1 /* 2 * Scatterlist Cryptographic API. 3 * 4 * Copyright (c) 2002 James Morris <[email protected]> 5 * Copyright (c) 2002 David S. Miller ([email protected]) 6 * Copyright (c) 2005 Herbert Xu <[email protected]> 7 * 8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]> 9 * and Nettle, by Niels Möller. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 * 16 */ 17 #ifndef _LINUX_CRYPTO_H 18 #define _LINUX_CRYPTO_H 19 20 #include <linux/atomic.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/bug.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <linux/uaccess.h> 27 #include <linux/completion.h> 28 29 /* 30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 31 * arbitrary modules to be loaded. Loading from userspace may still need the 32 * unprefixed names, so retains those aliases as well. 33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 35 * expands twice on the same line. Instead, use a separate base name for the 36 * alias. 37 */ 38 #define MODULE_ALIAS_CRYPTO(name) \ 39 __MODULE_INFO(alias, alias_userspace, name); \ 40 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 41 42 /* 43 * Algorithm masks and types. 44 */ 45 #define CRYPTO_ALG_TYPE_MASK 0x0000000f 46 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 47 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 48 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 49 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 50 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 51 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 52 #define CRYPTO_ALG_TYPE_KPP 0x00000008 53 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 54 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 55 #define CRYPTO_ALG_TYPE_RNG 0x0000000c 56 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 57 #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e 58 #define CRYPTO_ALG_TYPE_HASH 0x0000000e 59 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e 60 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f 61 62 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 63 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 64 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c 65 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 66 67 #define CRYPTO_ALG_LARVAL 0x00000010 68 #define CRYPTO_ALG_DEAD 0x00000020 69 #define CRYPTO_ALG_DYING 0x00000040 70 #define CRYPTO_ALG_ASYNC 0x00000080 71 72 /* 73 * Set this bit if and only if the algorithm requires another algorithm of 74 * the same type to handle corner cases. 75 */ 76 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 77 78 /* 79 * Set if the algorithm has passed automated run-time testing. Note that 80 * if there is no run-time testing for a given algorithm it is considered 81 * to have passed. 82 */ 83 84 #define CRYPTO_ALG_TESTED 0x00000400 85 86 /* 87 * Set if the algorithm is an instance that is built from templates. 88 */ 89 #define CRYPTO_ALG_INSTANCE 0x00000800 90 91 /* Set this bit if the algorithm provided is hardware accelerated but 92 * not available to userspace via instruction set or so. 93 */ 94 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 95 96 /* 97 * Mark a cipher as a service implementation only usable by another 98 * cipher and never by a normal user of the kernel crypto API 99 */ 100 #define CRYPTO_ALG_INTERNAL 0x00002000 101 102 /* 103 * Set if the algorithm has a ->setkey() method but can be used without 104 * calling it first, i.e. there is a default key. 105 */ 106 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 107 108 /* 109 * Don't trigger module loading 110 */ 111 #define CRYPTO_NOLOAD 0x00008000 112 113 /* 114 * Transform masks and values (for crt_flags). 115 */ 116 #define CRYPTO_TFM_NEED_KEY 0x00000001 117 118 #define CRYPTO_TFM_REQ_MASK 0x000fff00 119 #define CRYPTO_TFM_RES_MASK 0xfff00000 120 121 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 122 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 123 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 124 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 125 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 126 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 127 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 128 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 129 130 /* 131 * Miscellaneous stuff. 132 */ 133 #define CRYPTO_MAX_ALG_NAME 128 134 135 /* 136 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 137 * declaration) is used to ensure that the crypto_tfm context structure is 138 * aligned correctly for the given architecture so that there are no alignment 139 * faults for C data types. In particular, this is required on platforms such 140 * as arm where pointers are 32-bit aligned but there are data types such as 141 * u64 which require 64-bit alignment. 142 */ 143 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 144 145 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 146 147 struct scatterlist; 148 struct crypto_ablkcipher; 149 struct crypto_async_request; 150 struct crypto_blkcipher; 151 struct crypto_tfm; 152 struct crypto_type; 153 154 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 155 156 /** 157 * DOC: Block Cipher Context Data Structures 158 * 159 * These data structures define the operating context for each block cipher 160 * type. 161 */ 162 163 struct crypto_async_request { 164 struct list_head list; 165 crypto_completion_t complete; 166 void *data; 167 struct crypto_tfm *tfm; 168 169 u32 flags; 170 }; 171 172 struct ablkcipher_request { 173 struct crypto_async_request base; 174 175 unsigned int nbytes; 176 177 void *info; 178 179 struct scatterlist *src; 180 struct scatterlist *dst; 181 182 void *__ctx[] CRYPTO_MINALIGN_ATTR; 183 }; 184 185 struct blkcipher_desc { 186 struct crypto_blkcipher *tfm; 187 void *info; 188 u32 flags; 189 }; 190 191 /** 192 * DOC: Block Cipher Algorithm Definitions 193 * 194 * These data structures define modular crypto algorithm implementations, 195 * managed via crypto_register_alg() and crypto_unregister_alg(). 196 */ 197 198 /** 199 * struct ablkcipher_alg - asynchronous block cipher definition 200 * @min_keysize: Minimum key size supported by the transformation. This is the 201 * smallest key length supported by this transformation algorithm. 202 * This must be set to one of the pre-defined values as this is 203 * not hardware specific. Possible values for this field can be 204 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 205 * @max_keysize: Maximum key size supported by the transformation. This is the 206 * largest key length supported by this transformation algorithm. 207 * This must be set to one of the pre-defined values as this is 208 * not hardware specific. Possible values for this field can be 209 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 210 * @setkey: Set key for the transformation. This function is used to either 211 * program a supplied key into the hardware or store the key in the 212 * transformation context for programming it later. Note that this 213 * function does modify the transformation context. This function can 214 * be called multiple times during the existence of the transformation 215 * object, so one must make sure the key is properly reprogrammed into 216 * the hardware. This function is also responsible for checking the key 217 * length for validity. In case a software fallback was put in place in 218 * the @cra_init call, this function might need to use the fallback if 219 * the algorithm doesn't support all of the key sizes. 220 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 221 * the supplied scatterlist containing the blocks of data. The crypto 222 * API consumer is responsible for aligning the entries of the 223 * scatterlist properly and making sure the chunks are correctly 224 * sized. In case a software fallback was put in place in the 225 * @cra_init call, this function might need to use the fallback if 226 * the algorithm doesn't support all of the key sizes. In case the 227 * key was stored in transformation context, the key might need to be 228 * re-programmed into the hardware in this function. This function 229 * shall not modify the transformation context, as this function may 230 * be called in parallel with the same transformation object. 