xref: /linux-6.15/include/linux/crypto.h (revision 0bdede8a)
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <[email protected]>
5  * Copyright (c) 2002 David S. Miller ([email protected])
6  * Copyright (c) 2005 Herbert Xu <[email protected]>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
9  * and Nettle, by Niels Möller.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19 
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 
28 /*
29  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30  * arbitrary modules to be loaded. Loading from userspace may still need the
31  * unprefixed names, so retains those aliases as well.
32  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34  * expands twice on the same line. Instead, use a separate base name for the
35  * alias.
36  */
37 #define MODULE_ALIAS_CRYPTO(name)	\
38 		__MODULE_INFO(alias, alias_userspace, name);	\
39 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
40 
41 /*
42  * Algorithm masks and types.
43  */
44 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
45 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
46 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
47 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
48 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
49 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
50 #define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
51 #define CRYPTO_ALG_TYPE_DIGEST		0x00000008
52 #define CRYPTO_ALG_TYPE_HASH		0x00000008
53 #define CRYPTO_ALG_TYPE_SHASH		0x00000009
54 #define CRYPTO_ALG_TYPE_AHASH		0x0000000a
55 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
56 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
57 #define CRYPTO_ALG_TYPE_PCOMPRESS	0x0000000f
58 
59 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
60 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000c
61 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
62 
63 #define CRYPTO_ALG_LARVAL		0x00000010
64 #define CRYPTO_ALG_DEAD			0x00000020
65 #define CRYPTO_ALG_DYING		0x00000040
66 #define CRYPTO_ALG_ASYNC		0x00000080
67 
68 /*
69  * Set this bit if and only if the algorithm requires another algorithm of
70  * the same type to handle corner cases.
71  */
72 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
73 
74 /*
75  * This bit is set for symmetric key ciphers that have already been wrapped
76  * with a generic IV generator to prevent them from being wrapped again.
77  */
78 #define CRYPTO_ALG_GENIV		0x00000200
79 
80 /*
81  * Set if the algorithm has passed automated run-time testing.  Note that
82  * if there is no run-time testing for a given algorithm it is considered
83  * to have passed.
84  */
85 
86 #define CRYPTO_ALG_TESTED		0x00000400
87 
88 /*
89  * Set if the algorithm is an instance that is build from templates.
90  */
91 #define CRYPTO_ALG_INSTANCE		0x00000800
92 
93 /* Set this bit if the algorithm provided is hardware accelerated but
94  * not available to userspace via instruction set or so.
95  */
96 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
97 
98 /*
99  * Mark a cipher as a service implementation only usable by another
100  * cipher and never by a normal user of the kernel crypto API
101  */
102 #define CRYPTO_ALG_INTERNAL		0x00002000
103 
104 /*
105  * Temporary flag used to prevent legacy AEAD implementations from
106  * being used by user-space.
107  */
108 #define CRYPTO_ALG_AEAD_NEW		0x00004000
109 
110 /*
111  * Transform masks and values (for crt_flags).
112  */
113 #define CRYPTO_TFM_REQ_MASK		0x000fff00
114 #define CRYPTO_TFM_RES_MASK		0xfff00000
115 
116 #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
117 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
118 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
119 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
120 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
121 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
122 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
123 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
124 
125 /*
126  * Miscellaneous stuff.
127  */
128 #define CRYPTO_MAX_ALG_NAME		64
129 
130 /*
131  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
132  * declaration) is used to ensure that the crypto_tfm context structure is
133  * aligned correctly for the given architecture so that there are no alignment
134  * faults for C data types.  In particular, this is required on platforms such
135  * as arm where pointers are 32-bit aligned but there are data types such as
136  * u64 which require 64-bit alignment.
137  */
138 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
139 
140 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
141 
142 struct scatterlist;
143 struct crypto_ablkcipher;
144 struct crypto_async_request;
145 struct crypto_aead;
146 struct crypto_blkcipher;
147 struct crypto_hash;
148 struct crypto_tfm;
149 struct crypto_type;
150 struct aead_request;
151 struct aead_givcrypt_request;
152 struct skcipher_givcrypt_request;
153 
154 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
155 
156 /**
157  * DOC: Block Cipher Context Data Structures
158  *
159  * These data structures define the operating context for each block cipher
160  * type.
161  */
162 
163 struct crypto_async_request {
164 	struct list_head list;
165 	crypto_completion_t complete;
166 	void *data;
167 	struct crypto_tfm *tfm;
168 
169 	u32 flags;
170 };
171 
172 struct ablkcipher_request {
173 	struct crypto_async_request base;
174 
175 	unsigned int nbytes;
176 
177 	void *info;
178 
179 	struct scatterlist *src;
180 	struct scatterlist *dst;
181 
182 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
183 };
184 
185 struct blkcipher_desc {
186 	struct crypto_blkcipher *tfm;
187 	void *info;
188 	u32 flags;
189 };
190 
191 struct cipher_desc {
192 	struct crypto_tfm *tfm;
193 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
194 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
195 			     const u8 *src, unsigned int nbytes);
196 	void *info;
197 };
198 
199 struct hash_desc {
200 	struct crypto_hash *tfm;
201 	u32 flags;
202 };
203 
204 /**
205  * DOC: Block Cipher Algorithm Definitions
206  *
207  * These data structures define modular crypto algorithm implementations,
208  * managed via crypto_register_alg() and crypto_unregister_alg().
209  */
210 
211 /**
212  * struct ablkcipher_alg - asynchronous block cipher definition
213  * @min_keysize: Minimum key size supported by the transformation. This is the
214  *		 smallest key length supported by this transformation algorithm.
215  *		 This must be set to one of the pre-defined values as this is
216  *		 not hardware specific. Possible values for this field can be
217  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
218  * @max_keysize: Maximum key size supported by the transformation. This is the
219  *		 largest key length supported by this transformation algorithm.
220  *		 This must be set to one of the pre-defined values as this is
221  *		 not hardware specific. Possible values for this field can be
222  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
223  * @setkey: Set key for the transformation. This function is used to either
224  *	    program a supplied key into the hardware or store the key in the
225  *	    transformation context for programming it later. Note that this
226  *	    function does modify the transformation context. This function can
227  *	    be called multiple times during the existence of the transformation
228  *	    object, so one must make sure the key is properly reprogrammed into
229  *	    the hardware. This function is also responsible for checking the key
230  *	    length for validity. In case a software fallback was put in place in
231  *	    the @cra_init call, this function might need to use the fallback if
232  *	    the algorithm doesn't support all of the key sizes.
233  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
234  *	     the supplied scatterlist containing the blocks of data. The crypto
235  *	     API consumer is responsible for aligning the entries of the
236  *	     scatterlist properly and making sure the chunks are correctly
237  *	     sized. In case a software fallback was put in place in the
238  *	     @cra_init call, this function might need to use the fallback if
239  *	     the algorithm doesn't support all of the key sizes. In case the
240  *	     key was stored in transformation context, the key might need to be
241  *	     re-programmed into the hardware in this function. This function
242  *	     shall not modify the transformation context, as this function may
243  *	     be called in parallel with the same transformation object.
244  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
245  *	     and the conditions are exactly the same.
246  * @givencrypt: Update the IV for encryption. With this function, a cipher
247  *	        implementation may provide the function on how to update the IV
248  *	        for encryption.
249  * @givdecrypt: Update the IV for decryption. This is the reverse of
250  *	        @givencrypt .
251  * @geniv: The transformation implementation may use an "IV generator" provided
252  *	   by the kernel crypto API. Several use cases have a predefined
253  *	   approach how IVs are to be updated. For such use cases, the kernel
254  *	   crypto API provides ready-to-use implementations that can be
255  *	   referenced with this variable.
