1 #ifndef __LINUX_CPUMASK_H 2 #define __LINUX_CPUMASK_H 3 4 /* 5 * Cpumasks provide a bitmap suitable for representing the 6 * set of CPU's in a system, one bit position per CPU number. 7 * 8 * The new cpumask_ ops take a "struct cpumask *"; the old ones 9 * use cpumask_t. 10 * 11 * See detailed comments in the file linux/bitmap.h describing the 12 * data type on which these cpumasks are based. 13 * 14 * For details of cpumask_scnprintf() and cpumask_parse_user(), 15 * see bitmap_scnprintf() and bitmap_parse_user() in lib/bitmap.c. 16 * For details of cpulist_scnprintf() and cpulist_parse(), see 17 * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c. 18 * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c 19 * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c. 20 * For details of cpus_onto(), see bitmap_onto in lib/bitmap.c. 21 * For details of cpus_fold(), see bitmap_fold in lib/bitmap.c. 22 * 23 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 * Note: The alternate operations with the suffix "_nr" are used 25 * to limit the range of the loop to nr_cpu_ids instead of 26 * NR_CPUS when NR_CPUS > 64 for performance reasons. 27 * If NR_CPUS is <= 64 then most assembler bitmask 28 * operators execute faster with a constant range, so 29 * the operator will continue to use NR_CPUS. 30 * 31 * Another consideration is that nr_cpu_ids is initialized 32 * to NR_CPUS and isn't lowered until the possible cpus are 33 * discovered (including any disabled cpus). So early uses 34 * will span the entire range of NR_CPUS. 35 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 * 37 * The obsolescent cpumask operations are: 38 * 39 * void cpu_set(cpu, mask) turn on bit 'cpu' in mask 40 * void cpu_clear(cpu, mask) turn off bit 'cpu' in mask 41 * void cpus_setall(mask) set all bits 42 * void cpus_clear(mask) clear all bits 43 * int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask 44 * int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask 45 * 46 * void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection] 47 * void cpus_or(dst, src1, src2) dst = src1 | src2 [union] 48 * void cpus_xor(dst, src1, src2) dst = src1 ^ src2 49 * void cpus_andnot(dst, src1, src2) dst = src1 & ~src2 50 * void cpus_complement(dst, src) dst = ~src 51 * 52 * int cpus_equal(mask1, mask2) Does mask1 == mask2? 53 * int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect? 54 * int cpus_subset(mask1, mask2) Is mask1 a subset of mask2? 55 * int cpus_empty(mask) Is mask empty (no bits sets)? 56 * int cpus_full(mask) Is mask full (all bits sets)? 57 * int cpus_weight(mask) Hamming weigh - number of set bits 58 * int cpus_weight_nr(mask) Same using nr_cpu_ids instead of NR_CPUS 59 * 60 * void cpus_shift_right(dst, src, n) Shift right 61 * void cpus_shift_left(dst, src, n) Shift left 62 * 63 * int first_cpu(mask) Number lowest set bit, or NR_CPUS 64 * int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS 65 * int next_cpu_nr(cpu, mask) Next cpu past 'cpu', or nr_cpu_ids 66 * 67 * cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set 68 * (can be used as an lvalue) 69 * CPU_MASK_ALL Initializer - all bits set 70 * CPU_MASK_NONE Initializer - no bits set 71 * unsigned long *cpus_addr(mask) Array of unsigned long's in mask 72 * 73 * CPUMASK_ALLOC kmalloc's a structure that is a composite of many cpumask_t 74 * variables, and CPUMASK_PTR provides pointers to each field. 75 * 76 * The structure should be defined something like this: 77 * struct my_cpumasks { 78 * cpumask_t mask1; 79 * cpumask_t mask2; 80 * }; 81 * 82 * Usage is then: 83 * CPUMASK_ALLOC(my_cpumasks); 84 * CPUMASK_PTR(mask1, my_cpumasks); 85 * CPUMASK_PTR(mask2, my_cpumasks); 86 * 87 * --- DO NOT reference cpumask_t pointers until this check --- 88 * if (my_cpumasks == NULL) 89 * "kmalloc failed"... 90 * 91 * References are now pointers to the cpumask_t variables (*mask1, ...) 