231 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 232 * and the conditions are exactly the same. 233 * @ivsize: IV size applicable for transformation. The consumer must provide an 234 * IV of exactly that size to perform the encrypt or decrypt operation. 235 * 236 * All fields except @ivsize are mandatory and must be filled. 237 */ 238 struct ablkcipher_alg { 239 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 240 unsigned int keylen); 241 int (*encrypt)(struct ablkcipher_request *req); 242 int (*decrypt)(struct ablkcipher_request *req); 243 244 unsigned int min_keysize; 245 unsigned int max_keysize; 246 unsigned int ivsize; 247 }; 248 249 /** 250 * struct blkcipher_alg - synchronous block cipher definition 251 * @min_keysize: see struct ablkcipher_alg 252 * @max_keysize: see struct ablkcipher_alg 253 * @setkey: see struct ablkcipher_alg 254 * @encrypt: see struct ablkcipher_alg 255 * @decrypt: see struct ablkcipher_alg 256 * @ivsize: see struct ablkcipher_alg 257 * 258 * All fields except @ivsize are mandatory and must be filled. 259 */ 260 struct blkcipher_alg { 261 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 262 unsigned int keylen); 263 int (*encrypt)(struct blkcipher_desc *desc, 264 struct scatterlist *dst, struct scatterlist *src, 265 unsigned int nbytes); 266 int (*decrypt)(struct blkcipher_desc *desc, 267 struct scatterlist *dst, struct scatterlist *src, 268 unsigned int nbytes); 269 270 unsigned int min_keysize; 271 unsigned int max_keysize; 272 unsigned int ivsize; 273 }; 274 275 /** 276 * struct cipher_alg - single-block symmetric ciphers definition 277 * @cia_min_keysize: Minimum key size supported by the transformation. This is 278 * the smallest key length supported by this transformation 279 * algorithm. This must be set to one of the pre-defined 280 * values as this is not hardware specific. Possible values 281 * for this field can be found via git grep "_MIN_KEY_SIZE" 282 * include/crypto/ 283 * @cia_max_keysize: Maximum key size supported by the transformation. This is 284 * the largest key length supported by this transformation 285 * algorithm. This must be set to one of the pre-defined values 286 * as this is not hardware specific. Possible values for this 287 * field can be found via git grep "_MAX_KEY_SIZE" 288 * include/crypto/ 289 * @cia_setkey: Set key for the transformation. This function is used to either 290 * program a supplied key into the hardware or store the key in the 291 * transformation context for programming it later. Note that this 292 * function does modify the transformation context. This function 293 * can be called multiple times during the existence of the 294 * transformation object, so one must make sure the key is properly 295 * reprogrammed into the hardware. This function is also 296 * responsible for checking the key length for validity. 297 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 298 * single block of data, which must be @cra_blocksize big. This 299 * always operates on a full @cra_blocksize and it is not possible 300 * to encrypt a block of smaller size. The supplied buffers must 301 * therefore also be at least of @cra_blocksize size. Both the 302 * input and output buffers are always aligned to @cra_alignmask. 303 * In case either of the input or output buffer supplied by user 304 * of the crypto API is not aligned to @cra_alignmask, the crypto 305 * API will re-align the buffers. The re-alignment means that a 306 * new buffer will be allocated, the data will be copied into the 307 * new buffer, then the processing will happen on the new buffer, 308 * then the data will be copied back into the original buffer and 309 * finally the new buffer will be freed. In case a software 310 * fallback was put in place in the @cra_init call, this function 311 * might need to use the fallback if the algorithm doesn't support 312 * all of the key sizes. In case the key was stored in 313 * transformation context, the key might need to be re-programmed 314 * into the hardware in this function. This function shall not 315 * modify the transformation context, as this function may be 316 * called in parallel with the same transformation object. 317 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 318 * @cia_encrypt, and the conditions are exactly the same. 319 * 320 * All fields are mandatory and must be filled. 321 */ 322 struct cipher_alg { 323 unsigned int cia_min_keysize; 324 unsigned int cia_max_keysize; 325 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 326 unsigned int keylen); 327 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 328 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 329 }; 330 331 struct compress_alg { 332 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 333 unsigned int slen, u8 *dst, unsigned int *dlen); 334 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 335 unsigned int slen, u8 *dst, unsigned int *dlen); 336 }; 337 338 #ifdef CONFIG_CRYPTO_STATS 339 /* 340 * struct crypto_istat_aead - statistics for AEAD algorithm 341 * @encrypt_cnt: number of encrypt requests 342 * @encrypt_tlen: total data size handled by encrypt requests 343 * @decrypt_cnt: number of decrypt requests 344 * @decrypt_tlen: total data size handled by decrypt requests 345 * @err_cnt: number of error for AEAD requests 346 */ 347 struct crypto_istat_aead { 348 atomic64_t encrypt_cnt; 349 atomic64_t encrypt_tlen; 350 atomic64_t decrypt_cnt; 351 atomic64_t decrypt_tlen; 352 atomic64_t err_cnt; 353 }; 354 355 /* 356 * struct crypto_istat_akcipher - statistics for akcipher algorithm 357 * @encrypt_cnt: number of encrypt requests 358 * @encrypt_tlen: total data size handled by encrypt requests 359 * @decrypt_cnt: number of decrypt requests 360 * @decrypt_tlen: total data size handled by decrypt requests 361 * @verify_cnt: number of verify operation 362 * @sign_cnt: number of sign requests 363 * @err_cnt: number of error for akcipher requests 364 */ 365 struct crypto_istat_akcipher { 366 atomic64_t encrypt_cnt; 367 atomic64_t encrypt_tlen; 368 atomic64_t decrypt_cnt; 369 atomic64_t decrypt_tlen; 370 atomic64_t verify_cnt; 371 atomic64_t sign_cnt; 372 atomic64_t err_cnt; 373 }; 374 375 /* 376 * struct crypto_istat_cipher - statistics for cipher algorithm 377 * @encrypt_cnt: number of encrypt requests 378 * @encrypt_tlen: total data size handled by encrypt requests 379 * @decrypt_cnt: number of decrypt requests 380 * @decrypt_tlen: total data size handled by decrypt requests 381 * @err_cnt: number of error for cipher requests 382 */ 383 struct crypto_istat_cipher { 384 atomic64_t encrypt_cnt; 385 atomic64_t encrypt_tlen; 386 atomic64_t decrypt_cnt; 387 atomic64_t decrypt_tlen; 388 atomic64_t err_cnt; 389 }; 390 391 /* 392 * struct crypto_istat_compress - statistics for compress algorithm 393 * @compress_cnt: number of compress requests 394 * @compress_tlen: total data size handled by compress requests 395 * @decompress_cnt: number of decompress requests 396 * @decompress_tlen: total data size handled by decompress requests 397 * @err_cnt: number of error for compress requests 398 */ 399 struct crypto_istat_compress { 400 atomic64_t compress_cnt; 401 atomic64_t compress_tlen; 402 atomic64_t decompress_cnt; 403 atomic64_t decompress_tlen; 404 atomic64_t err_cnt; 405 }; 406 407 /* 408 * struct crypto_istat_hash - statistics for has algorithm 409 * @hash_cnt: number of hash requests 410 * @hash_tlen: total data size hashed 411 * @err_cnt: number of error for hash requests 412 */ 413 struct crypto_istat_hash { 414 atomic64_t hash_cnt; 415 atomic64_t hash_tlen; 416 atomic64_t err_cnt; 417 }; 418 419 /* 420 * struct crypto_istat_kpp - statistics for KPP algorithm 421 * @setsecret_cnt: number of setsecrey operation 422 * @generate_public_key_cnt: number of generate_public_key operation 423 * @compute_shared_secret_cnt: number of compute_shared_secret operation 424 * @err_cnt: number of error for KPP requests 425 */ 426 struct crypto_istat_kpp { 427 atomic64_t setsecret_cnt; 428 atomic64_t generate_public_key_cnt; 429 atomic64_t compute_shared_secret_cnt; 430 atomic64_t err_cnt; 431 }; 432 433 /* 434 * struct crypto_istat_rng: statistics for RNG algorithm 435 * @generate_cnt: number of RNG generate requests 436 * @generate_tlen: total data size of generated data by the RNG 437 * @seed_cnt: number of times the RNG was seeded 438 * @err_cnt: number of error for RNG requests 439 */ 440 struct crypto_istat_rng { 441 atomic64_t generate_cnt; 442 atomic64_t generate_tlen; 443 atomic64_t seed_cnt; 444 atomic64_t err_cnt; 445 }; 446 #endif /* CONFIG_CRYPTO_STATS */ 447 448 #define cra_ablkcipher cra_u.ablkcipher 449 #define cra_blkcipher cra_u.blkcipher 450 #define cra_cipher cra_u.cipher 451 #define cra_compress cra_u.compress 452 453 /** 454 * struct crypto_alg - definition of a cryptograpic cipher algorithm 455 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 456 * CRYPTO_ALG_* flags for the flags which go in here. Those are 457 * used for fine-tuning the description of the transformation 458 * algorithm. 