256  * @ivsize: IV size applicable for transformation. The consumer must provide an
257  *	    IV of exactly that size to perform the encrypt or decrypt operation.
258  *
259  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
260  * mandatory and must be filled.
261  */
262 struct ablkcipher_alg {
263 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
264 	              unsigned int keylen);
265 	int (*encrypt)(struct ablkcipher_request *req);
266 	int (*decrypt)(struct ablkcipher_request *req);
267 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
268 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
269 
270 	const char *geniv;
271 
272 	unsigned int min_keysize;
273 	unsigned int max_keysize;
274 	unsigned int ivsize;
275 };
276 
277 /**
278  * struct old_aead_alg - AEAD cipher definition
279  * @maxauthsize: Set the maximum authentication tag size supported by the
280  *		 transformation. A transformation may support smaller tag sizes.
281  *		 As the authentication tag is a message digest to ensure the
282  *		 integrity of the encrypted data, a consumer typically wants the
283  *		 largest authentication tag possible as defined by this
284  *		 variable.
285  * @setauthsize: Set authentication size for the AEAD transformation. This
286  *		 function is used to specify the consumer requested size of the
287  * 		 authentication tag to be either generated by the transformation
288  *		 during encryption or the size of the authentication tag to be
289  *		 supplied during the decryption operation. This function is also
290  *		 responsible for checking the authentication tag size for
291  *		 validity.
292  * @setkey: see struct ablkcipher_alg
293  * @encrypt: see struct ablkcipher_alg
294  * @decrypt: see struct ablkcipher_alg
295  * @givencrypt: see struct ablkcipher_alg
296  * @givdecrypt: see struct ablkcipher_alg
297  * @geniv: see struct ablkcipher_alg
298  * @ivsize: see struct ablkcipher_alg
299  *
300  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
301  * mandatory and must be filled.
302  */
303 struct old_aead_alg {
304 	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
305 	              unsigned int keylen);
306 	int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
307 	int (*encrypt)(struct aead_request *req);
308 	int (*decrypt)(struct aead_request *req);
309 	int (*givencrypt)(struct aead_givcrypt_request *req);
310 	int (*givdecrypt)(struct aead_givcrypt_request *req);
311 
312 	const char *geniv;
313 
314 	unsigned int ivsize;
315 	unsigned int maxauthsize;
316 };
317 
318 /**
319  * struct blkcipher_alg - synchronous block cipher definition
320  * @min_keysize: see struct ablkcipher_alg
321  * @max_keysize: see struct ablkcipher_alg
322  * @setkey: see struct ablkcipher_alg
323  * @encrypt: see struct ablkcipher_alg
324  * @decrypt: see struct ablkcipher_alg
325  * @geniv: see struct ablkcipher_alg
326  * @ivsize: see struct ablkcipher_alg
327  *
328  * All fields except @geniv and @ivsize are mandatory and must be filled.
329  */
330 struct blkcipher_alg {
331 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
332 	              unsigned int keylen);
333 	int (*encrypt)(struct blkcipher_desc *desc,
334 		       struct scatterlist *dst, struct scatterlist *src,
335 		       unsigned int nbytes);
336 	int (*decrypt)(struct blkcipher_desc *desc,
337 		       struct scatterlist *dst, struct scatterlist *src,
338 		       unsigned int nbytes);
339 
340 	const char *geniv;
341 
342 	unsigned int min_keysize;
343 	unsigned int max_keysize;
344 	unsigned int ivsize;
345 };
346 
347 /**
348  * struct cipher_alg - single-block symmetric ciphers definition
349  * @cia_min_keysize: Minimum key size supported by the transformation. This is
350  *		     the smallest key length supported by this transformation
351  *		     algorithm. This must be set to one of the pre-defined
352  *		     values as this is not hardware specific. Possible values
353  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
354  *		     include/crypto/
355  * @cia_max_keysize: Maximum key size supported by the transformation. This is
356  *		    the largest key length supported by this transformation
357  *		    algorithm. This must be set to one of the pre-defined values
358  *		    as this is not hardware specific. Possible values for this
359  *		    field can be found via git grep "_MAX_KEY_SIZE"
360  *		    include/crypto/
361  * @cia_setkey: Set key for the transformation. This function is used to either
362  *	        program a supplied key into the hardware or store the key in the
363  *	        transformation context for programming it later. Note that this
364  *	        function does modify the transformation context. This function
365  *	        can be called multiple times during the existence of the
366  *	        transformation object, so one must make sure the key is properly
367  *	        reprogrammed into the hardware. This function is also
368  *	        responsible for checking the key length for validity.
369  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
370  *		 single block of data, which must be @cra_blocksize big. This
371  *		 always operates on a full @cra_blocksize and it is not possible
372  *		 to encrypt a block of smaller size. The supplied buffers must
373  *		 therefore also be at least of @cra_blocksize size. Both the
374  *		 input and output buffers are always aligned to @cra_alignmask.
375  *		 In case either of the input or output buffer supplied by user
376  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
377  *		 API will re-align the buffers. The re-alignment means that a
378  *		 new buffer will be allocated, the data will be copied into the
379  *		 new buffer, then the processing will happen on the new buffer,
380  *		 then the data will be copied back into the original buffer and
381  *		 finally the new buffer will be freed. In case a software
382  *		 fallback was put in place in the @cra_init call, this function
383  *		 might need to use the fallback if the algorithm doesn't support
384  *		 all of the key sizes. In case the key was stored in
385  *		 transformation context, the key might need to be re-programmed
386  *		 into the hardware in this function. This function shall not
387  *		 modify the transformation context, as this function may be
388  *		 called in parallel with the same transformation object.
389  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
390  *		 @cia_encrypt, and the conditions are exactly the same.
391  *
392  * All fields are mandatory and must be filled.
393  */
394 struct cipher_alg {
395 	unsigned int cia_min_keysize;
396 	unsigned int cia_max_keysize;
397 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
398 	                  unsigned int keylen);
399 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
400 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
401 };
402 
403 struct compress_alg {
404 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
405 			    unsigned int slen, u8 *dst, unsigned int *dlen);
406 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
407 			      unsigned int slen, u8 *dst, unsigned int *dlen);
408 };
409 
410 
411 #define cra_ablkcipher	cra_u.ablkcipher
412 #define cra_aead	cra_u.aead
413 #define cra_blkcipher	cra_u.blkcipher
414 #define cra_cipher	cra_u.cipher
415 #define cra_compress	cra_u.compress
416 
417 /**
418  * struct crypto_alg - definition of a cryptograpic cipher algorithm
419  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
420  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
421  *	       used for fine-tuning the description of the transformation
422  *	       algorithm.
423  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
424  *		   of the smallest possible unit which can be transformed with
425  *		   this algorithm. The users must respect this value.
426  *		   In case of HASH transformation, it is possible for a smaller
427  *		   block than @cra_blocksize to be passed to the crypto API for
428  *		   transformation, in case of any other transformation type, an
429  * 		   error will be returned upon any attempt to transform smaller
430  *		   than @cra_blocksize chunks.
431  * @cra_ctxsize: Size of the operational context of the transformation. This
432  *		 value informs the kernel crypto API about the memory size
433  *		 needed to be allocated for the transformation context.
434  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
435  *		   buffer containing the input data for the algorithm must be
436  *		   aligned to this alignment mask. The data buffer for the
437  *		   output data must be aligned to this alignment mask. Note that
438  *		   the Crypto API will do the re-alignment in software, but
439  *		   only under special conditions and there is a performance hit.
