1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Scatterlist Cryptographic API. 4 * 5 * Copyright (c) 2002 James Morris <[email protected]> 6 * Copyright (c) 2002 David S. Miller ([email protected]) 7 * Copyright (c) 2005 Herbert Xu <[email protected]> 8 * 9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]> 10 * and Nettle, by Niels Möller. 11 */ 12 #ifndef _LINUX_CRYPTO_H 13 #define _LINUX_CRYPTO_H 14 15 #include <linux/atomic.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/bug.h> 19 #include <linux/refcount.h> 20 #include <linux/slab.h> 21 #include <linux/completion.h> 22 23 /* 24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 25 * arbitrary modules to be loaded. Loading from userspace may still need the 26 * unprefixed names, so retains those aliases as well. 27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 29 * expands twice on the same line. Instead, use a separate base name for the 30 * alias. 31 */ 32 #define MODULE_ALIAS_CRYPTO(name) \ 33 __MODULE_INFO(alias, alias_userspace, name); \ 34 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 35 36 /* 37 * Algorithm masks and types. 38 */ 39 #define CRYPTO_ALG_TYPE_MASK 0x0000000f 40 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 41 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 42 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 43 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 44 #define CRYPTO_ALG_TYPE_KPP 0x00000008 45 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 46 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 47 #define CRYPTO_ALG_TYPE_RNG 0x0000000c 48 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 49 #define CRYPTO_ALG_TYPE_HASH 0x0000000e 50 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e 51 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f 52 53 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 54 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 56 57 #define CRYPTO_ALG_LARVAL 0x00000010 58 #define CRYPTO_ALG_DEAD 0x00000020 59 #define CRYPTO_ALG_DYING 0x00000040 60 #define CRYPTO_ALG_ASYNC 0x00000080 61 62 /* 63 * Set if the algorithm (or an algorithm which it uses) requires another 64 * algorithm of the same type to handle corner cases. 65 */ 66 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 67 68 /* 69 * Set if the algorithm has passed automated run-time testing. Note that 70 * if there is no run-time testing for a given algorithm it is considered 71 * to have passed. 72 */ 73 74 #define CRYPTO_ALG_TESTED 0x00000400 75 76 /* 77 * Set if the algorithm is an instance that is built from templates. 78 */ 79 #define CRYPTO_ALG_INSTANCE 0x00000800 80 81 /* Set this bit if the algorithm provided is hardware accelerated but 82 * not available to userspace via instruction set or so. 83 */ 84 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 85 86 /* 87 * Mark a cipher as a service implementation only usable by another 88 * cipher and never by a normal user of the kernel crypto API 89 */ 90 #define CRYPTO_ALG_INTERNAL 0x00002000 91 92 /* 93 * Set if the algorithm has a ->setkey() method but can be used without 94 * calling it first, i.e. there is a default key. 95 */ 96 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 97 98 /* 99 * Don't trigger module loading 100 */ 101 #define CRYPTO_NOLOAD 0x00008000 102 103 /* 104 * The algorithm may allocate memory during request processing, i.e. during 105 * encryption, decryption, or hashing. Users can request an algorithm with this 106 * flag unset if they can't handle memory allocation failures. 107 * 108 * This flag is currently only implemented for algorithms of type "skcipher", 109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not 110 * have this flag set even if they allocate memory. 111 * 112 * In some edge cases, algorithms can allocate memory regardless of this flag. 113 * To avoid these cases, users must obey the following usage constraints: 114 * skcipher: 115 * - The IV buffer and all scatterlist elements must be aligned to the 116 * algorithm's alignmask. 117 * - If the data were to be divided into chunks of size 118 * crypto_skcipher_walksize() (with any remainder going at the end), no 119 * chunk can cross a page boundary or a scatterlist element boundary. 120 * aead: 121 * - The IV buffer and all scatterlist elements must be aligned to the 122 * algorithm's alignmask. 123 * - The first scatterlist element must contain all the associated data, 124 * and its pages must be !PageHighMem. 