459 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 460 * of the smallest possible unit which can be transformed with 461 * this algorithm. The users must respect this value. 462 * In case of HASH transformation, it is possible for a smaller 463 * block than @cra_blocksize to be passed to the crypto API for 464 * transformation, in case of any other transformation type, an 465 * error will be returned upon any attempt to transform smaller 466 * than @cra_blocksize chunks. 467 * @cra_ctxsize: Size of the operational context of the transformation. This 468 * value informs the kernel crypto API about the memory size 469 * needed to be allocated for the transformation context. 470 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 471 * buffer containing the input data for the algorithm must be 472 * aligned to this alignment mask. The data buffer for the 473 * output data must be aligned to this alignment mask. Note that 474 * the Crypto API will do the re-alignment in software, but 475 * only under special conditions and there is a performance hit. 476 * The re-alignment happens at these occasions for different 477 * @cra_u types: cipher -- For both input data and output data 478 * buffer; ahash -- For output hash destination buf; shash -- 479 * For output hash destination buf. 480 * This is needed on hardware which is flawed by design and 481 * cannot pick data from arbitrary addresses. 482 * @cra_priority: Priority of this transformation implementation. In case 483 * multiple transformations with same @cra_name are available to 484 * the Crypto API, the kernel will use the one with highest 485 * @cra_priority. 486 * @cra_name: Generic name (usable by multiple implementations) of the 487 * transformation algorithm. This is the name of the transformation 488 * itself. This field is used by the kernel when looking up the 489 * providers of particular transformation. 490 * @cra_driver_name: Unique name of the transformation provider. This is the 491 * name of the provider of the transformation. This can be any 492 * arbitrary value, but in the usual case, this contains the 493 * name of the chip or provider and the name of the 494 * transformation algorithm. 495 * @cra_type: Type of the cryptographic transformation. This is a pointer to 496 * struct crypto_type, which implements callbacks common for all 497 * transformation types. There are multiple options: 498 * &crypto_blkcipher_type, &crypto_ablkcipher_type, 499 * &crypto_ahash_type, &crypto_rng_type. 500 * This field might be empty. In that case, there are no common 501 * callbacks. This is the case for: cipher, compress, shash. 502 * @cra_u: Callbacks implementing the transformation. This is a union of 503 * multiple structures. Depending on the type of transformation selected 504 * by @cra_type and @cra_flags above, the associated structure must be 505 * filled with callbacks. This field might be empty. This is the case 506 * for ahash, shash. 507 * @cra_init: Initialize the cryptographic transformation object. This function 508 * is used to initialize the cryptographic transformation object. 509 * This function is called only once at the instantiation time, right 510 * after the transformation context was allocated. In case the 511 * cryptographic hardware has some special requirements which need to 512 * be handled by software, this function shall check for the precise 513 * requirement of the transformation and put any software fallbacks 514 * in place. 515 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 516 * counterpart to @cra_init, used to remove various changes set in 517 * @cra_init. 518 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher 519 * definition. See @struct @ablkcipher_alg. 520 * @cra_u.blkcipher: Union member which contains a synchronous block cipher 521 * definition See @struct @blkcipher_alg. 522 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 523 * definition. See @struct @cipher_alg. 524 * @cra_u.compress: Union member which contains a (de)compression algorithm. 525 * See @struct @compress_alg. 526 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 527 * @cra_list: internally used 528 * @cra_users: internally used 529 * @cra_refcnt: internally used 530 * @cra_destroy: internally used 531 * 532 * @stats: union of all possible crypto_istat_xxx structures 533 * @stats.aead: statistics for AEAD algorithm 534 * @stats.akcipher: statistics for akcipher algorithm 535 * @stats.cipher: statistics for cipher algorithm 536 * @stats.compress: statistics for compress algorithm 537 * @stats.hash: statistics for hash algorithm 538 * @stats.rng: statistics for rng algorithm 539 * @stats.kpp: statistics for KPP algorithm 540 * 541 * The struct crypto_alg describes a generic Crypto API algorithm and is common 542 * for all of the transformations. Any variable not documented here shall not 543 * be used by a cipher implementation as it is internal to the Crypto API. 544 */ 545 struct crypto_alg { 546 struct list_head cra_list; 547 struct list_head cra_users; 548 549 u32 cra_flags; 550 unsigned int cra_blocksize; 551 unsigned int cra_ctxsize; 552 unsigned int cra_alignmask; 553 554 int cra_priority; 555 refcount_t cra_refcnt; 556 557 char cra_name[CRYPTO_MAX_ALG_NAME]; 558 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 559 560 const struct crypto_type *cra_type; 561 562 union { 563 struct ablkcipher_alg ablkcipher; 564 struct blkcipher_alg blkcipher; 565 struct cipher_alg cipher; 566 struct compress_alg compress; 567 } cra_u; 568 569 int (*cra_init)(struct crypto_tfm *tfm); 570 void (*cra_exit)(struct crypto_tfm *tfm); 571 void (*cra_destroy)(struct crypto_alg *alg); 572 573 struct module *cra_module; 574 575 #ifdef CONFIG_CRYPTO_STATS 576 union { 577 struct crypto_istat_aead aead; 578 struct crypto_istat_akcipher akcipher; 579 struct crypto_istat_cipher cipher; 580 struct crypto_istat_compress compress; 581 struct crypto_istat_hash hash; 582 struct crypto_istat_rng rng; 583 struct crypto_istat_kpp kpp; 584 } stats; 585 #endif /* CONFIG_CRYPTO_STATS */ 586 587 } CRYPTO_MINALIGN_ATTR; 588 589 #ifdef CONFIG_CRYPTO_STATS 590 void crypto_stats_init(struct crypto_alg *alg); 591 void crypto_stats_get(struct crypto_alg *alg); 592 void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg); 593 void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg); 594 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 595 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 596 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 597 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 598 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 599 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 600 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 601 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 602 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 603 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 604 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 605 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 606 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 607 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 608 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 