307 atomic64_t encrypt_cnt; 308 atomic64_t encrypt_tlen; 309 atomic64_t decrypt_cnt; 310 atomic64_t decrypt_tlen; 311 atomic64_t verify_cnt; 312 atomic64_t sign_cnt; 313 atomic64_t err_cnt; 314 }; 315 316 /* 317 * struct crypto_istat_cipher - statistics for cipher algorithm 318 * @encrypt_cnt: number of encrypt requests 319 * @encrypt_tlen: total data size handled by encrypt requests 320 * @decrypt_cnt: number of decrypt requests 321 * @decrypt_tlen: total data size handled by decrypt requests 322 * @err_cnt: number of error for cipher requests 323 */ 324 struct crypto_istat_cipher { 325 atomic64_t encrypt_cnt; 326 atomic64_t encrypt_tlen; 327 atomic64_t decrypt_cnt; 328 atomic64_t decrypt_tlen; 329 atomic64_t err_cnt; 330 }; 331 332 /* 333 * struct crypto_istat_compress - statistics for compress algorithm 334 * @compress_cnt: number of compress requests 335 * @compress_tlen: total data size handled by compress requests 336 * @decompress_cnt: number of decompress requests 337 * @decompress_tlen: total data size handled by decompress requests 338 * @err_cnt: number of error for compress requests 339 */ 340 struct crypto_istat_compress { 341 atomic64_t compress_cnt; 342 atomic64_t compress_tlen; 343 atomic64_t decompress_cnt; 344 atomic64_t decompress_tlen; 345 atomic64_t err_cnt; 346 }; 347 348 /* 349 * struct crypto_istat_hash - statistics for has algorithm 350 * @hash_cnt: number of hash requests 351 * @hash_tlen: total data size hashed 352 * @err_cnt: number of error for hash requests 353 */ 354 struct crypto_istat_hash { 355 atomic64_t hash_cnt; 356 atomic64_t hash_tlen; 357 atomic64_t err_cnt; 358 }; 359 360 /* 361 * struct crypto_istat_kpp - statistics for KPP algorithm 362 * @setsecret_cnt: number of setsecrey operation 363 * @generate_public_key_cnt: number of generate_public_key operation 364 * @compute_shared_secret_cnt: number of compute_shared_secret operation 365 * @err_cnt: number of error for KPP requests 366 */ 367 struct crypto_istat_kpp { 368 atomic64_t setsecret_cnt; 369 atomic64_t generate_public_key_cnt; 370 atomic64_t compute_shared_secret_cnt; 371 atomic64_t err_cnt; 372 }; 373 374 /* 375 * struct crypto_istat_rng: statistics for RNG algorithm 376 * @generate_cnt: number of RNG generate requests 377 * @generate_tlen: total data size of generated data by the RNG 378 * @seed_cnt: number of times the RNG was seeded 379 * @err_cnt: number of error for RNG requests 380 */ 381 struct crypto_istat_rng { 382 atomic64_t generate_cnt; 383 atomic64_t generate_tlen; 384 atomic64_t seed_cnt; 385 atomic64_t err_cnt; 386 }; 387 #endif /* CONFIG_CRYPTO_STATS */ 388 389 #define cra_cipher cra_u.cipher 390 #define cra_compress cra_u.compress 391 392 /** 393 * struct crypto_alg - definition of a cryptograpic cipher algorithm 394 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 395 * CRYPTO_ALG_* flags for the flags which go in here. Those are 396 * used for fine-tuning the description of the transformation 397 * algorithm. 398 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 399 * of the smallest possible unit which can be transformed with 400 * this algorithm. The users must respect this value. 401 * In case of HASH transformation, it is possible for a smaller 402 * block than @cra_blocksize to be passed to the crypto API for 403 * transformation, in case of any other transformation type, an 404 * error will be returned upon any attempt to transform smaller 405 * than @cra_blocksize chunks. 406 * @cra_ctxsize: Size of the operational context of the transformation. This 407 * value informs the kernel crypto API about the memory size 408 * needed to be allocated for the transformation context. 409 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 410 * buffer containing the input data for the algorithm must be 411 * aligned to this alignment mask. The data buffer for the 412 * output data must be aligned to this alignment mask. Note that 413 * the Crypto API will do the re-alignment in software, but 414 * only under special conditions and there is a performance hit. 415 * The re-alignment happens at these occasions for different 416 * @cra_u types: cipher -- For both input data and output data 417 * buffer; ahash -- For output hash destination buf; shash -- 418 * For output hash destination buf. 419 * This is needed on hardware which is flawed by design and 420 * cannot pick data from arbitrary addresses. 421 * @cra_priority: Priority of this transformation implementation. In case 422 * multiple transformations with same @cra_name are available to 423 * the Crypto API, the kernel will use the one with highest 424 * @cra_priority. 425 * @cra_name: Generic name (usable by multiple implementations) of the 426 * transformation algorithm. This is the name of the transformation 427 * itself. This field is used by the kernel when looking up the 428 * providers of particular transformation. 429 * @cra_driver_name: Unique name of the transformation provider. This is the 430 * name of the provider of the transformation. This can be any 431 * arbitrary value, but in the usual case, this contains the 432 * name of the chip or provider and the name of the 433 * transformation algorithm. 