125 * - If the plaintext/ciphertext were to be divided into chunks of size 126 * crypto_aead_walksize() (with the remainder going at the end), no chunk 127 * can cross a page boundary or a scatterlist element boundary. 128 * ahash: 129 * - The result buffer must be aligned to the algorithm's alignmask. 130 * - crypto_ahash_finup() must not be used unless the algorithm implements 131 * ->finup() natively. 132 */ 133 #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 134 135 /* 136 * Mark an algorithm as a service implementation only usable by a 137 * template and never by a normal user of the kernel crypto API. 138 * This is intended to be used by algorithms that are themselves 139 * not FIPS-approved but may instead be used to implement parts of 140 * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)). 141 */ 142 #define CRYPTO_ALG_FIPS_INTERNAL 0x00020000 143 144 /* 145 * Transform masks and values (for crt_flags). 146 */ 147 #define CRYPTO_TFM_NEED_KEY 0x00000001 148 149 #define CRYPTO_TFM_REQ_MASK 0x000fff00 150 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 151 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 152 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 153 154 /* 155 * Miscellaneous stuff. 156 */ 157 #define CRYPTO_MAX_ALG_NAME 128 158 159 /* 160 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 161 * declaration) is used to ensure that the crypto_tfm context structure is 162 * aligned correctly for the given architecture so that there are no alignment 163 * faults for C data types. On architectures that support non-cache coherent 164 * DMA, such as ARM or arm64, it also takes into account the minimal alignment 165 * that is required to ensure that the context struct member does not share any 166 * cachelines with the rest of the struct. This is needed to ensure that cache 167 * maintenance for non-coherent DMA (cache invalidation in particular) does not 168 * affect data that may be accessed by the CPU concurrently. 169 */ 170 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 171 172 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 173 174 struct scatterlist; 175 struct crypto_async_request; 176 struct crypto_tfm; 177 struct crypto_type; 178 179 typedef void (*crypto_completion_t)(void *req, int err); 180 181 /** 182 * DOC: Block Cipher Context Data Structures 183 * 184 * These data structures define the operating context for each block cipher 185 * type. 186 */ 187 188 struct crypto_async_request { 189 struct list_head list; 190 crypto_completion_t complete; 191 void *data; 192 struct crypto_tfm *tfm; 193 194 u32 flags; 195 }; 196 197 /** 198 * DOC: Block Cipher Algorithm Definitions 199 * 200 * These data structures define modular crypto algorithm implementations, 201 * managed via crypto_register_alg() and crypto_unregister_alg(). 202 */ 203 204 /** 205 * struct cipher_alg - single-block symmetric ciphers definition 206 * @cia_min_keysize: Minimum key size supported by the transformation. This is 207 * the smallest key length supported by this transformation 208 * algorithm. This must be set to one of the pre-defined 209 * values as this is not hardware specific. Possible values 210 * for this field can be found via git grep "_MIN_KEY_SIZE" 211 * include/crypto/ 212 * @cia_max_keysize: Maximum key size supported by the transformation. This is 213 * the largest key length supported by this transformation 214 * algorithm. This must be set to one of the pre-defined values 215 * as this is not hardware specific. Possible values for this 216 * field can be found via git grep "_MAX_KEY_SIZE" 217 * include/crypto/ 218 * @cia_setkey: Set key for the transformation. This function is used to either 219 * program a supplied key into the hardware or store the key in the 220 * transformation context for programming it later. Note that this 221 * function does modify the transformation context. This function 222 * can be called multiple times during the existence of the 223 * transformation object, so one must make sure the key is properly 224 * reprogrammed into the hardware. This function is also 225 * responsible for checking the key length for validity. 226 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 227 * single block of data, which must be @cra_blocksize big. This 228 * always operates on a full @cra_blocksize and it is not possible 229 * to encrypt a block of smaller size. The supplied buffers must 230 * therefore also be at least of @cra_blocksize size. Both the 231 * input and output buffers are always aligned to @cra_alignmask. 