440  *		   The re-alignment happens at these occasions for different
441  *		   @cra_u types: cipher -- For both input data and output data
442  *		   buffer; ahash -- For output hash destination buf; shash --
443  *		   For output hash destination buf.
444  *		   This is needed on hardware which is flawed by design and
445  *		   cannot pick data from arbitrary addresses.
446  * @cra_priority: Priority of this transformation implementation. In case
447  *		  multiple transformations with same @cra_name are available to
448  *		  the Crypto API, the kernel will use the one with highest
449  *		  @cra_priority.
450  * @cra_name: Generic name (usable by multiple implementations) of the
451  *	      transformation algorithm. This is the name of the transformation
452  *	      itself. This field is used by the kernel when looking up the
453  *	      providers of particular transformation.
454  * @cra_driver_name: Unique name of the transformation provider. This is the
455  *		     name of the provider of the transformation. This can be any
456  *		     arbitrary value, but in the usual case, this contains the
457  *		     name of the chip or provider and the name of the
458  *		     transformation algorithm.
459  * @cra_type: Type of the cryptographic transformation. This is a pointer to
460  *	      struct crypto_type, which implements callbacks common for all
461  *	      transformation types. There are multiple options:
462  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
463  *	      &crypto_ahash_type, &crypto_aead_type, &crypto_rng_type.
464  *	      This field might be empty. In that case, there are no common
465  *	      callbacks. This is the case for: cipher, compress, shash.
466  * @cra_u: Callbacks implementing the transformation. This is a union of
467  *	   multiple structures. Depending on the type of transformation selected
468  *	   by @cra_type and @cra_flags above, the associated structure must be
469  *	   filled with callbacks. This field might be empty. This is the case
470  *	   for ahash, shash.
471  * @cra_init: Initialize the cryptographic transformation object. This function
472  *	      is used to initialize the cryptographic transformation object.
473  *	      This function is called only once at the instantiation time, right
474  *	      after the transformation context was allocated. In case the
475  *	      cryptographic hardware has some special requirements which need to
476  *	      be handled by software, this function shall check for the precise
477  *	      requirement of the transformation and put any software fallbacks
478  *	      in place.
479  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
480  *	      counterpart to @cra_init, used to remove various changes set in
481  *	      @cra_init.
482  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
483  * @cra_list: internally used
484  * @cra_users: internally used
485  * @cra_refcnt: internally used
486  * @cra_destroy: internally used
487  *
488  * The struct crypto_alg describes a generic Crypto API algorithm and is common
489  * for all of the transformations. Any variable not documented here shall not
490  * be used by a cipher implementation as it is internal to the Crypto API.
491  */
492 struct crypto_alg {
493 	struct list_head cra_list;
494 	struct list_head cra_users;
495 
496 	u32 cra_flags;
497 	unsigned int cra_blocksize;
498 	unsigned int cra_ctxsize;
499 	unsigned int cra_alignmask;
500 
501 	int cra_priority;
502 	atomic_t cra_refcnt;
503 
504 	char cra_name[CRYPTO_MAX_ALG_NAME];
505 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
506 
507 	const struct crypto_type *cra_type;
508 
509 	union {
510 		struct ablkcipher_alg ablkcipher;
511 		struct old_aead_alg aead;
512 		struct blkcipher_alg blkcipher;
513 		struct cipher_alg cipher;
514 		struct compress_alg compress;
515 	} cra_u;
516 
517 	int (*cra_init)(struct crypto_tfm *tfm);
518 	void (*cra_exit)(struct crypto_tfm *tfm);
519 	void (*cra_destroy)(struct crypto_alg *alg);
520 
521 	struct module *cra_module;
522 } CRYPTO_MINALIGN_ATTR;
523 
524 /*
525  * Algorithm registration interface.
526  */
527 int crypto_register_alg(struct crypto_alg *alg);
528 int crypto_unregister_alg(struct crypto_alg *alg);
529 int crypto_register_algs(struct crypto_alg *algs, int count);
530 int crypto_unregister_algs(struct crypto_alg *algs, int count);
531 
532 /*
533  * Algorithm query interface.
534  */
535 int crypto_has_alg(const char *name, u32 type, u32 mask);
536 
537 /*
538  * Transforms: user-instantiated objects which encapsulate algorithms
539  * and core processing logic.  Managed via crypto_alloc_*() and
540  * crypto_free_*(), as well as the various helpers below.
541  */
542 
543 struct ablkcipher_tfm {
544 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
545 	              unsigned int keylen);
546 	int (*encrypt)(struct ablkcipher_request *req);
547 	int (*decrypt)(struct ablkcipher_request *req);
548 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
549 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
550 
551 	struct crypto_ablkcipher *base;
552 
553 	unsigned int ivsize;
554 	unsigned int reqsize;
555 };
556 
557 struct blkcipher_tfm {
558 	void *iv;
559 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
560 		      unsigned int keylen);
561 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
562 		       struct scatterlist *src, unsigned int nbytes);
563 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
564 		       struct scatterlist *src, unsigned int nbytes);
565 };
566 
567 struct cipher_tfm {
568 	int (*cit_setkey)(struct crypto_tfm *tfm,
569 	                  const u8 *key, unsigned int keylen);
570 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
571 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
572 };
573 
574 struct hash_tfm {
575 	int (*init)(struct hash_desc *desc);
576 	int (*update)(struct hash_desc *desc,
577 		      struct scatterlist *sg, unsigned int nsg);
578 	int (*final)(struct hash_desc *desc, u8 *out);
579 	int (*digest)(struct hash_desc *desc, struct scatterlist *sg,
580 		      unsigned int nsg, u8 *out);
581 	int (*setkey)(struct crypto_hash *tfm, const u8 *key,
582 		      unsigned int keylen);
583 	unsigned int digestsize;
584 };
585 
586 struct compress_tfm {
587 	int (*cot_compress)(struct crypto_tfm *tfm,
588 	                    const u8 *src, unsigned int slen,
589 	                    u8 *dst, unsigned int *dlen);
590 	int (*cot_decompress)(struct crypto_tfm *tfm,
591 	                      const u8 *src, unsigned int slen,
592 	                      u8 *dst, unsigned int *dlen);
593 };
594 
595 #define crt_ablkcipher	crt_u.ablkcipher
596 #define crt_blkcipher	crt_u.blkcipher
597 #define crt_cipher	crt_u.cipher
598 #define crt_hash	crt_u.hash
599 #define crt_compress	crt_u.compress
600 
601 struct crypto_tfm {
602 
603 	u32 crt_flags;
604 
605 	union {
606 		struct ablkcipher_tfm ablkcipher;
607 		struct blkcipher_tfm blkcipher;
608 		struct cipher_tfm cipher;
609 		struct hash_tfm hash;
610 		struct compress_tfm compress;
611 	} crt_u;
612 
613 	void (*exit)(struct crypto_tfm *tfm);
614 
615 	struct crypto_alg *__crt_alg;
616 
617 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
618 };
619 
620 struct crypto_ablkcipher {
621 	struct crypto_tfm base;
622 };
623 
624 struct crypto_blkcipher {
625 	struct crypto_tfm base;
626 };
627 
628 struct crypto_cipher {
629 	struct crypto_tfm base;
630 };
631 
632 struct crypto_comp {
633 	struct crypto_tfm base;
634 };
635 
636 struct crypto_hash {
637 	struct crypto_tfm base;
638 };
639 
640 enum {
641 	CRYPTOA_UNSPEC,
642 	CRYPTOA_ALG,
643 	CRYPTOA_TYPE,
644 	CRYPTOA_U32,
645 	__CRYPTOA_MAX,
646 };
647 
648 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
649 
650 /* Maximum number of (rtattr) parameters for each template. */
651 #define CRYPTO_MAX_ATTRS 32
652 
653 struct crypto_attr_alg {
654 	char name[CRYPTO_MAX_ALG_NAME];
655 };
656 
657 struct crypto_attr_type {
658 	u32 type;
659 	u32 mask;
660 };
661 
662 struct crypto_attr_u32 {
663 	u32 num;
664 };
665 
666 /*
667  * Transform user interface.