434 * @cra_type: Type of the cryptographic transformation. This is a pointer to 435 * struct crypto_type, which implements callbacks common for all 436 * transformation types. There are multiple options, such as 437 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. 438 * This field might be empty. In that case, there are no common 439 * callbacks. This is the case for: cipher, compress, shash. 440 * @cra_u: Callbacks implementing the transformation. This is a union of 441 * multiple structures. Depending on the type of transformation selected 442 * by @cra_type and @cra_flags above, the associated structure must be 443 * filled with callbacks. This field might be empty. This is the case 444 * for ahash, shash. 445 * @cra_init: Initialize the cryptographic transformation object. This function 446 * is used to initialize the cryptographic transformation object. 447 * This function is called only once at the instantiation time, right 448 * after the transformation context was allocated. In case the 449 * cryptographic hardware has some special requirements which need to 450 * be handled by software, this function shall check for the precise 451 * requirement of the transformation and put any software fallbacks 452 * in place. 453 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 454 * counterpart to @cra_init, used to remove various changes set in 455 * @cra_init. 456 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 457 * definition. See @struct @cipher_alg. 458 * @cra_u.compress: Union member which contains a (de)compression algorithm. 459 * See @struct @compress_alg. 460 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 461 * @cra_list: internally used 462 * @cra_users: internally used 463 * @cra_refcnt: internally used 464 * @cra_destroy: internally used 465 * 466 * @stats: union of all possible crypto_istat_xxx structures 467 * @stats.aead: statistics for AEAD algorithm 468 * @stats.akcipher: statistics for akcipher algorithm 469 * @stats.cipher: statistics for cipher algorithm 470 * @stats.compress: statistics for compress algorithm 471 * @stats.hash: statistics for hash algorithm 472 * @stats.rng: statistics for rng algorithm 473 * @stats.kpp: statistics for KPP algorithm 474 * 475 * The struct crypto_alg describes a generic Crypto API algorithm and is common 476 * for all of the transformations. Any variable not documented here shall not 477 * be used by a cipher implementation as it is internal to the Crypto API. 478 */ 479 struct crypto_alg { 480 struct list_head cra_list; 481 struct list_head cra_users; 482 483 u32 cra_flags; 484 unsigned int cra_blocksize; 485 unsigned int cra_ctxsize; 486 unsigned int cra_alignmask; 487 488 int cra_priority; 489 refcount_t cra_refcnt; 490 491 char cra_name[CRYPTO_MAX_ALG_NAME]; 492 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 493 494 const struct crypto_type *cra_type; 495 496 union { 497 struct cipher_alg cipher; 498 struct compress_alg compress; 499 } cra_u; 500 501 int (*cra_init)(struct crypto_tfm *tfm); 502 void (*cra_exit)(struct crypto_tfm *tfm); 503 void (*cra_destroy)(struct crypto_alg *alg); 504 505 struct module *cra_module; 506 507 #ifdef CONFIG_CRYPTO_STATS 508 union { 509 struct crypto_istat_aead aead; 510 struct crypto_istat_akcipher akcipher; 511 struct crypto_istat_cipher cipher; 512 struct crypto_istat_compress compress; 513 struct crypto_istat_hash hash; 514 struct crypto_istat_rng rng; 515 struct crypto_istat_kpp kpp; 516 } stats; 517 #endif /* CONFIG_CRYPTO_STATS */ 518 519 } CRYPTO_MINALIGN_ATTR; 520 521 #ifdef CONFIG_CRYPTO_STATS 522 void crypto_stats_init(struct crypto_alg *alg); 523 void crypto_stats_get(struct crypto_alg *alg); 524 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 525 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 526 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 527 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 528 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 529 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 530 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 531 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 532 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 533 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 534 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 535 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 536 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 537 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 538 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 539 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 540 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 541 #else 542 static inline void crypto_stats_init(struct crypto_alg *alg) 543 {} 544 static inline void crypto_stats_get(struct crypto_alg *alg) 545 {} 546 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 547 {} 548 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 549 {} 550 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 551 {} 552 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 553 {} 554 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 555 {} 556 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 557 {} 558 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 559 {} 560 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 561 {} 562 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 563 {} 564 