1 #ifndef _LINUX_CPUSET_H 2 #define _LINUX_CPUSET_H 3 /* 4 * cpuset interface 5 * 6 * Copyright (C) 2003 BULL SA 7 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 8 * 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/sched/topology.h> 13 #include <linux/sched/task.h> 14 #include <linux/cpumask.h> 15 #include <linux/nodemask.h> 16 #include <linux/mm.h> 17 #include <linux/jump_label.h> 18 19 #ifdef CONFIG_CPUSETS 20 21 /* 22 * Static branch rewrites can happen in an arbitrary order for a given 23 * key. In code paths where we need to loop with read_mems_allowed_begin() and 24 * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need 25 * to ensure that begin() always gets rewritten before retry() in the 26 * disabled -> enabled transition. If not, then if local irqs are disabled 27 * around the loop, we can deadlock since retry() would always be 28 * comparing the latest value of the mems_allowed seqcount against 0 as 29 * begin() still would see cpusets_enabled() as false. The enabled -> disabled 30 * transition should happen in reverse order for the same reasons (want to stop 31 * looking at real value of mems_allowed.sequence in retry() first). 32 */ 33 extern struct static_key_false cpusets_pre_enable_key; 34 extern struct static_key_false cpusets_enabled_key; 35 static inline bool cpusets_enabled(void) 36 { 37 return static_branch_unlikely(&cpusets_enabled_key); 38 } 39 40 static inline int nr_cpusets(void) 41 { 42 /* jump label reference count + the top-level cpuset */ 43 return static_key_count(&cpusets_enabled_key.key) + 1; 44 } 45 46 static inline void cpuset_inc(void) 47 { 48 static_branch_inc(&cpusets_pre_enable_key); 49 static_branch_inc(&cpusets_enabled_key); 50 } 51 52 static inline void cpuset_dec(void) 53 { 54 static_branch_dec(&cpusets_enabled_key); 55 static_branch_dec(&cpusets_pre_enable_key); 56 } 57 58 extern int cpuset_init(void); 59 extern void cpuset_init_smp(void); 60 extern void cpuset_update_active_cpus(void); 61 extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask); 62 extern void cpuset_cpus_allowed_fallback(struct task_struct *p); 63 extern nodemask_t cpuset_mems_allowed(struct task_struct *p); 64 #define cpuset_current_mems_allowed (current->mems_allowed) 65 void cpuset_init_current_mems_allowed(void); 66 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask); 67 68 extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask); 69 70 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) 71 { 72 if (cpusets_enabled()) 73 return __cpuset_node_allowed(node, gfp_mask); 74 return true; 75 } 76 77 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 78 { 79 return __cpuset_node_allowed(zone_to_nid(z), gfp_mask); 80 } 81 82 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 83 { 84 if (cpusets_enabled()) 85 return __cpuset_zone_allowed(z, gfp_mask); 86 return true; 87 } 88 89 extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 90 const struct task_struct *tsk2); 91 92 #define cpuset_memory_pressure_bump() \ 93 do { \ 94 if (cpuset_memory_pressure_enabled) \ 95 __cpuset_memory_pressure_bump(); \ 96 } while (0) 97 extern int cpuset_memory_pressure_enabled; 98 extern void __cpuset_memory_pressure_bump(void); 99 100 extern void cpuset_task_status_allowed(struct seq_file *m, 101 struct task_struct *task); 102 extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 103 struct pid *pid, struct task_struct *tsk); 104 105 extern int cpuset_mem_spread_node(void); 106 extern int cpuset_slab_spread_node(void); 107 108 static inline int cpuset_do_page_mem_spread(void) 109 { 110 return task_spread_page(current); 111 } 112 113 static inline int cpuset_do_slab_mem_spread(void) 114 { 115 return task_spread_slab(current); 116 } 117 118 extern int current_cpuset_is_being_rebound(void); 119 120 extern void rebuild_sched_domains(void); 121 122 extern void cpuset_print_current_mems_allowed(void); 123 124 /* 125 * read_mems_allowed_begin is required when making decisions involving 126 * mems_allowed such as during page allocation. mems_allowed can be updated in 127 * parallel and depending on the new value an operation can fail potentially 128 * causing process failure. A retry loop with read_mems_allowed_begin and 129 * read_mems_allowed_retry prevents these artificial failures. 