668  */
669 
670 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
671 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
672 
673 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
674 {
675 	return crypto_destroy_tfm(tfm, tfm);
676 }
677 
678 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
679 
680 /*
681  * Transform helpers which query the underlying algorithm.
682  */
683 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
684 {
685 	return tfm->__crt_alg->cra_name;
686 }
687 
688 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
689 {
690 	return tfm->__crt_alg->cra_driver_name;
691 }
692 
693 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
694 {
695 	return tfm->__crt_alg->cra_priority;
696 }
697 
698 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
699 {
700 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
701 }
702 
703 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
704 {
705 	return tfm->__crt_alg->cra_blocksize;
706 }
707 
708 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
709 {
710 	return tfm->__crt_alg->cra_alignmask;
711 }
712 
713 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
714 {
715 	return tfm->crt_flags;
716 }
717 
718 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
719 {
720 	tfm->crt_flags |= flags;
721 }
722 
723 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
724 {
725 	tfm->crt_flags &= ~flags;
726 }
727 
728 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
729 {
730 	return tfm->__crt_ctx;
731 }
732 
733 static inline unsigned int crypto_tfm_ctx_alignment(void)
734 {
735 	struct crypto_tfm *tfm;
736 	return __alignof__(tfm->__crt_ctx);
737 }
738 
739 /*
740  * API wrappers.
741  */
742 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
743 	struct crypto_tfm *tfm)
744 {
745 	return (struct crypto_ablkcipher *)tfm;
746 }
747 
748 static inline u32 crypto_skcipher_type(u32 type)
749 {
750 	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
751 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
752 	return type;
753 }
754 
755 static inline u32 crypto_skcipher_mask(u32 mask)
756 {
757 	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
758 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
759 	return mask;
760 }
761 
762 /**
763  * DOC: Asynchronous Block Cipher API
764  *
765  * Asynchronous block cipher API is used with the ciphers of type
766  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
767  *
768  * Asynchronous cipher operations imply that the function invocation for a
769  * cipher request returns immediately before the completion of the operation.
770  * The cipher request is scheduled as a separate kernel thread and therefore
771  * load-balanced on the different CPUs via the process scheduler. To allow
772  * the kernel crypto API to inform the caller about the completion of a cipher
773  * request, the caller must provide a callback function. That function is
774  * invoked with the cipher handle when the request completes.
775  *
776  * To support the asynchronous operation, additional information than just the
777  * cipher handle must be supplied to the kernel crypto API. That additional
778  * information is given by filling in the ablkcipher_request data structure.
779  *
780  * For the asynchronous block cipher API, the state is maintained with the tfm
781  * cipher handle. A single tfm can be used across multiple calls and in
782  * parallel. For asynchronous block cipher calls, context data supplied and
783  * only used by the caller can be referenced the request data structure in
784  * addition to the IV used for the cipher request. The maintenance of such
785  * state information would be important for a crypto driver implementer to
786  * have, because when calling the callback function upon completion of the
787  * cipher operation, that callback function may need some information about
788  * which operation just finished if it invoked multiple in parallel. This
789  * state information is unused by the kernel crypto API.
790  */
791 
792 /**
793  * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
794  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
795  *	      ablkcipher cipher
796  * @type: specifies the type of the cipher
797  * @mask: specifies the mask for the cipher
798  *
799  * Allocate a cipher handle for an ablkcipher. The returned struct
800  * crypto_ablkcipher is the cipher handle that is required for any subsequent
801  * API invocation for that ablkcipher.
802  *
803  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
804  *	   of an error, PTR_ERR() returns the error code.
805  */
806 struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
807 						  u32 type, u32 mask);
808 
809 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
810 	struct crypto_ablkcipher *tfm)
811 {
812 	return &tfm->base;
813 }
814 
815 /**
816  * crypto_free_ablkcipher() - zeroize and free cipher handle
817  * @tfm: cipher handle to be freed
818  */
819 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
820 {
821 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
822 }
823 
824 /**
825  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
826  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
827  *	      ablkcipher
828  * @type: specifies the type of the cipher
829  * @mask: specifies the mask for the cipher
830  *
831  * Return: true when the ablkcipher is known to the kernel crypto API; false
832  *	   otherwise
833  */
834 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
835 					u32 mask)
836 {
837 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
838 			      crypto_skcipher_mask(mask));
839 }
840 
841 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
842 	struct crypto_ablkcipher *tfm)
843 {
844 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
845 }
846 
847 /**
848  * crypto_ablkcipher_ivsize() - obtain IV size
849  * @tfm: cipher handle
850  *
851  * The size of the IV for the ablkcipher referenced by the cipher handle is
852  * returned. This IV size may be zero if the cipher does not need an IV.
853  *
854  * Return: IV size in bytes
855  */
856 static inline unsigned int crypto_ablkcipher_ivsize(
857 	struct crypto_ablkcipher *tfm)
858 {
859 	return crypto_ablkcipher_crt(tfm)->ivsize;
860 }
861 
862 /**
863  * crypto_ablkcipher_blocksize() - obtain block size of cipher
864  * @tfm: cipher handle
865  *
866  * The block size for the ablkcipher referenced with the cipher handle is
867  * returned. The caller may use that information to allocate appropriate
868  * memory for the data returned by the encryption or decryption operation
869  *
870  * Return: block size of cipher
871  */
872 static inline unsigned int crypto_ablkcipher_blocksize(
873 	struct crypto_ablkcipher *tfm)
874 {
875 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
876 }
877 
878 static inline unsigned int crypto_ablkcipher_alignmask(
879 	struct crypto_ablkcipher *tfm)
880 {
881 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
882 }
883 
884 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
885 {
886 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
887 }
888 
889 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
890 					       u32 flags)
891 {
892 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
893 }
894 
895 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
896 						 u32 flags)
897 {
898 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
899 }
900 
901 /**
902  * crypto_ablkcipher_setkey() - set key for cipher
903  * @tfm: cipher handle
904  * @key: buffer holding the key
905  * @keylen: length of the key in bytes
906  *
907  * The caller provided key is set for the ablkcipher referenced by the cipher
908  * handle.
909  *
910  * Note, the key length determines the cipher type. Many block ciphers implement
911  * different cipher modes depending on the key size, such as AES-128 vs AES-192
912  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
913  * is performed.
914  *
915  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
916  */
917 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
918 					   const u8 *key, unsigned int keylen)
919 {
920 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
921 
922 	return crt->setkey(crt->base, key, keylen);
923 }
924 
925 /**
926  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
927  * @req: ablkcipher_request out of which the cipher handle is to be obtained
928  *
929  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
930  * data structure.
931  *
932  * Return: crypto_ablkcipher handle
933  */
934 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
935 	struct ablkcipher_request *req)
936 {
937 	return __crypto_ablkcipher_cast(req->base.tfm);
938 }
939 
940 /**
941  * crypto_ablkcipher_encrypt() - encrypt plaintext
942  * @req: reference to the ablkcipher_request handle that holds all information
943  *	 needed to perform the cipher operation
944  *
945  * Encrypt plaintext data using the ablkcipher_request handle. That data
946  * structure and how it is filled with data is discussed with the
947  * ablkcipher_request_* functions.