232 * In case either of the input or output buffer supplied by user 233 * of the crypto API is not aligned to @cra_alignmask, the crypto 234 * API will re-align the buffers. The re-alignment means that a 235 * new buffer will be allocated, the data will be copied into the 236 * new buffer, then the processing will happen on the new buffer, 237 * then the data will be copied back into the original buffer and 238 * finally the new buffer will be freed. In case a software 239 * fallback was put in place in the @cra_init call, this function 240 * might need to use the fallback if the algorithm doesn't support 241 * all of the key sizes. In case the key was stored in 242 * transformation context, the key might need to be re-programmed 243 * into the hardware in this function. This function shall not 244 * modify the transformation context, as this function may be 245 * called in parallel with the same transformation object. 246 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 247 * @cia_encrypt, and the conditions are exactly the same. 248 * 249 * All fields are mandatory and must be filled. 250 */ 251 struct cipher_alg { 252 unsigned int cia_min_keysize; 253 unsigned int cia_max_keysize; 254 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 255 unsigned int keylen); 256 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 257 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 258 }; 259 260 /** 261 * struct compress_alg - compression/decompression algorithm 262 * @coa_compress: Compress a buffer of specified length, storing the resulting 263 * data in the specified buffer. Return the length of the 264 * compressed data in dlen. 265 * @coa_decompress: Decompress the source buffer, storing the uncompressed 266 * data in the specified buffer. The length of the data is 267 * returned in dlen. 268 * 269 * All fields are mandatory. 270 */ 271 struct compress_alg { 272 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 273 unsigned int slen, u8 *dst, unsigned int *dlen); 274 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 275 unsigned int slen, u8 *dst, unsigned int *dlen); 276 }; 277 278 #ifdef CONFIG_CRYPTO_STATS 279 /* 280 * struct crypto_istat_akcipher - statistics for akcipher algorithm 281 * @encrypt_cnt: number of encrypt requests 282 * @encrypt_tlen: total data size handled by encrypt requests 283 * @decrypt_cnt: number of decrypt requests 284 * @decrypt_tlen: total data size handled by decrypt requests 285 * @verify_cnt: number of verify operation 286 * @sign_cnt: number of sign requests 287 * @err_cnt: number of error for akcipher requests 288 */ 289 struct crypto_istat_akcipher { 290 atomic64_t encrypt_cnt; 291 atomic64_t encrypt_tlen; 292 atomic64_t decrypt_cnt; 293 atomic64_t decrypt_tlen; 294 atomic64_t verify_cnt; 295 atomic64_t sign_cnt; 296 atomic64_t err_cnt; 297 }; 298 299 /* 300 * struct crypto_istat_cipher - statistics for cipher algorithm 301 * @encrypt_cnt: number of encrypt requests 302 * @encrypt_tlen: total data size handled by encrypt requests 303 * @decrypt_cnt: number of decrypt requests 304 * @decrypt_tlen: total data size handled by decrypt requests 305 * @err_cnt: number of error for cipher requests 306 */ 307 struct crypto_istat_cipher { 308 atomic64_t encrypt_cnt; 309 atomic64_t encrypt_tlen; 310 atomic64_t decrypt_cnt; 311 atomic64_t decrypt_tlen; 312 atomic64_t err_cnt; 313 }; 314 315 /* 316 * struct crypto_istat_compress - statistics for compress algorithm 317 * @compress_cnt: number of compress requests 318 * @compress_tlen: total data size handled by compress requests 319 * @decompress_cnt: number of decompress requests 320 * @decompress_tlen: total data size handled by decompress requests 321 * @err_cnt: number of error for compress requests 322 */ 323 struct crypto_istat_compress { 324 atomic64_t compress_cnt; 325 atomic64_t compress_tlen; 326 atomic64_t decompress_cnt; 327 atomic64_t decompress_tlen; 328 atomic64_t err_cnt; 329 }; 330 331 /* 332 * struct crypto_istat_hash - statistics for has algorithm 333 * @hash_cnt: number of hash requests 334 * @hash_tlen: total data size hashed 335 * @err_cnt: number of error for hash requests 336 */ 337 struct crypto_istat_hash { 338 atomic64_t hash_cnt; 339 atomic64_t hash_tlen; 340 atomic64_t err_cnt; 341 }; 342 343 /* 344 * struct crypto_istat_kpp - statistics for KPP algorithm 345 * @setsecret_cnt: number of setsecrey operation 346 * @generate_public_key_cnt: number of generate_public_key operation 347 * @compute_shared_secret_cnt: number of compute_shared_secret