92 * 93 *if NR_CPUS > BITS_PER_LONG 94 * CPUMASK_ALLOC(m) Declares and allocates struct m *m = 95 * kmalloc(sizeof(*m), GFP_KERNEL) 96 * CPUMASK_FREE(m) Macro for kfree(m) 97 *else 98 * CPUMASK_ALLOC(m) Declares struct m _m, *m = &_m 99 * CPUMASK_FREE(m) Nop 100 *endif 101 * CPUMASK_PTR(v, m) Declares cpumask_t *v = &(m->v) 102 * ------------------------------------------------------------------------ 103 * 104 * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing 105 * int cpumask_parse_user(ubuf, ulen, mask) Parse ascii string as cpumask 106 * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing 107 * int cpulist_parse(buf, map) Parse ascii string as cpulist 108 * int cpu_remap(oldbit, old, new) newbit = map(old, new)(oldbit) 109 * void cpus_remap(dst, src, old, new) *dst = map(old, new)(src) 110 * void cpus_onto(dst, orig, relmap) *dst = orig relative to relmap 111 * void cpus_fold(dst, orig, sz) dst bits = orig bits mod sz 112 * 113 * for_each_cpu_mask(cpu, mask) for-loop cpu over mask using NR_CPUS 114 * for_each_cpu_mask_nr(cpu, mask) for-loop cpu over mask using nr_cpu_ids 115 * 116 * int num_online_cpus() Number of online CPUs 117 * int num_possible_cpus() Number of all possible CPUs 118 * int num_present_cpus() Number of present CPUs 119 * 120 * int cpu_online(cpu) Is some cpu online? 121 * int cpu_possible(cpu) Is some cpu possible? 122 * int cpu_present(cpu) Is some cpu present (can schedule)? 123 * 124 * int any_online_cpu(mask) First online cpu in mask 125 * 126 * for_each_possible_cpu(cpu) for-loop cpu over cpu_possible_map 127 * for_each_online_cpu(cpu) for-loop cpu over cpu_online_map 128 * for_each_present_cpu(cpu) for-loop cpu over cpu_present_map 129 * 130 * Subtlety: 131 * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway) 132 * to generate slightly worse code. Note for example the additional 133 * 40 lines of assembly code compiling the "for each possible cpu" 134 * loops buried in the disk_stat_read() macros calls when compiling 135 * drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple 136 * one-line #define for cpu_isset(), instead of wrapping an inline 137 * inside a macro, the way we do the other calls. 138 */ 139 140 #include <linux/kernel.h> 141 #include <linux/threads.h> 142 #include <linux/bitmap.h> 143 144 typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; 145 extern cpumask_t _unused_cpumask_arg_; 146 147 #ifndef CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS 148 #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst)) 149 static inline void __cpu_set(int cpu, volatile cpumask_t *dstp) 150 { 151 set_bit(cpu, dstp->bits); 152 } 153 154 #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst)) 155 static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp) 156 { 157 clear_bit(cpu, dstp->bits); 158 } 159 160 #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS) 161 static inline void __cpus_setall(cpumask_t *dstp, int nbits) 162 { 163 bitmap_fill(dstp->bits, nbits); 164 } 165 166 #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS) 167 static inline void __cpus_clear(cpumask_t *dstp, int nbits) 168 { 169 bitmap_zero(dstp->bits, nbits); 170 } 171 172 /* No static inline type checking - see Subtlety (1) above. */ 173 #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits) 174 175 #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask)) 176 static inline int __cpu_test_and_set(int cpu, cpumask_t *addr) 177 { 178 return test_and_set_bit(cpu, addr->bits); 179 } 180 181 #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS) 182 static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p, 183 const cpumask_t *src2p, int nbits) 184 { 185 bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits); 186 } 187 188 #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS) 189 static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p, 190 const cpumask_t *src2p, int nbits) 191 { 192 bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits); 193 } 194 195 #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS) 196 static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p, 197 const cpumask_t *src2p, int nbits) 198 { 199 bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits); 200 } 201 202 #define cpus_andnot(dst, src1, src2) \ 203 __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS) 204 static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p, 205 const cpumask_t *src2p, int nbits) 206 { 207 bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits); 208 } 209 210 #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS) 211 static inline void __cpus_complement(cpumask_t *dstp, 212 const cpumask_t *srcp, int nbits) 213 { 214 bitmap_complement(dstp->bits, srcp->bits, nbits); 215 } 216 217 #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS) 218 static inline int __cpus_equal(const cpumask_t *src1p, 219 const cpumask_t *src2p, int nbits) 220 { 221 return bitmap_equal(src1p->bits, src2p->bits, nbits); 222 } 223 224 #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS) 225 static inline int __cpus_intersects(const cpumask_t *src1p, 226 const