948  *
949  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
950  */
951 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
952 {
953 	struct ablkcipher_tfm *crt =
954 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
955 	return crt->encrypt(req);
956 }
957 
958 /**
959  * crypto_ablkcipher_decrypt() - decrypt ciphertext
960  * @req: reference to the ablkcipher_request handle that holds all information
961  *	 needed to perform the cipher operation
962  *
963  * Decrypt ciphertext data using the ablkcipher_request handle. That data
964  * structure and how it is filled with data is discussed with the
965  * ablkcipher_request_* functions.
966  *
967  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
968  */
969 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
970 {
971 	struct ablkcipher_tfm *crt =
972 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
973 	return crt->decrypt(req);
974 }
975 
976 /**
977  * DOC: Asynchronous Cipher Request Handle
978  *
979  * The ablkcipher_request data structure contains all pointers to data
980  * required for the asynchronous cipher operation. This includes the cipher
981  * handle (which can be used by multiple ablkcipher_request instances), pointer
982  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
983  * as a handle to the ablkcipher_request_* API calls in a similar way as
984  * ablkcipher handle to the crypto_ablkcipher_* API calls.
985  */
986 
987 /**
988  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
989  * @tfm: cipher handle
990  *
991  * Return: number of bytes
992  */
993 static inline unsigned int crypto_ablkcipher_reqsize(
994 	struct crypto_ablkcipher *tfm)
995 {
996 	return crypto_ablkcipher_crt(tfm)->reqsize;
997 }
998 
999 /**
1000  * ablkcipher_request_set_tfm() - update cipher handle reference in request
1001  * @req: request handle to be modified
1002  * @tfm: cipher handle that shall be added to the request handle
1003  *
1004  * Allow the caller to replace the existing ablkcipher handle in the request
1005  * data structure with a different one.
1006  */
1007 static inline void ablkcipher_request_set_tfm(
1008 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1009 {
1010 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1011 }
1012 
1013 static inline struct ablkcipher_request *ablkcipher_request_cast(
1014 	struct crypto_async_request *req)
1015 {
1016 	return container_of(req, struct ablkcipher_request, base);
1017 }
1018 
1019 /**
1020  * ablkcipher_request_alloc() - allocate request data structure
1021  * @tfm: cipher handle to be registered with the request
1022  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1023  *
1024  * Allocate the request data structure that must be used with the ablkcipher
1025  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1026  * handle is registered in the request data structure.
1027  *
1028  * Return: allocated request handle in case of success; IS_ERR() is true in case
1029  *	   of an error, PTR_ERR() returns the error code.
1030  */
1031 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1032 	struct crypto_ablkcipher *tfm, gfp_t gfp)
1033 {
1034 	struct ablkcipher_request *req;
1035 
1036 	req = kmalloc(sizeof(struct ablkcipher_request) +
1037 		      crypto_ablkcipher_reqsize(tfm), gfp);
1038 
1039 	if (likely(req))
1040 		ablkcipher_request_set_tfm(req, tfm);
1041 
1042 	return req;
1043 }
1044 
1045 /**
1046  * ablkcipher_request_free() - zeroize and free request data structure
1047  * @req: request data structure cipher handle to be freed
1048  */
1049 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1050 {
1051 	kzfree(req);
1052 }
1053 
1054 /**
1055  * ablkcipher_request_set_callback() - set asynchronous callback function
1056  * @req: request handle
1057  * @flags: specify zero or an ORing of the flags
1058  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1059  *	   increase the wait queue beyond the initial maximum size;
1060  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1061  * @compl: callback function pointer to be registered with the request handle
1062  * @data: The data pointer refers to memory that is not used by the kernel
1063  *	  crypto API, but provided to the callback function for it to use. Here,
1064  *	  the caller can provide a reference to memory the callback function can
1065  *	  operate on. As the callback function is invoked asynchronously to the
1066  *	  related functionality, it may need to access data structures of the
1067  *	  related functionality which can be referenced using this pointer. The
1068  *	  callback function can access the memory via the "data" field in the
1069  *	  crypto_async_request data structure provided to the callback function.
1070  *
1071  * This function allows setting the callback function that is triggered once the
1072  * cipher operation completes.
1073  *
1074  * The callback function is registered with the ablkcipher_request handle and
1075  * must comply with the following template
1076  *
1077  *	void callback_function(struct crypto_async_request *req, int error)
1078  */
1079 static inline void ablkcipher_request_set_callback(
1080 	struct ablkcipher_request *req,
1081 	u32 flags, crypto_completion_t compl, void *data)
1082 {
1083 	req->base.complete = compl;
1084 	req->base.data = data;
1085 	req->base.flags = flags;
1086 }
1087 
1088 /**
1089  * ablkcipher_request_set_crypt() - set data buffers
1090  * @req: request handle
1091  * @src: source scatter / gather list
1092  * @dst: destination scatter / gather list
1093  * @nbytes: number of bytes to process from @src
1094  * @iv: IV for the cipher operation which must comply with the IV size defined
1095  *      by crypto_ablkcipher_ivsize
1096  *
1097  * This function allows setting of the source data and destination data
1098  * scatter / gather lists.
1099  *
1100  * For encryption, the source is treated as the plaintext and the
1101  * destination is the ciphertext. For a decryption operation, the use is
1102  * reversed - the source is the ciphertext and the destination is the plaintext.
1103  */
1104 static inline void ablkcipher_request_set_crypt(
1105 	struct ablkcipher_request *req,
1106 	struct scatterlist *src, struct scatterlist *dst,
1107 	unsigned int nbytes, void *iv)
1108 {
1109 	req->src = src;
1110 	req->dst = dst;
1111 	req->nbytes = nbytes;
1112 	req->info = iv;
1113 }
1114 
1115 /**
1116  * DOC: Synchronous Block Cipher API
1117  *
1118  * The synchronous block cipher API is used with the ciphers of type
1119  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1120  *
1121  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1122  * used in multiple calls and in parallel, this info should not be changeable
1123  * (unless a lock is used). This applies, for example, to the symmetric key.
1124  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1125  * structure for synchronous blkcipher api. So, its the only state info that can
1126  * be kept for synchronous calls without using a big lock across a tfm.
1127  *
1128  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1129  * consisting of a template (a block chaining mode) and a single block cipher
1130  * primitive (e.g. AES).
1131  *
1132  * The plaintext data buffer and the ciphertext data buffer are pointed to
1133  * by using scatter/gather lists. The cipher operation is performed
1134  * on all segments of the provided scatter/gather lists.
1135  *
1136  * The kernel crypto API supports a cipher operation "in-place" which means that
1137  * the caller may provide the same scatter/gather list for the plaintext and
1138  * cipher text. After the completion of the cipher operation, the plaintext
1139  * data is replaced with the ciphertext data in case of an encryption and vice
1140  * versa for a decryption. The caller must ensure that the scatter/gather lists
1141  * for the output data point to sufficiently large buffers, i.e. multiples of
1142  * the block size of the cipher.
1143  */
1144 
1145 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1146 	struct crypto_tfm *tfm)
1147 {
1148 	return (struct crypto_blkcipher *)tfm;
1149 }
1150 
1151 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1152 	struct crypto_tfm *tfm)
1153 {
1154 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1155 	return __crypto_blkcipher_cast(tfm);
1156 }
1157 
1158 /**
1159  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1160  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1161  *	      blkcipher cipher
1162  * @type: specifies the type of the cipher
1163  * @mask: specifies the mask for the cipher
1164  *
1165  * Allocate a cipher handle for a block cipher. The returned struct
1166  * crypto_blkcipher is the cipher handle that is required for any subsequent
1167  * API invocation for that block cipher.