609 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 610 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 611 #else 612 static inline void crypto_stats_init(struct crypto_alg *alg) 613 {} 614 static inline void crypto_stats_get(struct crypto_alg *alg) 615 {} 616 static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg) 617 {} 618 static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg) 619 {} 620 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 621 {} 622 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 623 {} 624 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 625 {} 626 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 627 {} 628 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 629 {} 630 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 631 {} 632 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 633 {} 634 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 635 {} 636 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 637 {} 638 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 639 {} 640 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 641 {} 642 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 643 {} 644 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 645 {} 646 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 647 {} 648 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 649 {} 650 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 651 {} 652 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 653 {} 654 #endif 655 /* 656 * A helper struct for waiting for completion of async crypto ops 657 */ 658 struct crypto_wait { 659 struct completion completion; 660 int err; 661 }; 662 663 /* 664 * Macro for declaring a crypto op async wait object on stack 665 */ 666 #define DECLARE_CRYPTO_WAIT(_wait) \ 667 struct crypto_wait _wait = { \ 668 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 669 670 /* 671 * Async ops completion helper functioons 672 */ 673 void crypto_req_done(struct crypto_async_request *req, int err); 674 675 static inline int crypto_wait_req(int err, struct crypto_wait *wait) 676 { 677 switch (err) { 678 case -EINPROGRESS: 679 case -EBUSY: 680 wait_for_completion(&wait->completion); 681 reinit_completion(&wait->completion); 682 err = wait->err; 683 break; 684 }; 685 686 return err; 687 } 688 689 static inline void crypto_init_wait(struct crypto_wait *wait) 690 { 691 init_completion(&wait->completion); 692 } 693 694 /* 695 * Algorithm registration interface. 696 */ 697 int crypto_register_alg(struct crypto_alg *alg); 698 int crypto_unregister_alg(struct crypto_alg *alg); 699 int crypto_register_algs(struct crypto_alg *algs, int count); 700 int crypto_unregister_algs(struct crypto_alg *algs, int count); 701 702 /* 703 * Algorithm query interface. 704 */ 705 int crypto_has_alg(const char *name, u32 type, u32 mask); 706 707 /* 708 * Transforms: user-instantiated objects which encapsulate algorithms 709 * and core processing logic. Managed via crypto_alloc_*() and 710 * crypto_free_*(), as well as the various helpers below. 711 */ 712 713 struct ablkcipher_tfm { 714 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 715 unsigned int keylen); 716 int (*encrypt)(struct ablkcipher_request *req); 717 int (*decrypt)(struct ablkcipher_request *req); 718 719 struct crypto_ablkcipher *base; 720 721 unsigned int ivsize; 722 unsigned int reqsize; 723 }; 724 725 struct blkcipher_tfm { 726 void *iv; 727 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 728 unsigned int keylen); 729 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 730 struct scatterlist *src, unsigned int nbytes); 731 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 732 struct scatterlist *src, unsigned int nbytes); 733 }; 734 735 struct cipher_tfm { 736 int (*cit_setkey)(struct crypto_tfm *tfm, 737 const u8 *key, unsigned int keylen); 738 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 739 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 740 }; 741 742 struct compress_tfm { 743 int (*cot_compress)(struct crypto_tfm *tfm, 744 const u8 *src, unsigned int slen, 745 u8 *dst, unsigned int *dlen); 746 int (*cot_decompress)(struct crypto_tfm *tfm, 747 const u8 *src, unsigned int slen, 748 u8 *dst, unsigned int *dlen); 749 }; 750 751 #define crt_ablkcipher crt_u.ablkcipher 752 #define crt_blkcipher crt_u.blkcipher 753 #define crt_cipher crt_u.cipher 754 #define crt_compress crt_u.compress 755 756 struct crypto_tfm { 757 758 u32 crt_flags; 759 760 union { 761 struct ablkcipher_tfm ablkcipher; 762 struct blkcipher_tfm blkcipher; 763 struct cipher_tfm cipher; 764 struct compress_tfm compress; 765 } crt_u; 766 767 void (*exit)(struct crypto_tfm *tfm); 768 769 struct crypto_alg *__crt_alg; 770 771 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 772 }; 773 774 struct crypto_ablkcipher { 775 struct crypto_tfm base; 776 }; 777 778 struct crypto_blkcipher { 779 struct crypto_tfm base; 780 }; 781 782 struct crypto_cipher { 783 struct crypto_tfm base; 784 }; 785 786 struct crypto_comp { 787 struct crypto_tfm base; 788 }; 789 790 enum { 791 CRYPTOA_UNSPEC, 792 CRYPTOA_ALG, 793 CRYPTOA_TYPE, 794 CRYPTOA_U32, 795 __CRYPTOA_MAX, 796 }; 797 798 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 799 800 /* Maximum number of (rtattr) parameters for each template. */ 801 #define CRYPTO_MAX_ATTRS 32 802 803 struct crypto_attr_alg { 804 char name[CRYPTO_MAX_ALG_NAME]; 805 }; 806 807 struct crypto_attr_type { 808 u32 type; 809 u32 mask; 810 }; 811 812 struct crypto_attr_u32 { 813 u32 num; 814 }; 815 816 /* 817 * Transform user interface. 818 */ 819 820 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 821 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 822 823 static inline void crypto_free_tfm(struct crypto_tfm *tfm) 824 { 825 return crypto_destroy_tfm(tfm, tfm); 826 } 827 828 int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 829 830 /* 831 * Transform helpers which query the underlying algorithm. 832 */ 833 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 834 { 835 return tfm->__crt_alg->cra_name; 836 } 837 838 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 839 { 840 return tfm->__crt_alg->cra_driver_name; 841 } 842 843 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 844 { 845 return tfm->__crt_alg->cra_priority; 846 } 847 848 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 849 { 850 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 851 } 852 853 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 854 { 855 return tfm->__crt_alg->cra_blocksize; 856 } 857 858 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 859 { 860 return tfm->__crt_alg->cra_alignmask; 861 } 862 863 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 864 { 865 return tfm->crt_flags; 866 } 867 868 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 869 { 870 tfm->crt_flags |= flags; 871 } 872 873 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 874 { 875 tfm->crt_flags &= ~flags; 876 } 877 878 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 879 { 880 return tfm->__crt_ctx; 881 } 882 883 static inline unsigned int crypto_tfm_ctx_alignment(void) 884 { 885 struct crypto_tfm *tfm; 886 return __alignof__(tfm->__crt_ctx); 887 } 888 889 /* 890 * API wrappers. 891 */ 892 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( 893 struct crypto_tfm *tfm) 894 { 895 return (struct crypto_ablkcipher *)tfm; 896 } 897 898 static inline u32 crypto_skcipher_type(u32 type) 899 { 900 type &= ~CRYPTO_ALG_TYPE_MASK; 901 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 902 return type; 903 } 904 905 static inline u32 crypto_skcipher_mask(u32 mask) 906 { 907 mask &= ~CRYPTO_ALG_TYPE_MASK; 908 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; 909 return mask; 910 } 911 912 /** 913 * DOC: Asynchronous Block Cipher API 914 * 915 * Asynchronous block cipher API is used with the ciphers of type 916 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). 917 * 918 * Asynchronous cipher operations imply that the function invocation for a 919 * cipher request returns immediately before the completion of the operation. 