xref: /linux-6.15/include/linux/cpumask.h (revision decde1fa)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_CPUMASK_H
3 #define __LINUX_CPUMASK_H
4 
5 /*
6  * Cpumasks provide a bitmap suitable for representing the
7  * set of CPUs in a system, one bit position per CPU number.  In general,
8  * only nr_cpu_ids (<= NR_CPUS) bits are valid.
9  */
10 #include <linux/kernel.h>
11 #include <linux/threads.h>
12 #include <linux/bitmap.h>
13 #include <linux/atomic.h>
14 #include <linux/bug.h>
15 #include <linux/gfp_types.h>
16 #include <linux/numa.h>
17 
18 /* Don't assign or return these: may not be this big! */
19 typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
20 
21 /**
22  * cpumask_bits - get the bits in a cpumask
23  * @maskp: the struct cpumask *
24  *
25  * You should only assume nr_cpu_ids bits of this mask are valid.  This is
26  * a macro so it's const-correct.
27  */
28 #define cpumask_bits(maskp) ((maskp)->bits)
29 
30 /**
31  * cpumask_pr_args - printf args to output a cpumask
32  * @maskp: cpumask to be printed
33  *
34  * Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
35  */
36 #define cpumask_pr_args(maskp)		nr_cpu_ids, cpumask_bits(maskp)
37 
38 #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
39 #define nr_cpu_ids ((unsigned int)NR_CPUS)
40 #else
41 extern unsigned int nr_cpu_ids;
42 #endif
43 
44 static inline void set_nr_cpu_ids(unsigned int nr)
45 {
46 #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
47 	WARN_ON(nr != nr_cpu_ids);
48 #else
49 	nr_cpu_ids = nr;
50 #endif
51 }
52 
53 /*
54  * We have several different "preferred sizes" for the cpumask
55  * operations, depending on operation.
56  *
57  * For example, the bitmap scanning and operating operations have
58  * optimized routines that work for the single-word case, but only when
59  * the size is constant. So if NR_CPUS fits in one single word, we are
60  * better off using that small constant, in order to trigger the
61  * optimized bit finding. That is 'small_cpumask_size'.
62  *
63  * The clearing and copying operations will similarly perform better
64  * with a constant size, but we limit that size arbitrarily to four
65  * words. We call this 'large_cpumask_size'.
66  *
67  * Finally, some operations just want the exact limit, either because
68  * they set bits or just don't have any faster fixed-sized versions. We
69  * call this just 'nr_cpumask_bits'.
70  *
71  * Note that these optional constants are always guaranteed to be at
72  * least as big as 'nr_cpu_ids' itself is, and all our cpumask
73  * allocations are at least that size (see cpumask_size()). The
74  * optimization comes from being able to potentially use a compile-time
75  * constant instead of a run-time generated exact number of CPUs.
76  */
77 #if NR_CPUS <= BITS_PER_LONG
78   #define small_cpumask_bits ((unsigned int)NR_CPUS)
79   #define large_cpumask_bits ((unsigned int)NR_CPUS)
80 #elif NR_CPUS <= 4*BITS_PER_LONG
81   #define small_cpumask_bits nr_cpu_ids
82   #define large_cpumask_bits ((unsigned int)NR_CPUS)
83 #else
84   #define small_cpumask_bits nr_cpu_ids
85   #define large_cpumask_bits nr_cpu_ids
86 #endif
87 #define nr_cpumask_bits nr_cpu_ids
88 
89 /*
90  * The following particular system cpumasks and operations manage
91  * possible, present, active and online cpus.
92  *
93  *     cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
94  *     cpu_present_mask - has bit 'cpu' set iff cpu is populated
95  *     cpu_online_mask  - has bit 'cpu' set iff cpu available to scheduler
96  *     cpu_active_mask  - has bit 'cpu' set iff cpu available to migration
97  *
98  *  If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
99  *
100  *  The cpu_possible_mask is fixed at boot time, as the set of CPU IDs
101  *  that it is possible might ever be plugged in at anytime during the
102  *  life of that system boot.  The cpu_present_mask is dynamic(*),
103  *  representing which CPUs are currently plugged in.  And
104  *  cpu_online_mask is the dynamic subset of cpu_present_mask,
105  *  indicating those CPUs available for scheduling.