cpumask_t *src2p, int nbits) 227 { 228 return bitmap_intersects(src1p->bits, src2p->bits, nbits); 229 } 230 231 #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS) 232 static inline int __cpus_subset(const cpumask_t *src1p, 233 const cpumask_t *src2p, int nbits) 234 { 235 return bitmap_subset(src1p->bits, src2p->bits, nbits); 236 } 237 238 #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS) 239 static inline int __cpus_empty(const cpumask_t *srcp, int nbits) 240 { 241 return bitmap_empty(srcp->bits, nbits); 242 } 243 244 #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS) 245 static inline int __cpus_full(const cpumask_t *srcp, int nbits) 246 { 247 return bitmap_full(srcp->bits, nbits); 248 } 249 250 #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS) 251 static inline int __cpus_weight(const cpumask_t *srcp, int nbits) 252 { 253 return bitmap_weight(srcp->bits, nbits); 254 } 255 256 #define cpus_shift_right(dst, src, n) \ 257 __cpus_shift_right(&(dst), &(src), (n), NR_CPUS) 258 static inline void __cpus_shift_right(cpumask_t *dstp, 259 const cpumask_t *srcp, int n, int nbits) 260 { 261 bitmap_shift_right(dstp->bits, srcp->bits, n, nbits); 262 } 263 264 #define cpus_shift_left(dst, src, n) \ 265 __cpus_shift_left(&(dst), &(src), (n), NR_CPUS) 266 static inline void __cpus_shift_left(cpumask_t *dstp, 267 const cpumask_t *srcp, int n, int nbits) 268 { 269 bitmap_shift_left(dstp->bits, srcp->bits, n, nbits); 270 } 271 #endif /* !CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS */ 272 273 /** 274 * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask * 275 * @bitmap: the bitmap 276 * 277 * There are a few places where cpumask_var_t isn't appropriate and 278 * static cpumasks must be used (eg. very early boot), yet we don't 279 * expose the definition of 'struct cpumask'. 280 * 281 * This does the conversion, and can be used as a constant initializer. 282 */ 283 #define to_cpumask(bitmap) \ 284 ((struct cpumask *)(1 ? (bitmap) \ 285 : (void *)sizeof(__check_is_bitmap(bitmap)))) 286 287 static inline int __check_is_bitmap(const unsigned long *bitmap) 288 { 289 return 1; 290 } 291 292 /* 293 * Special-case data structure for "single bit set only" constant CPU masks. 294 * 295 * We pre-generate all the 64 (or 32) possible bit positions, with enough 296 * padding to the left and the right, and return the constant pointer 297 * appropriately offset. 298 */ 299 extern const unsigned long 300 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 301 302 static inline const struct cpumask *get_cpu_mask(unsigned int cpu) 303 { 304 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 305 p -= cpu / BITS_PER_LONG; 306 return to_cpumask(p); 307 } 308 309 #ifndef CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS 310 /* 311 * In cases where we take the address of the cpumask immediately, 312 * gcc optimizes it out (it's a constant) and there's no huge stack 313 * variable created: 314 */ 315 #define cpumask_of_cpu(cpu) (*get_cpu_mask(cpu)) 316 317 318 #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS) 319 320 #if NR_CPUS <= BITS_PER_LONG 321 322 #define CPU_MASK_ALL \ 323 (cpumask_t) { { \ 324 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \ 325 } } 326 327 #define CPU_MASK_ALL_PTR (&CPU_MASK_ALL) 328 329 #else 330 331 #define CPU_MASK_ALL \ 332 (cpumask_t) { { \ 333 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 334 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \ 335 } } 336 337 /* cpu_mask_all is in init/main.c */ 338 extern cpumask_t cpu_mask_all; 339 #define CPU_MASK_ALL_PTR (&cpu_mask_all) 340 341 #endif 342 343 #define CPU_MASK_NONE \ 344 (cpumask_t) { { \ 345 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 346 } } 347 348 #define CPU_MASK_CPU0 \ 349 (cpumask_t) { { \ 350 [0] = 1UL \ 351 } } 352 353 #define cpus_addr(src) ((src).bits) 354 355 #if NR_CPUS > BITS_PER_LONG 356 #define CPUMASK_ALLOC(m) struct m *m = kmalloc(sizeof(*m), GFP_KERNEL) 357 #define CPUMASK_FREE(m) kfree(m) 358 #else 359 #define CPUMASK_ALLOC(m) struct m _m, *m = &_m 360 #define CPUMASK_FREE(m) 361 #endif 362 #define CPUMASK_PTR(v, m) cpumask_t *v = &(m->v) 363 364 #define cpu_remap(oldbit, old, new) \ 365 __cpu_remap((oldbit), &(old), &(new), NR_CPUS) 366 static inline int __cpu_remap(int oldbit, 367 const cpumask_t *oldp, const cpumask_t *newp, int nbits) 368 { 369 return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits); 370 } 371 372 #define cpus_remap(dst, src, old, new) \ 373 __cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS) 374 static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp, 375 const cpumask_t *oldp, const cpumask_t *newp, int nbits) 376 { 377 bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits); 378 } 379 380 #define cpus_onto(dst, orig, relmap) \ 381 __cpus_onto(&(dst), &(orig), &(relmap), NR_CPUS) 382 static inline void __cpus_onto(cpumask_t *dstp, const cpumask_t *origp, 383 const cpumask_t *relmapp, int nbits) 384 { 385 bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits); 386 } 387 388 #define cpus_fold(dst, orig, sz) \ 389 __cpus_fold(&(dst), &(orig), sz, NR_CPUS) 390 static inline void __cpus_fold(cpumask_t *dstp, const cpumask_t *origp, 391 int sz, int nbits) 392 { 393 bitmap_fold(dstp->bits, origp->bits, sz, nbits); 394 } 395 #endif /* !CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS */ 396 397 #if NR_CPUS == 1 398 399 #define nr_cpu_ids 1 400 #ifndef CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS 401 #define first_cpu(src) ({ (void)(src); 0; }) 402 #define next_cpu(n, src) ({ (void)(src); 1; }) 403 #define any_online_cpu(mask) 0 404 #define for_each_cpu_mask(cpu, mask) \ 405 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) 406 #endif /* !CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS */ 407 #else /* NR_CPUS > 1 */ 408 409 extern int nr_cpu_ids; 410 #ifndef CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS 411 int __first_cpu(const cpumask_t *srcp); 412 int __next_cpu(int n, const cpumask_t *srcp); 413 int __any_online_cpu(const cpumask_t *mask); 414 415 #define first_cpu(src) __first_cpu(&(src)) 416 #define next_cpu(n, src) __next_cpu((n), &(src)) 417 #define any_online_cpu(mask) __any_online_cpu(&(mask)) 418 #define for_each_cpu_mask(cpu, mask) \ 419 for ((cpu) = -1; \ 420 (cpu) = next_cpu((cpu), (mask)), \ 421 (cpu) < NR_CPUS; ) 422 #endif /* !CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS */ 423 #endif 424 425 #ifndef CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS 426 #if NR_CPUS <= 64 427 428 #define next_cpu_nr(n, src) next_cpu(n, src) 429 #define cpus_weight_nr(cpumask) cpus_weight(cpumask) 430 #define for_each_cpu_mask_nr(cpu, mask) for_each_cpu_mask(cpu, mask) 431 432 #else /* NR_CPUS > 64 */ 433 434 int __next_cpu_nr(int n, const cpumask_t *srcp); 435 #define next_cpu_nr(n, src) __next_cpu_nr((n), &(src)) 436 #define cpus_weight_nr(cpumask) __cpus_weight(&(cpumask), nr_cpu_ids) 437 #define for_each_cpu_mask_nr(cpu, mask) \ 438 for ((cpu) = -1; \ 439 (cpu) = next_cpu_nr((cpu), (mask)), \ 440 (cpu) < nr_cpu_ids; ) 441 442 #endif /* NR_CPUS > 64 */ 443 #endif /* !CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS */ 444 445 /* 446 * The following particular system cpumasks and operations manage 447 * possible, present, active and online cpus. 448 * 449 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable 450 * cpu_present_mask - has bit 'cpu' set iff cpu is populated 451 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler 452 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration 453 * 454 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. 455 * 456 * The cpu_possible_mask is fixed at boot time, as the set of CPU id's 457 * that it is possible might ever be plugged in at anytime during the 458 * life of that system boot. The cpu_present_mask is dynamic(*), 459 * representing which CPUs are currently plugged in. And 460 * cpu_online_mask is the dynamic subset of cpu_present_mask, 461 * indicating those CPUs available for scheduling. 462 * 463 * If HOTPLUG is enabled, then cpu_possible_mask is forced to have 464 * all NR_CPUS bits set, otherwise it is just the set of CPUs that 465 * ACPI reports present at boot. 466 * 467 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, 468 * depending on what ACPI reports as currently plugged in, otherwise 469 * cpu_present_mask is just a copy of cpu_possible_mask. 470 * 471 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not 472 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. 