operation 348 * @err_cnt: number of error for KPP requests 349 */ 350 struct crypto_istat_kpp { 351 atomic64_t setsecret_cnt; 352 atomic64_t generate_public_key_cnt; 353 atomic64_t compute_shared_secret_cnt; 354 atomic64_t err_cnt; 355 }; 356 357 /* 358 * struct crypto_istat_rng: statistics for RNG algorithm 359 * @generate_cnt: number of RNG generate requests 360 * @generate_tlen: total data size of generated data by the RNG 361 * @seed_cnt: number of times the RNG was seeded 362 * @err_cnt: number of error for RNG requests 363 */ 364 struct crypto_istat_rng { 365 atomic64_t generate_cnt; 366 atomic64_t generate_tlen; 367 atomic64_t seed_cnt; 368 atomic64_t err_cnt; 369 }; 370 #endif /* CONFIG_CRYPTO_STATS */ 371 372 #define cra_cipher cra_u.cipher 373 #define cra_compress cra_u.compress 374 375 /** 376 * struct crypto_alg - definition of a cryptograpic cipher algorithm 377 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 378 * CRYPTO_ALG_* flags for the flags which go in here. Those are 379 * used for fine-tuning the description of the transformation 380 * algorithm. 381 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 382 * of the smallest possible unit which can be transformed with 383 * this algorithm. The users must respect this value. 384 * In case of HASH transformation, it is possible for a smaller 385 * block than @cra_blocksize to be passed to the crypto API for 386 * transformation, in case of any other transformation type, an 387 * error will be returned upon any attempt to transform smaller 388 * than @cra_blocksize chunks. 389 * @cra_ctxsize: Size of the operational context of the transformation. This 390 * value informs the kernel crypto API about the memory size 391 * needed to be allocated for the transformation context. 392 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 393 * buffer containing the input data for the algorithm must be 394 * aligned to this alignment mask. The data buffer for the 395 * output data must be aligned to this alignment mask. Note that 396 * the Crypto API will do the re-alignment in software, but 397 * only under special conditions and there is a performance hit. 398 * The re-alignment happens at these occasions for different 399 * @cra_u types: cipher -- For both input data and output data 400 * buffer; ahash -- For output hash destination buf; shash -- 401 * For output hash destination buf. 402 * This is needed on hardware which is flawed by design and 403 * cannot pick data from arbitrary addresses. 404 * @cra_priority: Priority of this transformation implementation. In case 405 * multiple transformations with same @cra_name are available to 406 * the Crypto API, the kernel will use the one with highest 407 * @cra_priority. 408 * @cra_name: Generic name (usable by multiple implementations) of the 409 * transformation algorithm. This is the name of the transformation 410 * itself. This field is used by the kernel when looking up the 411 * providers of particular transformation. 412 * @cra_driver_name: Unique name of the transformation provider. This is the 413 * name of the provider of the transformation. This can be any 414 * arbitrary value, but in the usual case, this contains the 415 * name of the chip or provider and the name of the 416 * transformation algorithm. 417 * @cra_type: Type of the cryptographic transformation. This is a pointer to 418 * struct crypto_type, which implements callbacks common for all 419 * transformation types. There are multiple options, such as 420 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. 421 * This field might be empty. In that case, there are no common 422 * callbacks. This is the case for: cipher, compress, shash. 423 * @cra_u: Callbacks implementing the transformation. This is a union of 424 * multiple structures. Depending on the type of transformation selected 425 * by @cra_type and @cra_flags above, the associated structure must be 426 * filled with callbacks. This field might be empty. This is the case 427 * for ahash, shash. 428 * @cra_init: Initialize the cryptographic transformation object. This function 429 * is used to initialize the cryptographic transformation object. 430 * This function is called only once at the instantiation time, right 431 * after the transformation context was allocated. In case the 432 * cryptographic hardware has some special requirements which need to 433 * be handled by software, this function shall check for the precise 434 * requirement of the transformation and put any software fallbacks 435 * in place. 