106  *
107  *  If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
108  *  depending on what ACPI reports as currently plugged in, otherwise
109  *  cpu_present_mask is just a copy of cpu_possible_mask.
110  *
111  *  (*) Well, cpu_present_mask is dynamic in the hotplug case.  If not
112  *      hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
113  *
114  * Subtleties:
115  * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
116  *    assumption that their single CPU is online.  The UP
117  *    cpu_{online,possible,present}_masks are placebos.  Changing them
118  *    will have no useful affect on the following num_*_cpus()
119  *    and cpu_*() macros in the UP case.  This ugliness is a UP
120  *    optimization - don't waste any instructions or memory references
121  *    asking if you're online or how many CPUs there are if there is
122  *    only one CPU.
123  */
124 
125 extern struct cpumask __cpu_possible_mask;
126 extern struct cpumask __cpu_online_mask;
127 extern struct cpumask __cpu_present_mask;
128 extern struct cpumask __cpu_active_mask;
129 extern struct cpumask __cpu_dying_mask;
130 #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
131 #define cpu_online_mask   ((const struct cpumask *)&__cpu_online_mask)
132 #define cpu_present_mask  ((const struct cpumask *)&__cpu_present_mask)
133 #define cpu_active_mask   ((const struct cpumask *)&__cpu_active_mask)
134 #define cpu_dying_mask    ((const struct cpumask *)&__cpu_dying_mask)
135 
136 extern atomic_t __num_online_cpus;
137 
138 extern cpumask_t cpus_booted_once_mask;
139 
140 static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits)
141 {
142 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
143 	WARN_ON_ONCE(cpu >= bits);
144 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
145 }
146 
147 /* verify cpu argument to cpumask_* operators */
148 static __always_inline unsigned int cpumask_check(unsigned int cpu)
149 {
150 	cpu_max_bits_warn(cpu, small_cpumask_bits);
151 	return cpu;
152 }
153 
154 /**
155  * cpumask_first - get the first cpu in a cpumask
156  * @srcp: the cpumask pointer
157  *
158  * Return: >= nr_cpu_ids if no cpus set.
159  */
160 static inline unsigned int cpumask_first(const struct cpumask *srcp)
161 {
162 	return find_first_bit(cpumask_bits(srcp), small_cpumask_bits);
163 }
164 
165 /**
166  * cpumask_first_zero - get the first unset cpu in a cpumask
167  * @srcp: the cpumask pointer
168  *
169  * Return: >= nr_cpu_ids if all cpus are set.
170  */
171 static inline unsigned int cpumask_first_zero(const struct cpumask *srcp)
172 {
173 	return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits);
174 }
175 
176 /**
177  * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
178  * @srcp1: the first input
179  * @srcp2: the second input
180  *
181  * Return: >= nr_cpu_ids if no cpus set in both.  See also cpumask_next_and().
182  */
183 static inline
184 unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
185 {
186 	return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
187 }
188 
189 /**
190  * cpumask_last - get the last CPU in a cpumask
191  * @srcp:	- the cpumask pointer
192  *
193  * Return:	>= nr_cpumask_bits if no CPUs set.
194  */
195 static inline unsigned int cpumask_last(const struct cpumask *srcp)
196 {
197 	return find_last_bit(cpumask_bits(srcp), small_cpumask_bits);
198 }
199 
200 /**
201  * cpumask_next - get the next cpu in a cpumask
202  * @n: the cpu prior to the place to search (i.e. return will be > @n)
203  * @srcp: the cpumask pointer
204  *
205  * Return: >= nr_cpu_ids if no further cpus set.
206  */
207 static inline
208 unsigned int cpumask_next(int n, const struct cpumask *srcp)
209 {
210 	/* -1 is a legal arg here. */
211 	if (n != -1)
212 		cpumask_check(n);
213 	return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1);
214 }
215 
216 /**
217  * cpumask_next_zero - get the next unset cpu in a cpumask
218  * @n: the cpu prior to the place to search (i.e. return will be > @n)
219  * @srcp: the cpumask pointer
220  *
221  * Return: >= nr_cpu_ids if no further cpus unset.