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 565 {} 566 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 567 {} 568 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 569 {} 570 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 571 {} 572 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 573 {} 574 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 575 {} 576 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 577 {} 578 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 579 {} 580 #endif 581 /* 582 * A helper struct for waiting for completion of async crypto ops 583 */ 584 struct crypto_wait { 585 struct completion completion; 586 int err; 587 }; 588 589 /* 590 * Macro for declaring a crypto op async wait object on stack 591 */ 592 #define DECLARE_CRYPTO_WAIT(_wait) \ 593 struct crypto_wait _wait = { \ 594 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 595 596 /* 597 * Async ops completion helper functioons 598 */ 599 static inline void *crypto_get_completion_data(void *data) 600 { 601 return data; 602 } 603 604 void crypto_req_done(void *req, int err); 605 606 static inline int crypto_wait_req(int err, struct crypto_wait *wait) 607 { 608 switch (err) { 609 case -EINPROGRESS: 610 case -EBUSY: 611 wait_for_completion(&wait->completion); 612 reinit_completion(&wait->completion); 613 err = wait->err; 614 break; 615 } 616 617 return err; 618 } 619 620 static inline void crypto_init_wait(struct crypto_wait *wait) 621 { 622 init_completion(&wait->completion); 623 } 624 625 /* 626 * Algorithm registration interface. 627 */ 628 int crypto_register_alg(struct crypto_alg *alg); 629 void crypto_unregister_alg(struct crypto_alg *alg); 630 int crypto_register_algs(struct crypto_alg *algs, int count); 631 void crypto_unregister_algs(struct crypto_alg *algs, int count); 632 633 /* 634 * Algorithm query interface. 635 */ 636 int crypto_has_alg(const char *name, u32 type, u32 mask); 637 638 /* 639 * Transforms: user-instantiated objects which encapsulate algorithms 640 * and core processing logic. Managed via crypto_alloc_*() and 641 * crypto_free_*(), as well as the various helpers below. 642 */ 643 644 struct crypto_tfm { 645 646 u32 crt_flags; 647 648 int node; 649 650 void (*exit)(struct crypto_tfm *tfm); 651 652 struct crypto_alg *__crt_alg; 653 654 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 655 }; 656 657 struct crypto_comp { 658 struct crypto_tfm base; 659 }; 660 661 /* 662 * Transform user interface. 663 */ 664 665 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 666 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 667 668 static inline void crypto_free_tfm(struct crypto_tfm *tfm) 669 { 670 return crypto_destroy_tfm(tfm, tfm); 671 } 672 673 int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 674 675 /* 676 * Transform helpers which query the underlying algorithm. 677 */ 678 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 679 { 680 return tfm->__crt_alg->cra_name; 681 } 682 683 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 684 { 685 return tfm->__crt_alg->cra_driver_name; 686 } 687 688 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 689 { 690 return tfm->__crt_alg->cra_priority; 691 } 692 693 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 694 { 695 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 696 } 697 698 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 699 { 700 return tfm->__crt_alg->cra_blocksize; 701 } 702 703 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 704 { 705 return tfm->__crt_alg->cra_alignmask; 706 } 707 708 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 709 { 710 return tfm->crt_flags; 711 } 712 713 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 714 { 715 tfm->crt_flags |= flags; 716 } 717 718 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 719 { 720 tfm->crt_flags &= ~flags; 721 } 722 723 static inline unsigned int crypto_tfm_ctx_alignment(void) 724 { 725 struct crypto_tfm *tfm; 726 return __alignof__(tfm->__crt_ctx); 727 } 728 729 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 730 { 731 return (struct crypto_comp *)tfm; 732 } 733 734 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 735 u32 type, u32 mask) 736 { 737 type &= ~CRYPTO_ALG_TYPE_MASK; 738 type |= CRYPTO_ALG_TYPE_COMPRESS; 739 mask |= CRYPTO_ALG_TYPE_MASK; 740 741 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 742 } 743 744 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 745 { 746 return &tfm->base; 747 } 748 749 static inline void crypto_free_comp(struct crypto_comp *tfm) 750 { 751 crypto_free_tfm(crypto_comp_tfm(tfm)); 752 } 753 754 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 755 { 756 type &= ~CRYPTO_ALG_TYPE_MASK; 757 type |= CRYPTO_ALG_TYPE_COMPRESS; 758 mask |= CRYPTO_ALG_TYPE_MASK; 759 760 return crypto_has_alg(alg_name, type, mask); 761 } 762 763 static inline const char *crypto_comp_name(struct crypto_comp *tfm) 764 { 765 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 766 } 767 768 int crypto_comp_compress(struct crypto_comp *tfm, 769 const u8 *src, unsigned int slen, 770 u8 *dst, unsigned int *dlen); 771 772 int crypto_comp_decompress(struct crypto_comp *tfm, 773 const u8 *src, unsigned int slen, 774 u8 *dst, unsigned int *dlen); 775 776 #endif /* _LINUX_CRYPTO_H */ 777 778