436 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 437 * counterpart to @cra_init, used to remove various changes set in 438 * @cra_init. 439 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 440 * definition. See @struct @cipher_alg. 441 * @cra_u.compress: Union member which contains a (de)compression algorithm. 442 * See @struct @compress_alg. 443 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 444 * @cra_list: internally used 445 * @cra_users: internally used 446 * @cra_refcnt: internally used 447 * @cra_destroy: internally used 448 * 449 * @stats: union of all possible crypto_istat_xxx structures 450 * @stats.akcipher: statistics for akcipher algorithm 451 * @stats.cipher: statistics for cipher algorithm 452 * @stats.compress: statistics for compress algorithm 453 * @stats.hash: statistics for hash algorithm 454 * @stats.rng: statistics for rng algorithm 455 * @stats.kpp: statistics for KPP algorithm 456 * 457 * The struct crypto_alg describes a generic Crypto API algorithm and is common 458 * for all of the transformations. Any variable not documented here shall not 459 * be used by a cipher implementation as it is internal to the Crypto API. 460 */ 461 struct crypto_alg { 462 struct list_head cra_list; 463 struct list_head cra_users; 464 465 u32 cra_flags; 466 unsigned int cra_blocksize; 467 unsigned int cra_ctxsize; 468 unsigned int cra_alignmask; 469 470 int cra_priority; 471 refcount_t cra_refcnt; 472 473 char cra_name[CRYPTO_MAX_ALG_NAME]; 474 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 475 476 const struct crypto_type *cra_type; 477 478 union { 479 struct cipher_alg cipher; 480 struct compress_alg compress; 481 } cra_u; 482 483 int (*cra_init)(struct crypto_tfm *tfm); 484 void (*cra_exit)(struct crypto_tfm *tfm); 485 void (*cra_destroy)(struct crypto_alg *alg); 486 487 struct module *cra_module; 488 489 #ifdef CONFIG_CRYPTO_STATS 490 union { 491 struct crypto_istat_akcipher akcipher; 492 struct crypto_istat_cipher cipher; 493 struct crypto_istat_compress compress; 494 struct crypto_istat_hash hash; 495 struct crypto_istat_rng rng; 496 struct crypto_istat_kpp kpp; 497 } stats; 498 #endif /* CONFIG_CRYPTO_STATS */ 499 500 } CRYPTO_MINALIGN_ATTR; 501 502 #ifdef CONFIG_CRYPTO_STATS 503 void crypto_stats_init(struct crypto_alg *alg); 504 void crypto_stats_get(struct crypto_alg *alg); 505 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 506 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 507 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 508 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 509 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 510 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 511 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 512 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 513 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 514 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 515 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 516 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 517 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 518 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 519 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 520 #else 521 static inline void crypto_stats_init(struct crypto_alg *alg) 522 {} 523 static inline void crypto_stats_get(struct crypto_alg *alg) 524 {} 525 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 526 {} 527 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 528 {} 529 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 530 {} 531 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 532 {} 533 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 534 {} 535 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 536 {} 537 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 538 {} 539 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 540 {} 541 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 542 {} 543 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 544 {} 545 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 546 {} 547 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 548 {} 549 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 550 {} 551 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 552 {} 553 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 554 {} 555 #endif 556 /* 557 * A helper struct for waiting for completion of async crypto ops 558 */ 559 struct crypto_wait { 560 struct completion completion; 561 int err; 562 }; 