222  */
223 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
224 {
225 	/* -1 is a legal arg here. */
226 	if (n != -1)
227 		cpumask_check(n);
228 	return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1);
229 }
230 
231 #if NR_CPUS == 1
232 /* Uniprocessor: there is only one valid CPU */
233 static inline unsigned int cpumask_local_spread(unsigned int i, int node)
234 {
235 	return 0;
236 }
237 
238 static inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
239 						      const struct cpumask *src2p)
240 {
241 	return cpumask_first_and(src1p, src2p);
242 }
243 
244 static inline unsigned int cpumask_any_distribute(const struct cpumask *srcp)
245 {
246 	return cpumask_first(srcp);
247 }
248 #else
249 unsigned int cpumask_local_spread(unsigned int i, int node);
250 unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
251 			       const struct cpumask *src2p);
252 unsigned int cpumask_any_distribute(const struct cpumask *srcp);
253 #endif /* NR_CPUS */
254 
255 /**
256  * cpumask_next_and - get the next cpu in *src1p & *src2p
257  * @n: the cpu prior to the place to search (i.e. return will be > @n)
258  * @src1p: the first cpumask pointer
259  * @src2p: the second cpumask pointer
260  *
261  * Return: >= nr_cpu_ids if no further cpus set in both.
262  */
263 static inline
264 unsigned int cpumask_next_and(int n, const struct cpumask *src1p,
265 		     const struct cpumask *src2p)
266 {
267 	/* -1 is a legal arg here. */
268 	if (n != -1)
269 		cpumask_check(n);
270 	return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p),
271 		small_cpumask_bits, n + 1);
272 }
273 
274 /**
275  * for_each_cpu - iterate over every cpu in a mask
276  * @cpu: the (optionally unsigned) integer iterator
277  * @mask: the cpumask pointer
278  *
279  * After the loop, cpu is >= nr_cpu_ids.
280  */
281 #define for_each_cpu(cpu, mask)				\
282 	for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits)
283 
284 #if NR_CPUS == 1
285 static inline
286 unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap)
287 {
288 	cpumask_check(start);
289 	if (n != -1)
290 		cpumask_check(n);
291 
292 	/*
293 	 * Return the first available CPU when wrapping, or when starting before cpu0,
294 	 * since there is only one valid option.
295 	 */
296 	if (wrap && n >= 0)
297 		return nr_cpumask_bits;
298 
299 	return cpumask_first(mask);
300 }
301 #else
302 unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap);
303 #endif
304 
305 /**
306  * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
307  * @cpu: the (optionally unsigned) integer iterator
308  * @mask: the cpumask pointer
309  * @start: the start location
310  *
311  * The implementation does not assume any bit in @mask is set (including @start).
312  *
313  * After the loop, cpu is >= nr_cpu_ids.
314  */
315 #define for_each_cpu_wrap(cpu, mask, start)				\
316 	for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start)
317 
318 /**
319  * for_each_cpu_and - iterate over every cpu in both masks
320  * @cpu: the (optionally unsigned) integer iterator
321  * @mask1: the first cpumask pointer
322  * @mask2: the second cpumask pointer
323  *
324  * This saves a temporary CPU mask in many places.  It is equivalent to:
325  *	struct cpumask tmp;
326  *	cpumask_and(&tmp, &mask1, &mask2);
327  *	for_each_cpu(cpu, &tmp)
328  *		...
329  *
330  * After the loop, cpu is >= nr_cpu_ids.
331  */
332 #define for_each_cpu_and(cpu, mask1, mask2)				\
333 	for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
334 
335 /**
336  * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding
337  *			 those present in another.
338  * @cpu: the (optionally unsigned) integer iterator
339  * @mask1: the first cpumask pointer
340  * @mask2: the second cpumask pointer
341  *
342  * This saves a temporary CPU mask in many places.  It is equivalent to:
343  *	struct cpumask tmp;
344  *	cpumask_andnot(&tmp, &mask1, &mask2);
345  *	for_each_cpu(cpu, &tmp)
346  *		...
347  *
348  * After the loop, cpu is >= nr_cpu_ids.