473 * 474 * Subtleties: 475 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 476 * assumption that their single CPU is online. The UP 477 * cpu_{online,possible,present}_masks are placebos. Changing them 478 * will have no useful affect on the following num_*_cpus() 479 * and cpu_*() macros in the UP case. This ugliness is a UP 480 * optimization - don't waste any instructions or memory references 481 * asking if you're online or how many CPUs there are if there is 482 * only one CPU. 483 */ 484 485 extern const struct cpumask *const cpu_possible_mask; 486 extern const struct cpumask *const cpu_online_mask; 487 extern const struct cpumask *const cpu_present_mask; 488 extern const struct cpumask *const cpu_active_mask; 489 490 /* These strip const, as traditionally they weren't const. */ 491 #define cpu_possible_map (*(cpumask_t *)cpu_possible_mask) 492 #define cpu_online_map (*(cpumask_t *)cpu_online_mask) 493 #define cpu_present_map (*(cpumask_t *)cpu_present_mask) 494 #define cpu_active_map (*(cpumask_t *)cpu_active_mask) 495 496 #if NR_CPUS > 1 497 #define num_online_cpus() cpumask_weight(cpu_online_mask) 498 #define num_possible_cpus() cpumask_weight(cpu_possible_mask) 499 #define num_present_cpus() cpumask_weight(cpu_present_mask) 500 #define cpu_online(cpu) cpumask_test_cpu((cpu), cpu_online_mask) 501 #define cpu_possible(cpu) cpumask_test_cpu((cpu), cpu_possible_mask) 502 #define cpu_present(cpu) cpumask_test_cpu((cpu), cpu_present_mask) 503 #define cpu_active(cpu) cpumask_test_cpu((cpu), cpu_active_mask) 504 #else 505 #define num_online_cpus() 1 506 #define num_possible_cpus() 1 507 #define num_present_cpus() 1 508 #define cpu_online(cpu) ((cpu) == 0) 509 #define cpu_possible(cpu) ((cpu) == 0) 510 #define cpu_present(cpu) ((cpu) == 0) 511 #define cpu_active(cpu) ((cpu) == 0) 512 #endif 513 514 #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 515 516 /* These are the new versions of the cpumask operators: passed by pointer. 517 * The older versions will be implemented in terms of these, then deleted. */ 518 #define cpumask_bits(maskp) ((maskp)->bits) 519 520 #if NR_CPUS <= BITS_PER_LONG 521 #define CPU_BITS_ALL \ 522 { \ 523 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \ 524 } 525 526 #else /* NR_CPUS > BITS_PER_LONG */ 527 528 #define CPU_BITS_ALL \ 529 { \ 530 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 531 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \ 532 } 533 #endif /* NR_CPUS > BITS_PER_LONG */ 534 535 #ifdef CONFIG_CPUMASK_OFFSTACK 536 /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also, 537 * not all bits may be allocated. */ 538 #define nr_cpumask_bits nr_cpu_ids 539 #else 540 #define nr_cpumask_bits NR_CPUS 541 #endif 542 543 /* verify cpu argument to cpumask_* operators */ 544 static inline unsigned int cpumask_check(unsigned int cpu) 545 { 546 #ifdef CONFIG_DEBUG_PER_CPU_MAPS 547 WARN_ON_ONCE(cpu >= nr_cpumask_bits); 548 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ 549 return cpu; 550 } 551 552 #if NR_CPUS == 1 553 /* Uniprocessor. Assume all masks are "1". */ 554 static inline unsigned int cpumask_first(const struct cpumask *srcp) 555 { 556 return 0; 557 } 558 559 /* Valid inputs for n are -1 and 0. */ 560 static inline unsigned int cpumask_next(int n, const struct cpumask *srcp) 561 { 562 return n+1; 563 } 564 565 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 566 { 567 return n+1; 568 } 569 570 static inline unsigned int cpumask_next_and(int n, 571 const struct cpumask *srcp, 572 const struct cpumask *andp) 573 { 574 return n+1; 575 } 576 577 /* cpu must be a valid cpu, ie 0, so there's no other choice. */ 578 static inline unsigned int cpumask_any_but(const struct cpumask *mask, 579 unsigned int cpu) 580 { 581 return 1; 582 } 583 584 #define for_each_cpu(cpu, mask) \ 585 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) 586 #define for_each_cpu_and(cpu, mask, and) \ 587 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)and) 588 #else 589 /** 590 * cpumask_first - get the first cpu in a cpumask 591 * @srcp: the cpumask pointer 592 * 593 * Returns >= nr_cpu_ids if no cpus set. 594 */ 595 static inline unsigned int cpumask_first(const struct cpumask *srcp) 596 { 597 return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits); 598 } 599 600 /** 601 * cpumask_next - get the next cpu in a cpumask 602 * @n: the cpu prior to the place to search (ie. return will be > @n) 603 * @srcp: the cpumask pointer 604 * 605 * Returns >= nr_cpu_ids if no further cpus set. 606 */ 607 static inline unsigned int cpumask_next(int n, const struct cpumask *srcp) 608 { 609 /* -1 is a legal arg here. */ 610 if (n != -1) 611 cpumask_check(n); 612 return find_next_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1); 613 } 614 615 /** 616 * cpumask_next_zero - get the next unset cpu in a cpumask 617 * @n: the cpu prior to the place to search (ie. return will be > @n) 618 * @srcp: the cpumask pointer 619 * 620 * Returns >= nr_cpu_ids if no further cpus unset. 