1168  *
1169  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1170  *	   of an error, PTR_ERR() returns the error code.
1171  */
1172 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1173 	const char *alg_name, u32 type, u32 mask)
1174 {
1175 	type &= ~CRYPTO_ALG_TYPE_MASK;
1176 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1177 	mask |= CRYPTO_ALG_TYPE_MASK;
1178 
1179 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1180 }
1181 
1182 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1183 	struct crypto_blkcipher *tfm)
1184 {
1185 	return &tfm->base;
1186 }
1187 
1188 /**
1189  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1190  * @tfm: cipher handle to be freed
1191  */
1192 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1193 {
1194 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1195 }
1196 
1197 /**
1198  * crypto_has_blkcipher() - Search for the availability of a block cipher
1199  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1200  *	      block cipher
1201  * @type: specifies the type of the cipher
1202  * @mask: specifies the mask for the cipher
1203  *
1204  * Return: true when the block cipher is known to the kernel crypto API; false
1205  *	   otherwise
1206  */
1207 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1208 {
1209 	type &= ~CRYPTO_ALG_TYPE_MASK;
1210 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1211 	mask |= CRYPTO_ALG_TYPE_MASK;
1212 
1213 	return crypto_has_alg(alg_name, type, mask);
1214 }
1215 
1216 /**
1217  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1218  * @tfm: cipher handle
1219  *
1220  * Return: The character string holding the name of the cipher
1221  */
1222 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1223 {
1224 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1225 }
1226 
1227 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1228 	struct crypto_blkcipher *tfm)
1229 {
1230 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1231 }
1232 
1233 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1234 	struct crypto_blkcipher *tfm)
1235 {
1236 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1237 }
1238 
1239 /**
1240  * crypto_blkcipher_ivsize() - obtain IV size
1241  * @tfm: cipher handle
1242  *
1243  * The size of the IV for the block cipher referenced by the cipher handle is
1244  * returned. This IV size may be zero if the cipher does not need an IV.
1245  *
1246  * Return: IV size in bytes
1247  */
1248 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1249 {
1250 	return crypto_blkcipher_alg(tfm)->ivsize;
1251 }
1252 
1253 /**
1254  * crypto_blkcipher_blocksize() - obtain block size of cipher
1255  * @tfm: cipher handle
1256  *
1257  * The block size for the block cipher referenced with the cipher handle is
1258  * returned. The caller may use that information to allocate appropriate
1259  * memory for the data returned by the encryption or decryption operation.
1260  *
1261  * Return: block size of cipher
1262  */
1263 static inline unsigned int crypto_blkcipher_blocksize(
1264 	struct crypto_blkcipher *tfm)
1265 {
1266 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1267 }
1268 
1269 static inline unsigned int crypto_blkcipher_alignmask(
1270 	struct crypto_blkcipher *tfm)
1271 {
1272 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1273 }
1274 
1275 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1276 {
1277 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1278 }
1279 
1280 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1281 					      u32 flags)
1282 {
1283 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1284 }
1285 
1286 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1287 						u32 flags)
1288 {
1289 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1290 }
1291 
1292 /**
1293  * crypto_blkcipher_setkey() - set key for cipher
1294  * @tfm: cipher handle
1295  * @key: buffer holding the key
1296  * @keylen: length of the key in bytes
1297  *
1298  * The caller provided key is set for the block cipher referenced by the cipher
1299  * handle.
1300  *
1301  * Note, the key length determines the cipher type. Many block ciphers implement
1302  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1303  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1304  * is performed.
1305  *
1306  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1307  */
1308 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1309 					  const u8 *key, unsigned int keylen)
1310 {
1311 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1312 						 key, keylen);
1313 }
1314 
1315 /**
1316  * crypto_blkcipher_encrypt() - encrypt plaintext
1317  * @desc: reference to the block cipher handle with meta data
1318  * @dst: scatter/gather list that is filled by the cipher operation with the
1319  *	ciphertext
1320  * @src: scatter/gather list that holds the plaintext
1321  * @nbytes: number of bytes of the plaintext to encrypt.
1322  *
1323  * Encrypt plaintext data using the IV set by the caller with a preceding
1324  * call of crypto_blkcipher_set_iv.
1325  *
1326  * The blkcipher_desc data structure must be filled by the caller and can
1327  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1328  * with the block cipher handle; desc.flags is filled with either
1329  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1330  *
1331  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1332  */
1333 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1334 					   struct scatterlist *dst,
1335 					   struct scatterlist *src,
1336 					   unsigned int nbytes)
1337 {
1338 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1339 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1340 }
1341 
1342 /**
1343  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1344  * @desc: reference to the block cipher handle with meta data
1345  * @dst: scatter/gather list that is filled by the cipher operation with the
1346  *	ciphertext
1347  * @src: scatter/gather list that holds the plaintext
1348  * @nbytes: number of bytes of the plaintext to encrypt.
1349  *
1350  * Encrypt plaintext data with the use of an IV that is solely used for this
1351  * cipher operation. Any previously set IV is not used.
1352  *
1353  * The blkcipher_desc data structure must be filled by the caller and can
1354  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1355  * with the block cipher handle; desc.info is filled with the IV to be used for
1356  * the current operation; desc.flags is filled with either
1357  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1358  *
1359  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1360  */
1361 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1362 					      struct scatterlist *dst,
1363 					      struct scatterlist *src,
1364 					      unsigned int nbytes)
1365 {
1366 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1367 }
1368 
1369 /**
1370  * crypto_blkcipher_decrypt() - decrypt ciphertext
1371  * @desc: reference to the block cipher handle with meta data
1372  * @dst: scatter/gather list that is filled by the cipher operation with the
1373  *	plaintext
1374  * @src: scatter/gather list that holds the ciphertext
1375  * @nbytes: number of bytes of the ciphertext to decrypt.
1376  *
1377  * Decrypt ciphertext data using the IV set by the caller with a preceding
1378  * call of crypto_blkcipher_set_iv.
1379  *
1380  * The blkcipher_desc data structure must be filled by the caller as documented
1381  * for the crypto_blkcipher_encrypt call above.
1382  *
1383  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1384  *
1385  */
1386 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1387 					   struct scatterlist *dst,
1388 					   struct scatterlist *src,
1389 					   unsigned int nbytes)
1390 {
1391 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1392 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1393 }
1394 
1395 /**
1396  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1397  * @desc: reference to the block cipher handle with meta data
1398  * @dst: scatter/gather list that is filled by the cipher operation with the
1399  *	plaintext
1400  * @src: scatter/gather list that holds the ciphertext
1401  * @nbytes: number of bytes of the ciphertext to decrypt.
1402  *
1403  * Decrypt ciphertext data with the use of an IV that is solely used for this
1404  * cipher operation. Any previously set IV is not used.
1405  *
1406  * The blkcipher_desc data structure must be filled by the caller as documented
1407  * for the crypto_blkcipher_encrypt_iv call above.
1408  *
1409  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1410  */
1411 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1412 					      struct scatterlist *dst,
1413 					      struct scatterlist *src,
1414 					      unsigned int nbytes)
1415 {
1416 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1417 }
1418 
1419 /**
1420  * crypto_blkcipher_set_iv() - set IV for cipher
1421  * @tfm: cipher handle
1422  * @src: buffer holding the IV
1423  * @len: length of the IV in bytes
1424  *
1425  * The caller provided IV is set for the block cipher referenced by the cipher
1426  * handle.