920 * The cipher request is scheduled as a separate kernel thread and therefore 921 * load-balanced on the different CPUs via the process scheduler. To allow 922 * the kernel crypto API to inform the caller about the completion of a cipher 923 * request, the caller must provide a callback function. That function is 924 * invoked with the cipher handle when the request completes. 925 * 926 * To support the asynchronous operation, additional information than just the 927 * cipher handle must be supplied to the kernel crypto API. That additional 928 * information is given by filling in the ablkcipher_request data structure. 929 * 930 * For the asynchronous block cipher API, the state is maintained with the tfm 931 * cipher handle. A single tfm can be used across multiple calls and in 932 * parallel. For asynchronous block cipher calls, context data supplied and 933 * only used by the caller can be referenced the request data structure in 934 * addition to the IV used for the cipher request. The maintenance of such 935 * state information would be important for a crypto driver implementer to 936 * have, because when calling the callback function upon completion of the 937 * cipher operation, that callback function may need some information about 938 * which operation just finished if it invoked multiple in parallel. This 939 * state information is unused by the kernel crypto API. 940 */ 941 942 static inline struct crypto_tfm *crypto_ablkcipher_tfm( 943 struct crypto_ablkcipher *tfm) 944 { 945 return &tfm->base; 946 } 947 948 /** 949 * crypto_free_ablkcipher() - zeroize and free cipher handle 950 * @tfm: cipher handle to be freed 951 */ 952 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) 953 { 954 crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); 955 } 956 957 /** 958 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. 959 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 960 * ablkcipher 961 * @type: specifies the type of the cipher 962 * @mask: specifies the mask for the cipher 963 * 964 * Return: true when the ablkcipher is known to the kernel crypto API; false 965 * otherwise 966 */ 967 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, 968 u32 mask) 969 { 970 return crypto_has_alg(alg_name, crypto_skcipher_type(type), 971 crypto_skcipher_mask(mask)); 972 } 973 974 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( 975 struct crypto_ablkcipher *tfm) 976 { 977 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; 978 } 979 980 /** 981 * crypto_ablkcipher_ivsize() - obtain IV size 982 * @tfm: cipher handle 983 * 984 * The size of the IV for the ablkcipher referenced by the cipher handle is 985 * returned. This IV size may be zero if the cipher does not need an IV. 986 * 987 * Return: IV size in bytes 988 */ 989 static inline unsigned int crypto_ablkcipher_ivsize( 990 struct crypto_ablkcipher *tfm) 991 { 992 return crypto_ablkcipher_crt(tfm)->ivsize; 993 } 994 995 /** 996 * crypto_ablkcipher_blocksize() - obtain block size of cipher 997 * @tfm: cipher handle 998 * 999 * The block size for the ablkcipher referenced with the cipher handle is 1000 * returned. The caller may use that information to allocate appropriate 1001 * memory for the data returned by the encryption or decryption operation 1002 * 1003 * Return: block size of cipher 1004 */ 1005 static inline unsigned int crypto_ablkcipher_blocksize( 1006 struct crypto_ablkcipher *tfm) 1007 { 1008 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); 1009 } 1010 1011 static inline unsigned int crypto_ablkcipher_alignmask( 1012 struct crypto_ablkcipher *tfm) 1013 { 1014 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); 1015 } 1016 1017 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) 1018 { 1019 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); 1020 } 1021 1022 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, 1023 u32 flags) 1024 { 1025 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); 1026 } 1027 1028 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, 1029 u32 flags) 1030 { 1031 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); 1032 } 1033 1034 /** 1035 * crypto_ablkcipher_setkey() - set key for cipher 1036 * @tfm: cipher handle 1037 * @key: buffer holding the key 1038 * @keylen: length of the key in bytes 1039 * 1040 * The caller provided key is set for the ablkcipher referenced by the cipher 1041 * handle. 1042 * 1043 * Note, the key length determines the cipher type. Many block ciphers implement 1044 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1045 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1046 * is performed. 1047 * 1048 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1049 */ 1050 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, 1051 const u8 *key, unsigned int keylen) 1052 { 1053 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); 1054 1055 return crt->setkey(crt->base, key, keylen); 1056 } 1057 1058 /** 1059 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request 1060 * @req: ablkcipher_request out of which the cipher handle is to be obtained 1061 * 1062 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request 1063 * data structure. 1064 * 1065 * Return: crypto_ablkcipher handle 1066 */ 1067 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( 1068 struct ablkcipher_request *req) 1069 { 1070 return __crypto_ablkcipher_cast(req->base.tfm); 1071 } 1072 1073 /** 1074 * crypto_ablkcipher_encrypt() - encrypt plaintext 1075 * @req: reference to the ablkcipher_request handle that holds all information 1076 * needed to perform the cipher operation 1077 * 1078 * Encrypt plaintext data using the ablkcipher_request handle. That data 1079 * structure and how it is filled with data is discussed with the 1080 * ablkcipher_request_* functions. 1081 * 1082 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1083 */ 1084 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) 1085 { 1086 struct ablkcipher_tfm *crt = 1087 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1088 struct crypto_alg *alg = crt->base->base.__crt_alg; 1089 unsigned int nbytes = req->nbytes; 1090 int ret; 1091 1092 crypto_stats_get(alg); 1093 ret = crt->encrypt(req); 1094 crypto_stats_ablkcipher_encrypt(nbytes, ret, alg); 1095 return ret; 1096 } 1097 1098 /** 1099 * crypto_ablkcipher_decrypt() - decrypt ciphertext 1100 * @req: reference to the ablkcipher_request handle that holds all information 1101 * needed to perform the cipher operation 1102 * 1103 * Decrypt ciphertext data using the ablkcipher_request handle. That data 1104 * structure and how it is filled with data is discussed with the 1105 * ablkcipher_request_* functions. 1106 * 1107 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1108 */ 1109 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) 1110 { 1111 struct ablkcipher_tfm *crt = 1112 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1113 struct crypto_alg *alg = crt->base->base.__crt_alg; 1114 unsigned int nbytes = req->nbytes; 1115 int ret; 1116 1117 crypto_stats_get(alg); 1118 ret = crt->decrypt(req); 1119 crypto_stats_ablkcipher_decrypt(nbytes, ret, alg); 1120 return ret; 1121 } 1122 1123 /** 1124 * DOC: Asynchronous Cipher Request Handle 1125 * 1126 * The ablkcipher_request data structure contains all pointers to data 1127 * required for the asynchronous cipher operation. This includes the cipher 1128 * handle (which can be used by multiple ablkcipher_request instances), pointer 1129 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 1130 * as a handle to the ablkcipher_request_* API calls in a similar way as 1131 * ablkcipher handle to the crypto_ablkcipher_* API calls. 