621 */ 622 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 623 { 624 /* -1 is a legal arg here. */ 625 if (n != -1) 626 cpumask_check(n); 627 return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1); 628 } 629 630 int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *); 631 int cpumask_any_but(const struct cpumask *mask, unsigned int cpu); 632 633 /** 634 * for_each_cpu - iterate over every cpu in a mask 635 * @cpu: the (optionally unsigned) integer iterator 636 * @mask: the cpumask pointer 637 * 638 * After the loop, cpu is >= nr_cpu_ids. 639 */ 640 #define for_each_cpu(cpu, mask) \ 641 for ((cpu) = -1; \ 642 (cpu) = cpumask_next((cpu), (mask)), \ 643 (cpu) < nr_cpu_ids;) 644 645 /** 646 * for_each_cpu_and - iterate over every cpu in both masks 647 * @cpu: the (optionally unsigned) integer iterator 648 * @mask: the first cpumask pointer 649 * @and: the second cpumask pointer 650 * 651 * This saves a temporary CPU mask in many places. It is equivalent to: 652 * struct cpumask tmp; 653 * cpumask_and(&tmp, &mask, &and); 654 * for_each_cpu(cpu, &tmp) 655 * ... 656 * 657 * After the loop, cpu is >= nr_cpu_ids. 658 */ 659 #define for_each_cpu_and(cpu, mask, and) \ 660 for ((cpu) = -1; \ 661 (cpu) = cpumask_next_and((cpu), (mask), (and)), \ 662 (cpu) < nr_cpu_ids;) 663 #endif /* SMP */ 664 665 #define CPU_BITS_NONE \ 666 { \ 667 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 668 } 669 670 #define CPU_BITS_CPU0 \ 671 { \ 672 [0] = 1UL \ 673 } 674 675 /** 676 * cpumask_set_cpu - set a cpu in a cpumask 677 * @cpu: cpu number (< nr_cpu_ids) 678 * @dstp: the cpumask pointer 679 */ 680 static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 681 { 682 set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 683 } 684 685 /** 686 * cpumask_clear_cpu - clear a cpu in a cpumask 687 * @cpu: cpu number (< nr_cpu_ids) 688 * @dstp: the cpumask pointer 689 */ 690 static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) 691 { 692 clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 693 } 694 695 /** 696 * cpumask_test_cpu - test for a cpu in a cpumask 697 * @cpu: cpu number (< nr_cpu_ids) 698 * @cpumask: the cpumask pointer 699 * 700 * No static inline type checking - see Subtlety (1) above. 701 */ 702 #define cpumask_test_cpu(cpu, cpumask) \ 703 test_bit(cpumask_check(cpu), cpumask_bits((cpumask))) 704 705 /** 706 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask 707 * @cpu: cpu number (< nr_cpu_ids) 708 * @cpumask: the cpumask pointer 709 * 710 * test_and_set_bit wrapper for cpumasks. 711 */ 712 static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) 713 { 714 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 715 } 716 717 /** 718 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask 719 * @dstp: the cpumask pointer 720 */ 721 static inline void cpumask_setall(struct cpumask *dstp) 722 { 723 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); 724 } 725 726 /** 727 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask 728 * @dstp: the cpumask pointer 729 */ 730 static inline void cpumask_clear(struct cpumask *dstp) 731 { 732 bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits); 733 } 734 735 /** 736 * cpumask_and - *dstp = *src1p & *src2p 737 * @dstp: the cpumask result 738 * @src1p: the first input 739 * @src2p: the second input 740 */ 741 static inline void cpumask_and(struct cpumask *dstp, 742 const struct cpumask *src1p, 743 const struct cpumask *src2p) 744 { 745 bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), 746 cpumask_bits(src2p), nr_cpumask_bits); 747 } 748 749 /** 750 * cpumask_or - *dstp = *src1p | *src2p 751 * @dstp: the cpumask result 752 * @src1p: the first input 753 * @src2p: the second input 754 */ 755 static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, 756 const struct cpumask *src2p) 757 { 758 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), 759 cpumask_bits(src2p), nr_cpumask_bits); 760 } 761 762 /** 763 * cpumask_xor - *dstp = *src1p ^ *src2p 764 * @dstp: the cpumask result 765 * @src1p: the first input 766 * @src2p: the second input 767 */ 768 static inline void cpumask_xor(struct cpumask *dstp, 769 const struct cpumask *src1p, 770 const struct cpumask *src2p) 771 { 772 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), 773 cpumask_bits(src2p), nr_cpumask_bits); 774 } 775 776 /** 777 * cpumask_andnot - *dstp = *src1p & ~*src2p 778 * @dstp: the cpumask result 779 * @src1p: the first input 