1427  */
1428 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1429 					   const u8 *src, unsigned int len)
1430 {
1431 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1432 }
1433 
1434 /**
1435  * crypto_blkcipher_get_iv() - obtain IV from cipher
1436  * @tfm: cipher handle
1437  * @dst: buffer filled with the IV
1438  * @len: length of the buffer dst
1439  *
1440  * The caller can obtain the IV set for the block cipher referenced by the
1441  * cipher handle and store it into the user-provided buffer. If the buffer
1442  * has an insufficient space, the IV is truncated to fit the buffer.
1443  */
1444 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1445 					   u8 *dst, unsigned int len)
1446 {
1447 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1448 }
1449 
1450 /**
1451  * DOC: Single Block Cipher API
1452  *
1453  * The single block cipher API is used with the ciphers of type
1454  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1455  *
1456  * Using the single block cipher API calls, operations with the basic cipher
1457  * primitive can be implemented. These cipher primitives exclude any block
1458  * chaining operations including IV handling.
1459  *
1460  * The purpose of this single block cipher API is to support the implementation
1461  * of templates or other concepts that only need to perform the cipher operation
1462  * on one block at a time. Templates invoke the underlying cipher primitive
1463  * block-wise and process either the input or the output data of these cipher
1464  * operations.
1465  */
1466 
1467 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1468 {
1469 	return (struct crypto_cipher *)tfm;
1470 }
1471 
1472 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1473 {
1474 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1475 	return __crypto_cipher_cast(tfm);
1476 }
1477 
1478 /**
1479  * crypto_alloc_cipher() - allocate single block cipher handle
1480  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1481  *	     single block cipher
1482  * @type: specifies the type of the cipher
1483  * @mask: specifies the mask for the cipher
1484  *
1485  * Allocate a cipher handle for a single block cipher. The returned struct
1486  * crypto_cipher is the cipher handle that is required for any subsequent API
1487  * invocation for that single block cipher.
1488  *
1489  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1490  *	   of an error, PTR_ERR() returns the error code.
1491  */
1492 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1493 							u32 type, u32 mask)
1494 {
1495 	type &= ~CRYPTO_ALG_TYPE_MASK;
1496 	type |= CRYPTO_ALG_TYPE_CIPHER;
1497 	mask |= CRYPTO_ALG_TYPE_MASK;
1498 
1499 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1500 }
1501 
1502 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1503 {
1504 	return &tfm->base;
1505 }
1506 
1507 /**
1508  * crypto_free_cipher() - zeroize and free the single block cipher handle
1509  * @tfm: cipher handle to be freed
1510  */
1511 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1512 {
1513 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1514 }
1515 
1516 /**
1517  * crypto_has_cipher() - Search for the availability of a single block cipher
1518  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1519  *	     single block cipher
1520  * @type: specifies the type of the cipher
1521  * @mask: specifies the mask for the cipher
1522  *
1523  * Return: true when the single block cipher is known to the kernel crypto API;
1524  *	   false otherwise
1525  */
1526 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1527 {
1528 	type &= ~CRYPTO_ALG_TYPE_MASK;
1529 	type |= CRYPTO_ALG_TYPE_CIPHER;
1530 	mask |= CRYPTO_ALG_TYPE_MASK;
1531 
1532 	return crypto_has_alg(alg_name, type, mask);
1533 }
1534 
1535 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1536 {
1537 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1538 }
1539 
1540 /**
1541  * crypto_cipher_blocksize() - obtain block size for cipher
1542  * @tfm: cipher handle
1543  *
1544  * The block size for the single block cipher referenced with the cipher handle
1545  * tfm is returned. The caller may use that information to allocate appropriate
1546  * memory for the data returned by the encryption or decryption operation
1547  *
1548  * Return: block size of cipher
1549  */
1550 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1551 {
1552 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1553 }
1554 
1555 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1556 {
1557 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1558 }
1559 
1560 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1561 {
1562 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1563 }
1564 
1565 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1566 					   u32 flags)
1567 {
1568 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1569 }
1570 
1571 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1572 					     u32 flags)
1573 {
1574 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1575 }
1576 
1577 /**
1578  * crypto_cipher_setkey() - set key for cipher
1579  * @tfm: cipher handle
1580  * @key: buffer holding the key
1581  * @keylen: length of the key in bytes
1582  *
1583  * The caller provided key is set for the single block cipher referenced by the
1584  * cipher handle.
1585  *
1586  * Note, the key length determines the cipher type. Many block ciphers implement
1587  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1588  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1589  * is performed.
1590  *
1591  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1592  */
1593 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1594                                        const u8 *key, unsigned int keylen)
1595 {
1596 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1597 						  key, keylen);
1598 }
1599 
1600 /**
1601  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1602  * @tfm: cipher handle
1603  * @dst: points to the buffer that will be filled with the ciphertext
1604  * @src: buffer holding the plaintext to be encrypted
1605  *
1606  * Invoke the encryption operation of one block. The caller must ensure that
1607  * the plaintext and ciphertext buffers are at least one block in size.
1608  */
1609 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1610 					     u8 *dst, const u8 *src)
1611 {
1612 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1613 						dst, src);
1614 }
1615 
1616 /**
1617  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1618  * @tfm: cipher handle
1619  * @dst: points to the buffer that will be filled with the plaintext
1620  * @src: buffer holding the ciphertext to be decrypted
1621  *
1622  * Invoke the decryption operation of one block. The caller must ensure that
1623  * the plaintext and ciphertext buffers are at least one block in size.
1624  */
1625 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1626 					     u8 *dst, const u8 *src)
1627 {
1628 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1629 						dst, src);
1630 }
1631 
1632 /**
1633  * DOC: Synchronous Message Digest API
1634  *
1635  * The synchronous message digest API is used with the ciphers of type
1636  * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto)
1637  */
1638 
1639 static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm)
1640 {
1641 	return (struct crypto_hash *)tfm;
1642 }
1643 
1644 static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm)
1645 {
1646 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_HASH) &
1647 	       CRYPTO_ALG_TYPE_HASH_MASK);
1648 	return __crypto_hash_cast(tfm);
1649 }
1650 
1651 /**
1652  * crypto_alloc_hash() - allocate synchronous message digest handle
1653  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1654  *	      message digest cipher
1655  * @type: specifies the type of the cipher
1656  * @mask: specifies the mask for the cipher
1657  *
1658  * Allocate a cipher handle for a message digest. The returned struct
1659  * crypto_hash is the cipher handle that is required for any subsequent
1660  * API invocation for that message digest.
1661  *
1662  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1663  * of an error, PTR_ERR() returns the error code.