349  */
350 #define for_each_cpu_andnot(cpu, mask1, mask2)				\
351 	for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
352 
353 /**
354  * for_each_cpu_or - iterate over every cpu present in either mask
355  * @cpu: the (optionally unsigned) integer iterator
356  * @mask1: the first cpumask pointer
357  * @mask2: the second cpumask pointer
358  *
359  * This saves a temporary CPU mask in many places.  It is equivalent to:
360  *	struct cpumask tmp;
361  *	cpumask_or(&tmp, &mask1, &mask2);
362  *	for_each_cpu(cpu, &tmp)
363  *		...
364  *
365  * After the loop, cpu is >= nr_cpu_ids.
366  */
367 #define for_each_cpu_or(cpu, mask1, mask2)				\
368 	for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
369 
370 /**
371  * cpumask_any_but - return a "random" in a cpumask, but not this one.
372  * @mask: the cpumask to search
373  * @cpu: the cpu to ignore.
374  *
375  * Often used to find any cpu but smp_processor_id() in a mask.
376  * Return: >= nr_cpu_ids if no cpus set.
377  */
378 static inline
379 unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu)
380 {
381 	unsigned int i;
382 
383 	cpumask_check(cpu);
384 	for_each_cpu(i, mask)
385 		if (i != cpu)
386 			break;
387 	return i;
388 }
389 
390 /**
391  * cpumask_nth - get the Nth cpu in a cpumask
392  * @srcp: the cpumask pointer
393  * @cpu: the Nth cpu to find, starting from 0
394  *
395  * Return: >= nr_cpu_ids if such cpu doesn't exist.
396  */
397 static inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp)
398 {
399 	return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu));
400 }
401 
402 /**
403  * cpumask_nth_and - get the Nth cpu in 2 cpumasks
404  * @srcp1: the cpumask pointer
405  * @srcp2: the cpumask pointer
406  * @cpu: the Nth cpu to find, starting from 0
407  *
408  * Return: >= nr_cpu_ids if such cpu doesn't exist.
409  */
410 static inline
411 unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1,
412 							const struct cpumask *srcp2)
413 {
414 	return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
415 				small_cpumask_bits, cpumask_check(cpu));
416 }
417 
418 /**
419  * cpumask_nth_andnot - get the Nth cpu set in 1st cpumask, and clear in 2nd.
420  * @srcp1: the cpumask pointer
421  * @srcp2: the cpumask pointer
422  * @cpu: the Nth cpu to find, starting from 0
423  *
424  * Return: >= nr_cpu_ids if such cpu doesn't exist.
425  */
426 static inline
427 unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1,
428 							const struct cpumask *srcp2)
429 {
430 	return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
431 				small_cpumask_bits, cpumask_check(cpu));
432 }
433 
434 /**
435  * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd.
436  * @srcp1: the cpumask pointer
437  * @srcp2: the cpumask pointer
438  * @srcp3: the cpumask pointer
439  * @cpu: the Nth cpu to find, starting from 0
440  *
441  * Return: >= nr_cpu_ids if such cpu doesn't exist.
442  */
443 static __always_inline
444 unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1,
445 							const struct cpumask *srcp2,
446 							const struct cpumask *srcp3)
447 {
448 	return find_nth_and_andnot_bit(cpumask_bits(srcp1),
449 					cpumask_bits(srcp2),
450 					cpumask_bits(srcp3),
451 					small_cpumask_bits, cpumask_check(cpu));
452 }
453 
454 #define CPU_BITS_NONE						\
455 {								\
456 	[0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL			\
457 }
458 
459 #define CPU_BITS_CPU0						\
460 {								\
461 	[0] =  1UL						\
462 }
463 
464 /**
465  * cpumask_set_cpu - set a cpu in a cpumask
466  * @cpu: cpu number (< nr_cpu_ids)
467  * @dstp: the cpumask pointer
468  */
469 static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
470 {
471 	set_bit(cpumask_check(cpu), cpumask_bits(dstp));
472 }
473 
474 static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
475 {
476 	__set_bit(cpumask_check(cpu), cpumask_bits(dstp));
477 }
478 
479 
480 /**
481  * cpumask_clear_cpu - clear a cpu in a cpumask
482  * @cpu: cpu number (< nr_cpu_ids)
483  * @dstp: the cpumask pointer
484  */
485 static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
486 {
487 	clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
488 }
489 
490 static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
491 {
492 	__clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
493 }
494 
495 /**
496  * cpumask_assign_cpu - assign a cpu in a cpumask
497  * @cpu: cpu number (< nr_cpu_ids)
498  * @dstp: the cpumask pointer
499  * @bool: the value to assign
500  */
501 static __always_inline void cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value)
502 {
503 	assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value);
504 }
505 
506 static __always_inline void __cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value)
507 {
508 	__assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value);
509 }
510 
511 /**
512  * cpumask_test_cpu - test for a cpu in a cpumask
513  * @cpu: cpu number (< nr_cpu_ids)
514  * @cpumask: the cpumask pointer
515  *
516  * Return: true if @cpu is set in @cpumask, else returns false
517  */
518 static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
519 {
520 	return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
521 }
522 
523 /**
524  * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
525  * @cpu: cpu number (< nr_cpu_ids)
526  * @cpumask: the cpumask pointer
527  *
528  * test_and_set_bit wrapper for cpumasks.