780 * @src2p: the second input 781 */ 782 static inline void cpumask_andnot(struct cpumask *dstp, 783 const struct cpumask *src1p, 784 const struct cpumask *src2p) 785 { 786 bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), 787 cpumask_bits(src2p), nr_cpumask_bits); 788 } 789 790 /** 791 * cpumask_complement - *dstp = ~*srcp 792 * @dstp: the cpumask result 793 * @srcp: the input to invert 794 */ 795 static inline void cpumask_complement(struct cpumask *dstp, 796 const struct cpumask *srcp) 797 { 798 bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp), 799 nr_cpumask_bits); 800 } 801 802 /** 803 * cpumask_equal - *src1p == *src2p 804 * @src1p: the first input 805 * @src2p: the second input 806 */ 807 static inline bool cpumask_equal(const struct cpumask *src1p, 808 const struct cpumask *src2p) 809 { 810 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), 811 nr_cpumask_bits); 812 } 813 814 /** 815 * cpumask_intersects - (*src1p & *src2p) != 0 816 * @src1p: the first input 817 * @src2p: the second input 818 */ 819 static inline bool cpumask_intersects(const struct cpumask *src1p, 820 const struct cpumask *src2p) 821 { 822 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), 823 nr_cpumask_bits); 824 } 825 826 /** 827 * cpumask_subset - (*src1p & ~*src2p) == 0 828 * @src1p: the first input 829 * @src2p: the second input 830 */ 831 static inline int cpumask_subset(const struct cpumask *src1p, 832 const struct cpumask *src2p) 833 { 834 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), 835 nr_cpumask_bits); 836 } 837 838 /** 839 * cpumask_empty - *srcp == 0 840 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. 841 */ 842 static inline bool cpumask_empty(const struct cpumask *srcp) 843 { 844 return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits); 845 } 846 847 /** 848 * cpumask_full - *srcp == 0xFFFFFFFF... 849 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. 850 */ 851 static inline bool cpumask_full(const struct cpumask *srcp) 852 { 853 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); 854 } 855 856 /** 857 * cpumask_weight - Count of bits in *srcp 858 * @srcp: the cpumask to count bits (< nr_cpu_ids) in. 859 */ 860 static inline unsigned int cpumask_weight(const struct cpumask *srcp) 861 { 862 return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits); 863 } 864 865 /** 866 * cpumask_shift_right - *dstp = *srcp >> n 867 * @dstp: the cpumask result 868 * @srcp: the input to shift 869 * @n: the number of bits to shift by 870 */ 871 static inline void cpumask_shift_right(struct cpumask *dstp, 872 const struct cpumask *srcp, int n) 873 { 874 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, 875 nr_cpumask_bits); 876 } 877 878 /** 879 * cpumask_shift_left - *dstp = *srcp << n 880 * @dstp: the cpumask result 881 * @srcp: the input to shift 882 * @n: the number of bits to shift by 883 */ 884 static inline void cpumask_shift_left(struct cpumask *dstp, 885 const struct cpumask *srcp, int n) 886 { 887 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, 888 nr_cpumask_bits); 889 } 890 891 /** 892 * cpumask_copy - *dstp = *srcp 893 * @dstp: the result 894 * @srcp: the input cpumask 895 */ 896 static inline void cpumask_copy(struct cpumask *dstp, 897 const struct cpumask *srcp) 898 { 899 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); 900 } 901 902 /** 903 * cpumask_any - pick a "random" cpu from *srcp 904 * @srcp: the input cpumask 905 * 906 * Returns >= nr_cpu_ids if no cpus set. 907 */ 908 #define cpumask_any(srcp) cpumask_first(srcp) 909 910 /** 911 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 912 * @src1p: the first input 913 * @src2p: the second input 914 * 915 * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). 916 */ 917 #define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p)) 918 919 /** 920 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 921 * @mask1: the first input cpumask 922 * @mask2: the second input cpumask 923 * 924 * Returns >= nr_cpu_ids if no cpus set. 925 */ 926 #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) 927 928 /** 929 * cpumask_of - the cpumask containing just a given cpu 930 * @cpu: the cpu (<= nr_cpu_ids) 931 */ 932 #define cpumask_of(cpu) (get_cpu_mask(cpu)) 933 934 /** 935 * cpumask_scnprintf - print a cpumask into a string as comma-separated hex 936 * @buf: the buffer to sprintf into 937 * @len: the length of the buffer 938 * @srcp: the cpumask to print 939 * 940 * If len is zero, returns zero. Otherwise returns the length of the 941 * (nul-terminated) @buf string. 