1664  */
1665 static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name,
1666 						    u32 type, u32 mask)
1667 {
1668 	type &= ~CRYPTO_ALG_TYPE_MASK;
1669 	mask &= ~CRYPTO_ALG_TYPE_MASK;
1670 	type |= CRYPTO_ALG_TYPE_HASH;
1671 	mask |= CRYPTO_ALG_TYPE_HASH_MASK;
1672 
1673 	return __crypto_hash_cast(crypto_alloc_base(alg_name, type, mask));
1674 }
1675 
1676 static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm)
1677 {
1678 	return &tfm->base;
1679 }
1680 
1681 /**
1682  * crypto_free_hash() - zeroize and free message digest handle
1683  * @tfm: cipher handle to be freed
1684  */
1685 static inline void crypto_free_hash(struct crypto_hash *tfm)
1686 {
1687 	crypto_free_tfm(crypto_hash_tfm(tfm));
1688 }
1689 
1690 /**
1691  * crypto_has_hash() - Search for the availability of a message digest
1692  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1693  *	      message digest cipher
1694  * @type: specifies the type of the cipher
1695  * @mask: specifies the mask for the cipher
1696  *
1697  * Return: true when the message digest cipher is known to the kernel crypto
1698  *	   API; false otherwise
1699  */
1700 static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask)
1701 {
1702 	type &= ~CRYPTO_ALG_TYPE_MASK;
1703 	mask &= ~CRYPTO_ALG_TYPE_MASK;
1704 	type |= CRYPTO_ALG_TYPE_HASH;
1705 	mask |= CRYPTO_ALG_TYPE_HASH_MASK;
1706 
1707 	return crypto_has_alg(alg_name, type, mask);
1708 }
1709 
1710 static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm)
1711 {
1712 	return &crypto_hash_tfm(tfm)->crt_hash;
1713 }
1714 
1715 /**
1716  * crypto_hash_blocksize() - obtain block size for message digest
1717  * @tfm: cipher handle
1718  *
1719  * The block size for the message digest cipher referenced with the cipher
1720  * handle is returned.
1721  *
1722  * Return: block size of cipher
1723  */
1724 static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm)
1725 {
1726 	return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm));
1727 }
1728 
1729 static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm)
1730 {
1731 	return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm));
1732 }
1733 
1734 /**
1735  * crypto_hash_digestsize() - obtain message digest size
1736  * @tfm: cipher handle
1737  *
1738  * The size for the message digest created by the message digest cipher
1739  * referenced with the cipher handle is returned.
1740  *
1741  * Return: message digest size
1742  */
1743 static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm)
1744 {
1745 	return crypto_hash_crt(tfm)->digestsize;
1746 }
1747 
1748 static inline u32 crypto_hash_get_flags(struct crypto_hash *tfm)
1749 {
1750 	return crypto_tfm_get_flags(crypto_hash_tfm(tfm));
1751 }
1752 
1753 static inline void crypto_hash_set_flags(struct crypto_hash *tfm, u32 flags)
1754 {
1755 	crypto_tfm_set_flags(crypto_hash_tfm(tfm), flags);
1756 }
1757 
1758 static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags)
1759 {
1760 	crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags);
1761 }
1762 
1763 /**
1764  * crypto_hash_init() - (re)initialize message digest handle
1765  * @desc: cipher request handle that to be filled by caller --
1766  *	  desc.tfm is filled with the hash cipher handle;
1767  *	  desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1768  *
1769  * The call (re-)initializes the message digest referenced by the hash cipher
1770  * request handle. Any potentially existing state created by previous
1771  * operations is discarded.
1772  *
1773  * Return: 0 if the message digest initialization was successful; < 0 if an
1774  *	   error occurred
1775  */
1776 static inline int crypto_hash_init(struct hash_desc *desc)
1777 {
1778 	return crypto_hash_crt(desc->tfm)->init(desc);
1779 }
1780 
1781 /**
1782  * crypto_hash_update() - add data to message digest for processing
1783  * @desc: cipher request handle
1784  * @sg: scatter / gather list pointing to the data to be added to the message
1785  *      digest
1786  * @nbytes: number of bytes to be processed from @sg
1787  *
1788  * Updates the message digest state of the cipher handle pointed to by the
1789  * hash cipher request handle with the input data pointed to by the
1790  * scatter/gather list.
1791  *
1792  * Return: 0 if the message digest update was successful; < 0 if an error
1793  *	   occurred
1794  */
1795 static inline int crypto_hash_update(struct hash_desc *desc,
1796 				     struct scatterlist *sg,
1797 				     unsigned int nbytes)
1798 {
1799 	return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes);
1800 }
1801 
1802 /**
1803  * crypto_hash_final() - calculate message digest
1804  * @desc: cipher request handle
1805  * @out: message digest output buffer -- The caller must ensure that the out
1806  *	 buffer has a sufficient size (e.g. by using the crypto_hash_digestsize
1807  *	 function).
1808  *
1809  * Finalize the message digest operation and create the message digest
1810  * based on all data added to the cipher handle. The message digest is placed
1811  * into the output buffer.
1812  *
1813  * Return: 0 if the message digest creation was successful; < 0 if an error
1814  *	   occurred
1815  */
1816 static inline int crypto_hash_final(struct hash_desc *desc, u8 *out)
1817 {
1818 	return crypto_hash_crt(desc->tfm)->final(desc, out);
1819 }
1820 
1821 /**
1822  * crypto_hash_digest() - calculate message digest for a buffer
1823  * @desc: see crypto_hash_final()
1824  * @sg: see crypto_hash_update()
1825  * @nbytes:  see crypto_hash_update()
1826  * @out: see crypto_hash_final()
1827  *
1828  * This function is a "short-hand" for the function calls of crypto_hash_init,
1829  * crypto_hash_update and crypto_hash_final. The parameters have the same
1830  * meaning as discussed for those separate three functions.
1831  *
1832  * Return: 0 if the message digest creation was successful; < 0 if an error
1833  *	   occurred
1834  */
1835 static inline int crypto_hash_digest(struct hash_desc *desc,
1836 				     struct scatterlist *sg,
1837 				     unsigned int nbytes, u8 *out)
1838 {
1839 	return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out);
1840 }
1841 
1842 /**
1843  * crypto_hash_setkey() - set key for message digest
1844  * @hash: cipher handle
1845  * @key: buffer holding the key
1846  * @keylen: length of the key in bytes
1847  *
1848  * The caller provided key is set for the message digest cipher. The cipher
1849  * handle must point to a keyed hash in order for this function to succeed.
1850  *
1851  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1852  */
1853 static inline int crypto_hash_setkey(struct crypto_hash *hash,
1854 				     const u8 *key, unsigned int keylen)
1855 {
1856 	return crypto_hash_crt(hash)->setkey(hash, key, keylen);
1857 }
1858 
1859 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1860 {
1861 	return (struct crypto_comp *)tfm;
1862 }
1863 
1864 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1865 {
1866 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1867 	       CRYPTO_ALG_TYPE_MASK);
1868 	return __crypto_comp_cast(tfm);
1869 }
1870 
1871 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1872 						    u32 type, u32 mask)
1873 {
1874 	type &= ~CRYPTO_ALG_TYPE_MASK;
1875 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1876 	mask |= CRYPTO_ALG_TYPE_MASK;
1877 
1878 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1879 }
1880 
1881 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1882 {
1883 	return &tfm->base;
1884 }
1885 
1886 static inline void crypto_free_comp(struct crypto_comp *tfm)
1887 {
1888 	crypto_free_tfm(crypto_comp_tfm(tfm));
1889 }
1890 
1891 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1892 {
1893 	type &= ~CRYPTO_ALG_TYPE_MASK;
1894 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1895 	mask |= CRYPTO_ALG_TYPE_MASK;
1896 
1897 	return crypto_has_alg(alg_name, type, mask);
1898 }
1899 
1900 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1901 {
1902 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1903 }
1904 
1905 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1906 {
1907 	return &crypto_comp_tfm(tfm)->crt_compress;
1908 }
1909 
1910 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1911                                        const u8 *src, unsigned int slen,
1912                                        u8 *dst, unsigned int *dlen)
1913 {
1914 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1915 						  src, slen, dst, dlen);
1916 }
1917 
1918 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1919                                          const u8 *src, unsigned int slen,
1920                                          u8 *dst, unsigned int *dlen)
1921 {
1922 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1923 						    src, slen, dst, dlen);
1924 }
1925 
1926 #endif	/* _LINUX_CRYPTO_H */
1927 
1928