563 564 /* 565 * Macro for declaring a crypto op async wait object on stack 566 */ 567 #define DECLARE_CRYPTO_WAIT(_wait) \ 568 struct crypto_wait _wait = { \ 569 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 570 571 /* 572 * Async ops completion helper functioons 573 */ 574 void crypto_req_done(void *req, int err); 575 576 static inline int crypto_wait_req(int err, struct crypto_wait *wait) 577 { 578 switch (err) { 579 case -EINPROGRESS: 580 case -EBUSY: 581 wait_for_completion(&wait->completion); 582 reinit_completion(&wait->completion); 583 err = wait->err; 584 break; 585 } 586 587 return err; 588 } 589 590 static inline void crypto_init_wait(struct crypto_wait *wait) 591 { 592 init_completion(&wait->completion); 593 } 594 595 /* 596 * Algorithm registration interface. 597 */ 598 int crypto_register_alg(struct crypto_alg *alg); 599 void crypto_unregister_alg(struct crypto_alg *alg); 600 int crypto_register_algs(struct crypto_alg *algs, int count); 601 void crypto_unregister_algs(struct crypto_alg *algs, int count); 602 603 /* 604 * Algorithm query interface. 605 */ 606 int crypto_has_alg(const char *name, u32 type, u32 mask); 607 608 /* 609 * Transforms: user-instantiated objects which encapsulate algorithms 610 * and core processing logic. Managed via crypto_alloc_*() and 611 * crypto_free_*(), as well as the various helpers below. 612 */ 613 614 struct crypto_tfm { 615 616 u32 crt_flags; 617 618 int node; 619 620 void (*exit)(struct crypto_tfm *tfm); 621 622 struct crypto_alg *__crt_alg; 623 624 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 625 }; 626 627 struct crypto_comp { 628 struct crypto_tfm base; 629 }; 630 631 /* 632 * Transform user interface. 633 */ 634 635 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 636 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 637 638 static inline void crypto_free_tfm(struct crypto_tfm *tfm) 639 { 640 return crypto_destroy_tfm(tfm, tfm); 641 } 642 643 int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 644 645 /* 646 * Transform helpers which query the underlying algorithm. 647 */ 648 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 649 { 650 return tfm->__crt_alg->cra_name; 651 } 652 653 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 654 { 655 return tfm->__crt_alg->cra_driver_name; 656 } 657 658 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 659 { 660 return tfm->__crt_alg->cra_priority; 661 } 662 663 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 664 { 665 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 666 } 667 668 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 669 { 670 return tfm->__crt_alg->cra_blocksize; 671 } 672 673 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 674 { 675 return tfm->__crt_alg->cra_alignmask; 676 } 677 678 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 679 { 680 return tfm->crt_flags; 681 } 682 683 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 684 { 685 tfm->crt_flags |= flags; 686 } 687 688 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 689 { 690 tfm->crt_flags &= ~flags; 691 } 692 693 static inline unsigned int crypto_tfm_ctx_alignment(void) 694 { 695 struct crypto_tfm *tfm; 696 return __alignof__(tfm->__crt_ctx); 697 } 698 699 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 700 { 701 return (struct crypto_comp *)tfm; 702 } 703 704 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 705 u32 type, u32 mask) 706 { 707 type &= ~CRYPTO_ALG_TYPE_MASK; 708 type |= CRYPTO_ALG_TYPE_COMPRESS; 709 mask |= CRYPTO_ALG_TYPE_MASK; 710 711 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 712 } 713 714 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 715 { 716 return &tfm->base; 717 } 718 719 static inline void crypto_free_comp(struct crypto_comp *tfm) 720 { 721 crypto_free_tfm(crypto_comp_tfm(tfm)); 722 } 723 724 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 725 { 726 type &= ~CRYPTO_ALG_TYPE_MASK; 727 type |= CRYPTO_ALG_TYPE_COMPRESS; 728 mask |= CRYPTO_ALG_TYPE_MASK; 729 730 return crypto_has_alg(alg_name, type, mask); 731 } 732 733 static inline const char *crypto_comp_name(struct crypto_comp *tfm) 734 { 735 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 736 } 737 738 int crypto_comp_compress(struct crypto_comp *tfm, 739 const u8 *src, unsigned int slen, 740 u8 *dst, unsigned int *dlen); 741 742 int crypto_comp_decompress(struct crypto_comp *tfm, 743 const u8 *src, unsigned int slen, 744 u8 *dst, unsigned int *dlen); 745 746 #endif /* _LINUX_CRYPTO_H */ 747 748