942 */ 943 static inline int cpumask_scnprintf(char *buf, int len, 944 const struct cpumask *srcp) 945 { 946 return bitmap_scnprintf(buf, len, cpumask_bits(srcp), nr_cpumask_bits); 947 } 948 949 /** 950 * cpumask_parse_user - extract a cpumask from a user string 951 * @buf: the buffer to extract from 952 * @len: the length of the buffer 953 * @dstp: the cpumask to set. 954 * 955 * Returns -errno, or 0 for success. 956 */ 957 static inline int cpumask_parse_user(const char __user *buf, int len, 958 struct cpumask *dstp) 959 { 960 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); 961 } 962 963 /** 964 * cpulist_scnprintf - print a cpumask into a string as comma-separated list 965 * @buf: the buffer to sprintf into 966 * @len: the length of the buffer 967 * @srcp: the cpumask to print 968 * 969 * If len is zero, returns zero. Otherwise returns the length of the 970 * (nul-terminated) @buf string. 971 */ 972 static inline int cpulist_scnprintf(char *buf, int len, 973 const struct cpumask *srcp) 974 { 975 return bitmap_scnlistprintf(buf, len, cpumask_bits(srcp), 976 nr_cpumask_bits); 977 } 978 979 /** 980 * cpulist_parse_user - extract a cpumask from a user string of ranges 981 * @buf: the buffer to extract from 982 * @len: the length of the buffer 983 * @dstp: the cpumask to set. 984 * 985 * Returns -errno, or 0 for success. 986 */ 987 static inline int cpulist_parse(const char *buf, struct cpumask *dstp) 988 { 989 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); 990 } 991 992 /** 993 * cpumask_size - size to allocate for a 'struct cpumask' in bytes 994 * 995 * This will eventually be a runtime variable, depending on nr_cpu_ids. 996 */ 997 static inline size_t cpumask_size(void) 998 { 999 /* FIXME: Once all cpumask assignments are eliminated, this 1000 * can be nr_cpumask_bits */ 1001 return BITS_TO_LONGS(NR_CPUS) * sizeof(long); 1002 } 1003 1004 /* 1005 * cpumask_var_t: struct cpumask for stack usage. 1006 * 1007 * Oh, the wicked games we play! In order to make kernel coding a 1008 * little more difficult, we typedef cpumask_var_t to an array or a 1009 * pointer: doing &mask on an array is a noop, so it still works. 1010 * 1011 * ie. 1012 * cpumask_var_t tmpmask; 1013 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) 1014 * return -ENOMEM; 1015 * 1016 * ... use 'tmpmask' like a normal struct cpumask * ... 1017 * 1018 * free_cpumask_var(tmpmask); 1019 */ 1020 #ifdef CONFIG_CPUMASK_OFFSTACK 1021 typedef struct cpumask *cpumask_var_t; 1022 1023 bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 1024 bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); 1025 void alloc_bootmem_cpumask_var(cpumask_var_t *mask); 1026 void free_cpumask_var(cpumask_var_t mask); 1027 void free_bootmem_cpumask_var(cpumask_var_t mask); 1028 1029 #else 1030 typedef struct cpumask cpumask_var_t[1]; 1031 1032 static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 1033 { 1034 return true; 1035 } 1036 1037 static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 1038 int node) 1039 { 1040 return true; 1041 } 1042 1043 static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) 1044 { 1045 } 1046 1047 static inline void free_cpumask_var(cpumask_var_t mask) 1048 { 1049 } 1050 1051 static inline void free_bootmem_cpumask_var(cpumask_var_t mask) 1052 { 1053 } 1054 #endif /* CONFIG_CPUMASK_OFFSTACK */ 1055 1056 /* It's common to want to use cpu_all_mask in struct member initializers, 1057 * so it has to refer to an address rather than a pointer. */ 1058 extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); 1059 #define cpu_all_mask to_cpumask(cpu_all_bits) 1060 1061 /* First bits of cpu_bit_bitmap are in fact unset. */ 1062 #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) 1063 1064 #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) 1065 #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) 1066 #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) 1067 1068 /* Wrappers for arch boot code to manipulate normally-constant masks */ 1069 void set_cpu_possible(unsigned int cpu, bool possible); 1070 void set_cpu_present(unsigned int cpu, bool present); 1071 void set_cpu_online(unsigned int cpu, bool online); 1072 void set_cpu_active(unsigned int cpu, bool active); 1073 void init_cpu_present(const struct cpumask *src); 1074 void init_cpu_possible(const struct cpumask *src); 1075 void init_cpu_online(const struct cpumask *src); 1076 #endif /* __LINUX_CPUMASK_H */ 1077