1132 */ 1133 1134 /** 1135 * crypto_ablkcipher_reqsize() - obtain size of the request data structure 1136 * @tfm: cipher handle 1137 * 1138 * Return: number of bytes 1139 */ 1140 static inline unsigned int crypto_ablkcipher_reqsize( 1141 struct crypto_ablkcipher *tfm) 1142 { 1143 return crypto_ablkcipher_crt(tfm)->reqsize; 1144 } 1145 1146 /** 1147 * ablkcipher_request_set_tfm() - update cipher handle reference in request 1148 * @req: request handle to be modified 1149 * @tfm: cipher handle that shall be added to the request handle 1150 * 1151 * Allow the caller to replace the existing ablkcipher handle in the request 1152 * data structure with a different one. 1153 */ 1154 static inline void ablkcipher_request_set_tfm( 1155 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) 1156 { 1157 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); 1158 } 1159 1160 static inline struct ablkcipher_request *ablkcipher_request_cast( 1161 struct crypto_async_request *req) 1162 { 1163 return container_of(req, struct ablkcipher_request, base); 1164 } 1165 1166 /** 1167 * ablkcipher_request_alloc() - allocate request data structure 1168 * @tfm: cipher handle to be registered with the request 1169 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 1170 * 1171 * Allocate the request data structure that must be used with the ablkcipher 1172 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher 1173 * handle is registered in the request data structure. 1174 * 1175 * Return: allocated request handle in case of success, or NULL if out of memory 1176 */ 1177 static inline struct ablkcipher_request *ablkcipher_request_alloc( 1178 struct crypto_ablkcipher *tfm, gfp_t gfp) 1179 { 1180 struct ablkcipher_request *req; 1181 1182 req = kmalloc(sizeof(struct ablkcipher_request) + 1183 crypto_ablkcipher_reqsize(tfm), gfp); 1184 1185 if (likely(req)) 1186 ablkcipher_request_set_tfm(req, tfm); 1187 1188 return req; 1189 } 1190 1191 /** 1192 * ablkcipher_request_free() - zeroize and free request data structure 1193 * @req: request data structure cipher handle to be freed 1194 */ 1195 static inline void ablkcipher_request_free(struct ablkcipher_request *req) 1196 { 1197 kzfree(req); 1198 } 1199 1200 /** 1201 * ablkcipher_request_set_callback() - set asynchronous callback function 1202 * @req: request handle 1203 * @flags: specify zero or an ORing of the flags 1204 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 1205 * increase the wait queue beyond the initial maximum size; 1206 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 1207 * @compl: callback function pointer to be registered with the request handle 1208 * @data: The data pointer refers to memory that is not used by the kernel 1209 * crypto API, but provided to the callback function for it to use. Here, 1210 * the caller can provide a reference to memory the callback function can 1211 * operate on. As the callback function is invoked asynchronously to the 1212 * related functionality, it may need to access data structures of the 1213 * related functionality which can be referenced using this pointer. The 1214 * callback function can access the memory via the "data" field in the 1215 * crypto_async_request data structure provided to the callback function. 1216 * 1217 * This function allows setting the callback function that is triggered once the 1218 * cipher operation completes. 1219 * 1220 * The callback function is registered with the ablkcipher_request handle and 1221 * must comply with the following template:: 1222 * 1223 * void callback_function(struct crypto_async_request *req, int error) 1224 */ 1225 static inline void ablkcipher_request_set_callback( 1226 struct ablkcipher_request *req, 1227 u32 flags, crypto_completion_t compl, void *data) 1228 { 1229 req->base.complete = compl; 1230 req->base.data = data; 1231 req->base.flags = flags; 1232 } 1233 1234 /** 1235 * ablkcipher_request_set_crypt() - set data buffers 1236 * @req: request handle 1237 * @src: source scatter / gather list 1238 * @dst: destination scatter / gather list 1239 * @nbytes: number of bytes to process from @src 1240 * @iv: IV for the cipher operation which must comply with the IV size defined 1241 * by crypto_ablkcipher_ivsize 1242 * 1243 * This function allows setting of the source data and destination data 1244 * scatter / gather lists. 1245 * 1246 * For encryption, the source is treated as the plaintext and the 1247 * destination is the ciphertext. For a decryption operation, the use is 1248 * reversed - the source is the ciphertext and the destination is the plaintext. 1249 */ 1250 static inline void ablkcipher_request_set_crypt( 1251 struct ablkcipher_request *req, 1252 struct scatterlist *src, struct scatterlist *dst, 1253 unsigned int nbytes, void *iv) 1254 { 1255 req->src = src; 1256 req->dst = dst; 1257 req->nbytes = nbytes; 1258 req->info = iv; 1259 } 1260 1261 /** 1262 * DOC: Synchronous Block Cipher API 1263 * 1264 * The synchronous block cipher API is used with the ciphers of type 1265 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) 1266 * 1267 * Synchronous calls, have a context in the tfm. But since a single tfm can be 1268 * used in multiple calls and in parallel, this info should not be changeable 1269 * (unless a lock is used). This applies, for example, to the symmetric key. 1270 * However, the IV is changeable, so there is an iv field in blkcipher_tfm 1271 * structure for synchronous blkcipher api. So, its the only state info that can 1272 * be kept for synchronous calls without using a big lock across a tfm. 1273 * 1274 * The block cipher API allows the use of a complete cipher, i.e. a cipher 1275 * consisting of a template (a block chaining mode) and a single block cipher 1276 * primitive (e.g. AES). 1277 * 1278 * The plaintext data buffer and the ciphertext data buffer are pointed to 1279 * by using scatter/gather lists. The cipher operation is performed 1280 * on all segments of the provided scatter/gather lists. 1281 * 1282 * The kernel crypto API supports a cipher operation "in-place" which means that 1283 * the caller may provide the same scatter/gather list for the plaintext and 1284 * cipher text. After the completion of the cipher operation, the plaintext 1285 * data is replaced with the ciphertext data in case of an encryption and vice 1286 * versa for a decryption. The caller must ensure that the scatter/gather lists 1287 * for the output data point to sufficiently large buffers, i.e. multiples of 1288 * the block size of the cipher. 1289 */ 1290 1291 static inline struct crypto_blkcipher *__crypto_blkcipher_cast( 1292 struct crypto_tfm *tfm) 1293 { 1294 return (struct crypto_blkcipher *)tfm; 1295 } 1296 1297 static inline struct crypto_blkcipher *crypto_blkcipher_cast( 1298 struct crypto_tfm *tfm) 1299 { 1300 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); 1301 return __crypto_blkcipher_cast(tfm); 1302 } 1303 1304 /** 1305 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle 1306 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1307 * blkcipher cipher 1308 * @type: specifies the type of the cipher 1309 * @mask: specifies the mask for the cipher 1310 * 1311 * Allocate a cipher handle for a block cipher. The returned struct 1312 * crypto_blkcipher is the cipher handle that is required for any subsequent 1313 * API invocation for that block cipher. 1314 * 1315 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1316 * of an error, PTR_ERR() returns the error code. 1317 */ 1318 static inline struct crypto_blkcipher *crypto_alloc_blkcipher( 1319 const char *alg_name, u32 type, u32 mask) 1320 { 1321 type &= ~CRYPTO_ALG_TYPE_MASK; 1322 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1323 mask |= CRYPTO_ALG_TYPE_MASK; 1324 1325 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); 1326 } 1327 1328 static inline struct crypto_tfm *crypto_blkcipher_tfm( 1329 struct crypto_blkcipher *tfm) 1330 { 1331 return &tfm->base; 1332 } 1333 1334 /** 1335 * crypto_free_blkcipher() - zeroize and free the block cipher handle 1336 * @tfm: cipher handle to be freed 1337 */ 1338 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) 1339 { 1340 crypto_free_tfm(crypto_blkcipher_tfm(tfm)); 1341 } 1342 1343 /** 1344 * crypto_has_blkcipher() - Search for the availability of a block cipher 1345 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1346 * block cipher 1347 * @type: specifies the type of the cipher 1348 * @mask: specifies the mask for the cipher 1349 * 1350 * Return: true when the block cipher is known to the kernel crypto API; false 1351 * otherwise 1352 */ 1353 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) 1354 { 1355 type &= ~CRYPTO_ALG_TYPE_MASK; 1356 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1357 mask |= CRYPTO_ALG_TYPE_MASK; 1358 1359 return crypto_has_alg(alg_name, type, mask); 1360 } 1361 1362 /** 1363 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle 1364 * @tfm: cipher handle 1365 * 1366 * Return: The character string holding the name of the cipher 1367 */ 1368 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) 1369 { 1370 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); 1371 } 1372 1373 static inline struct blkcipher_tfm *crypto_blkcipher_crt( 1374 struct crypto_blkcipher *tfm) 1375 { 1376 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; 1377 } 1378 1379 static inline struct blkcipher_alg *crypto_blkcipher_alg( 1380 struct crypto_blkcipher *tfm) 1381 { 1382 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; 1383 } 1384 1385 /** 1386 * crypto_blkcipher_ivsize() - obtain IV size 1387 * @tfm: cipher handle 1388 * 1389 * The size of the IV for the block cipher referenced by the cipher handle is 1390 * returned. This IV size may be zero if the cipher does not need an IV. 1391 * 1392 * Return: IV size in bytes 1393 */ 1394 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) 1395 { 1396 return crypto_blkcipher_alg(tfm)->ivsize; 1397 } 1398 1399 /** 1400 * crypto_blkcipher_blocksize() - obtain block size of cipher 1401 * @tfm: cipher handle 1402 * 1403 * The block size for the block cipher referenced with the cipher handle is 1404 * returned. The caller may use that information to allocate appropriate 1405 * memory for the data returned by the encryption or decryption operation. 1406 * 1407 * Return: block size of cipher 1408 */ 1409 static inline unsigned int crypto_blkcipher_blocksize( 1410 struct crypto_blkcipher *tfm) 1411 { 1412 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); 1413 } 1414 1415 static inline unsigned int crypto_blkcipher_alignmask( 1416 struct crypto_blkcipher *tfm) 1417 { 1418 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); 1419 } 1420 1421 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) 1422 { 1423 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); 1424 } 1425 1426 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, 1427 u32 flags) 1428 { 1429 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); 1430 } 1431 1432 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, 1433 u32 flags) 1434 { 1435 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); 1436 } 1437 1438 /** 1439 * crypto_blkcipher_setkey() - set key for cipher 1440 * @tfm: cipher handle 1441 * @key: buffer holding the key 1442 * @keylen: length of the key in bytes 1443 * 1444 * The caller provided key is set for the block cipher referenced by the cipher 1445 * handle. 1446 * 1447 * Note, the key length determines the cipher type. Many block ciphers implement 1448 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1449 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1450 * is performed. 1451 * 1452 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1453 */ 1454 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, 1455 const u8 *key, unsigned int keylen) 1456 { 1457 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), 1458 key, keylen); 1459 } 1460 1461 /** 1462 * crypto_blkcipher_encrypt() - encrypt plaintext 1463 * @desc: reference to the block cipher handle with meta data 1464 * @dst: scatter/gather list that is filled by the cipher operation with the 1465 * ciphertext 1466 * @src: scatter/gather list that holds the plaintext 1467 * @nbytes: number of bytes of the plaintext to encrypt. 1468 * 1469 * Encrypt plaintext data using the IV set by the caller with a preceding 1470 * call of crypto_blkcipher_set_iv. 1471 * 1472 * The blkcipher_desc data structure must be filled by the caller and can 1473 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1474 * with the block cipher handle; desc.flags is filled with either 1475 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1476 * 1477 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1478 */ 1479 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, 1480 struct scatterlist *dst, 1481 struct scatterlist *src, 1482 unsigned int nbytes) 1483 { 1484 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1485 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1486 } 1487 1488 /** 1489 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV 1490 * @desc: reference to the block cipher handle with meta data 1491 * @dst: scatter/gather list that is filled by the cipher operation with the 1492 * ciphertext 1493 * @src: scatter/gather list that holds the plaintext 1494 * @nbytes: number of bytes of the plaintext to encrypt. 1495 * 1496 * Encrypt plaintext data with the use of an IV that is solely used for this 1497 * cipher operation. Any previously set IV is not used. 1498 * 1499 * The blkcipher_desc data structure must be filled by the caller and can 1500 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1501 * with the block cipher handle; desc.info is filled with the IV to be used for 1502 * the current operation; desc.flags is filled with either 1503 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1504 * 1505 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1506 */ 1507 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, 1508 struct scatterlist *dst, 1509 struct scatterlist *src, 1510 unsigned int nbytes) 1511 { 1512 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1513 } 1514 1515 /** 1516 * crypto_blkcipher_decrypt() - decrypt ciphertext 1517 * @desc: reference to the block cipher handle with meta data 1518 * @dst: scatter/gather list that is filled by the cipher operation with the 1519 * plaintext 1520 * @src: scatter/gather list that holds the ciphertext 1521 * @nbytes: number of bytes of the ciphertext to decrypt. 1522 * 1523 * Decrypt ciphertext data using the IV set by the caller with a preceding 1524 * call of crypto_blkcipher_set_iv. 1525 * 1526 * The blkcipher_desc data structure must be filled by the caller as documented 1527 * for the crypto_blkcipher_encrypt call above. 1528 * 1529 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1530 * 1531 */ 1532 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, 1533 struct scatterlist *dst, 1534 struct scatterlist *src, 1535 unsigned int nbytes) 1536 { 1537 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1538 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1539 } 1540 1541 /** 1542 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV 1543 * @desc: reference to the block cipher handle with meta data 1544 * @dst: scatter/gather list that is filled by the cipher operation with the 1545 * plaintext 1546 * @src: scatter/gather list that holds the ciphertext 1547 * @nbytes: number of bytes of the ciphertext to decrypt. 1548 * 1549 * Decrypt ciphertext data with the use of an IV that is solely used for this 1550 * cipher operation. Any previously set IV is not used. 1551 * 1552 * The blkcipher_desc data structure must be filled by the caller as documented 1553 * for the crypto_blkcipher_encrypt_iv call above. 1554 * 1555 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1556 */ 1557 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, 1558 struct scatterlist *dst, 1559 struct scatterlist *src, 1560 unsigned int nbytes) 1561 { 1562 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1563 } 1564 1565 /** 1566 * crypto_blkcipher_set_iv() - set IV for cipher 1567 * @tfm: cipher handle 1568 * @src: buffer holding the IV 1569 * @len: length of the IV in bytes 1570 * 1571 * The caller provided IV is set for the block cipher referenced by the cipher 1572 * handle. 1573 */ 1574 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, 1575 const u8 *src, unsigned int len) 1576 { 1577 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); 1578 } 1579 1580 /** 1581 * crypto_blkcipher_get_iv() - obtain IV from cipher 1582 * @tfm: cipher handle 1583 * @dst: buffer filled with the IV 1584 * @len: length of the buffer dst 1585 * 1586 * The caller can obtain the IV set for the block cipher referenced by the 1587 * cipher handle and store it into the user-provided buffer. If the buffer 1588 * has an insufficient space, the IV is truncated to fit the buffer. 