130 */ 131 static inline unsigned int read_mems_allowed_begin(void) 132 { 133 if (!static_branch_unlikely(&cpusets_pre_enable_key)) 134 return 0; 135 136 return read_seqcount_begin(¤t->mems_allowed_seq); 137 } 138 139 /* 140 * If this returns true, the operation that took place after 141 * read_mems_allowed_begin may have failed artificially due to a concurrent 142 * update of mems_allowed. It is up to the caller to retry the operation if 143 * appropriate. 144 */ 145 static inline bool read_mems_allowed_retry(unsigned int seq) 146 { 147 if (!static_branch_unlikely(&cpusets_enabled_key)) 148 return false; 149 150 return read_seqcount_retry(¤t->mems_allowed_seq, seq); 151 } 152 153 static inline void set_mems_allowed(nodemask_t nodemask) 154 { 155 unsigned long flags; 156 157 task_lock(current); 158 local_irq_save(flags); 159 write_seqcount_begin(¤t->mems_allowed_seq); 160 current->mems_allowed = nodemask; 161 write_seqcount_end(¤t->mems_allowed_seq); 162 local_irq_restore(flags); 163 task_unlock(current); 164 } 165 166 #else /* !CONFIG_CPUSETS */ 167 168 static inline bool cpusets_enabled(void) { return false; } 169 170 static inline int cpuset_init(void) { return 0; } 171 static inline void cpuset_init_smp(void) {} 172 173 static inline void cpuset_update_active_cpus(void) 174 { 175 partition_sched_domains(1, NULL, NULL); 176 } 177 178 static inline void cpuset_cpus_allowed(struct task_struct *p, 179 struct cpumask *mask) 180 { 181 cpumask_copy(mask, cpu_possible_mask); 182 } 183 184 static inline void cpuset_cpus_allowed_fallback(struct task_struct *p) 185 { 186 } 187 188 static inline nodemask_t cpuset_mems_allowed(struct task_struct *p) 189 { 190 return node_possible_map; 191 } 192 193 #define cpuset_current_mems_allowed (node_states[N_MEMORY]) 194 static inline void cpuset_init_current_mems_allowed(void) {} 195 196 static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 197 { 198 return 1; 199 } 200 201 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) 202 { 203 return true; 204 } 205 206 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 207 { 208 return true; 209 } 210 211 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 212 { 213 return true; 214 } 215 216 static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 217 const struct task_struct *tsk2) 218 { 219 return 1; 220 } 221 222 static inline void cpuset_memory_pressure_bump(void) {} 223 224 static inline void cpuset_task_status_allowed(struct seq_file *m, 225 struct task_struct *task) 226 { 227 } 228 229 static inline int cpuset_mem_spread_node(void) 230 { 231 return 0; 232 } 233 234 static inline int cpuset_slab_spread_node(void) 235 { 236 return 0; 237 } 238 239 static inline int cpuset_do_page_mem_spread(void) 240 { 241 return 0; 242 } 243 244 static inline int cpuset_do_slab_mem_spread(void) 245 { 246 return 0; 247 } 248 249 static inline int current_cpuset_is_being_rebound(void) 250 { 251 return 0; 252 } 253 254 static inline void rebuild_sched_domains(void) 255 { 256 partition_sched_domains(1, NULL, NULL); 257 } 258 259 static inline void cpuset_print_current_mems_allowed(void) 260 { 261 } 262 263 static inline void set_mems_allowed(nodemask_t nodemask) 264 { 265 } 266 267 static inline unsigned int read_mems_allowed_begin(void) 268 { 269 return 0; 270 } 271 272 static inline bool read_mems_allowed_retry(unsigned int seq) 273 { 274 return false; 275 } 276 277 #endif /* !CONFIG_CPUSETS */ 278 279 #endif /* _LINUX_CPUSET_H */ 280