1589 */ 1590 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, 1591 u8 *dst, unsigned int len) 1592 { 1593 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); 1594 } 1595 1596 /** 1597 * DOC: Single Block Cipher API 1598 * 1599 * The single block cipher API is used with the ciphers of type 1600 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 1601 * 1602 * Using the single block cipher API calls, operations with the basic cipher 1603 * primitive can be implemented. These cipher primitives exclude any block 1604 * chaining operations including IV handling. 1605 * 1606 * The purpose of this single block cipher API is to support the implementation 1607 * of templates or other concepts that only need to perform the cipher operation 1608 * on one block at a time. Templates invoke the underlying cipher primitive 1609 * block-wise and process either the input or the output data of these cipher 1610 * operations. 1611 */ 1612 1613 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 1614 { 1615 return (struct crypto_cipher *)tfm; 1616 } 1617 1618 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) 1619 { 1620 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); 1621 return __crypto_cipher_cast(tfm); 1622 } 1623 1624 /** 1625 * crypto_alloc_cipher() - allocate single block cipher handle 1626 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1627 * single block cipher 1628 * @type: specifies the type of the cipher 1629 * @mask: specifies the mask for the cipher 1630 * 1631 * Allocate a cipher handle for a single block cipher. The returned struct 1632 * crypto_cipher is the cipher handle that is required for any subsequent API 1633 * invocation for that single block cipher. 1634 * 1635 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1636 * of an error, PTR_ERR() returns the error code. 1637 */ 1638 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 1639 u32 type, u32 mask) 1640 { 1641 type &= ~CRYPTO_ALG_TYPE_MASK; 1642 type |= CRYPTO_ALG_TYPE_CIPHER; 1643 mask |= CRYPTO_ALG_TYPE_MASK; 1644 1645 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 1646 } 1647 1648 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 1649 { 1650 return &tfm->base; 1651 } 1652 1653 /** 1654 * crypto_free_cipher() - zeroize and free the single block cipher handle 1655 * @tfm: cipher handle to be freed 1656 */ 1657 static inline void crypto_free_cipher(struct crypto_cipher *tfm) 1658 { 1659 crypto_free_tfm(crypto_cipher_tfm(tfm)); 1660 } 1661 1662 /** 1663 * crypto_has_cipher() - Search for the availability of a single block cipher 1664 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1665 * single block cipher 1666 * @type: specifies the type of the cipher 1667 * @mask: specifies the mask for the cipher 1668 * 1669 * Return: true when the single block cipher is known to the kernel crypto API; 1670 * false otherwise 1671 */ 1672 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 1673 { 1674 type &= ~CRYPTO_ALG_TYPE_MASK; 1675 type |= CRYPTO_ALG_TYPE_CIPHER; 1676 mask |= CRYPTO_ALG_TYPE_MASK; 1677 1678 return crypto_has_alg(alg_name, type, mask); 1679 } 1680 1681 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) 1682 { 1683 return &crypto_cipher_tfm(tfm)->crt_cipher; 1684 } 1685 1686 /** 1687 * crypto_cipher_blocksize() - obtain block size for cipher 1688 * @tfm: cipher handle 1689 * 1690 * The block size for the single block cipher referenced with the cipher handle 1691 * tfm is returned. The caller may use that information to allocate appropriate 1692 * memory for the data returned by the encryption or decryption operation 1693 * 1694 * Return: block size of cipher 1695 */ 1696 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 1697 { 1698 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 1699 } 1700 1701 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 1702 { 1703 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 1704 } 1705 1706 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 1707 { 1708 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 1709 } 1710 1711 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 1712 u32 flags) 1713 { 1714 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 1715 } 1716 1717 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 1718 u32 flags) 1719 { 1720 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 1721 } 1722 1723 /** 1724 * crypto_cipher_setkey() - set key for cipher 1725 * @tfm: cipher handle 1726 * @key: buffer holding the key 1727 * @keylen: length of the key in bytes 1728 * 1729 * The caller provided key is set for the single block cipher referenced by the 1730 * cipher handle. 1731 * 1732 * Note, the key length determines the cipher type. Many block ciphers implement 1733 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1734 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1735 * is performed. 1736 * 1737 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1738 */ 1739 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 1740 const u8 *key, unsigned int keylen) 1741 { 1742 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), 1743 key, keylen); 1744 } 1745 1746 /** 1747 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 1748 * @tfm: cipher handle 1749 * @dst: points to the buffer that will be filled with the ciphertext 1750 * @src: buffer holding the plaintext to be encrypted 1751 * 1752 * Invoke the encryption operation of one block. The caller must ensure that 1753 * the plaintext and ciphertext buffers are at least one block in size. 1754 */ 1755 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 1756 u8 *dst, const u8 *src) 1757 { 1758 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), 1759 dst, src); 1760 } 1761 1762 /** 1763 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 1764 * @tfm: cipher handle 1765 * @dst: points to the buffer that will be filled with the plaintext 1766 * @src: buffer holding the ciphertext to be decrypted 1767 * 1768 * Invoke the decryption operation of one block. The caller must ensure that 1769 * the plaintext and ciphertext buffers are at least one block in size. 1770 */ 1771 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 1772 u8 *dst, const u8 *src) 1773 { 1774 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), 1775 dst, src); 1776 } 1777 1778 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 1779 { 1780 return (struct crypto_comp *)tfm; 1781 } 1782 1783 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) 1784 { 1785 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & 1786 CRYPTO_ALG_TYPE_MASK); 1787 return __crypto_comp_cast(tfm); 1788 } 1789 1790 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 1791 u32 type, u32 mask) 1792 { 1793 type &= ~CRYPTO_ALG_TYPE_MASK; 1794 type |= CRYPTO_ALG_TYPE_COMPRESS; 1795 mask |= CRYPTO_ALG_TYPE_MASK; 1796 1797 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 1798 } 1799 1800 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 1801 { 1802 return &tfm->base; 1803 } 1804 1805 static inline void crypto_free_comp(struct crypto_comp *tfm) 1806 { 1807 crypto_free_tfm(crypto_comp_tfm(tfm)); 1808 } 1809 1810 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 1811 { 1812 type &= ~CRYPTO_ALG_TYPE_MASK; 1813 type |= CRYPTO_ALG_TYPE_COMPRESS; 1814 mask |= CRYPTO_ALG_TYPE_MASK; 1815 1816 return crypto_has_alg(alg_name, type, mask); 1817 } 1818 1819 static inline const char *crypto_comp_name(struct crypto_comp *tfm) 1820 { 1821 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 1822 } 1823 1824 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) 1825 { 1826 return &crypto_comp_tfm(tfm)->crt_compress; 1827 } 1828 1829 static inline int crypto_comp_compress(struct crypto_comp *tfm, 1830 const u8 *src, unsigned int slen, 1831 u8 *dst, unsigned int *dlen) 1832 { 1833 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), 1834 src, slen, dst, dlen); 1835 } 1836 1837 static inline int crypto_comp_decompress(struct crypto_comp *tfm, 1838 const u8 *src, unsigned int slen, 1839 u8 *dst, unsigned int *dlen) 1840 { 1841 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), 1842 src, slen, dst, dlen); 1843 } 1844 1845 #endif /* _LINUX_CRYPTO_H */ 1846 1847