529  *
530  * Return: true if @cpu is set in old bitmap of @cpumask, else returns false
531  */
532 static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
533 {
534 	return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
535 }
536 
537 /**
538  * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
539  * @cpu: cpu number (< nr_cpu_ids)
540  * @cpumask: the cpumask pointer
541  *
542  * test_and_clear_bit wrapper for cpumasks.
543  *
544  * Return: true if @cpu is set in old bitmap of @cpumask, else returns false
545  */
546 static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
547 {
548 	return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
549 }
550 
551 /**
552  * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
553  * @dstp: the cpumask pointer
554  */
555 static inline void cpumask_setall(struct cpumask *dstp)
556 {
557 	if (small_const_nbits(small_cpumask_bits)) {
558 		cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits);
559 		return;
560 	}
561 	bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
562 }
563 
564 /**
565  * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
566  * @dstp: the cpumask pointer
567  */
568 static inline void cpumask_clear(struct cpumask *dstp)
569 {
570 	bitmap_zero(cpumask_bits(dstp), large_cpumask_bits);
571 }
572 
573 /**
574  * cpumask_and - *dstp = *src1p & *src2p
575  * @dstp: the cpumask result
576  * @src1p: the first input
577  * @src2p: the second input
578  *
579  * Return: false if *@dstp is empty, else returns true
580  */
581 static inline bool cpumask_and(struct cpumask *dstp,
582 			       const struct cpumask *src1p,
583 			       const struct cpumask *src2p)
584 {
585 	return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
586 				       cpumask_bits(src2p), small_cpumask_bits);
587 }
588 
589 /**
590  * cpumask_or - *dstp = *src1p | *src2p
591  * @dstp: the cpumask result
592  * @src1p: the first input
593  * @src2p: the second input
594  */
595 static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
596 			      const struct cpumask *src2p)
597 {
598 	bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
599 				      cpumask_bits(src2p), small_cpumask_bits);
600 }
601 
602 /**
603  * cpumask_xor - *dstp = *src1p ^ *src2p
604  * @dstp: the cpumask result
605  * @src1p: the first input
606  * @src2p: the second input
607  */
608 static inline void cpumask_xor(struct cpumask *dstp,
609 			       const struct cpumask *src1p,
610 			       const struct cpumask *src2p)
611 {
612 	bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
613 				       cpumask_bits(src2p), small_cpumask_bits);
614 }
615 
616 /**
617  * cpumask_andnot - *dstp = *src1p & ~*src2p
618  * @dstp: the cpumask result
619  * @src1p: the first input
620  * @src2p: the second input
621  *
622  * Return: false if *@dstp is empty, else returns true
623  */
624 static inline bool cpumask_andnot(struct cpumask *dstp,
625 				  const struct cpumask *src1p,
626 				  const struct cpumask *src2p)
627 {
628 	return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
629 					  cpumask_bits(src2p), small_cpumask_bits);
630 }
631 
632 /**
633  * cpumask_equal - *src1p == *src2p
634  * @src1p: the first input
635  * @src2p: the second input
636  *
637  * Return: true if the cpumasks are equal, false if not
638  */
639 static inline bool cpumask_equal(const struct cpumask *src1p,
640 				const struct cpumask *src2p)
641 {
642 	return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
643 						 small_cpumask_bits);
644 }
645 
646 /**
647  * cpumask_or_equal - *src1p | *src2p == *src3p
648  * @src1p: the first input
649  * @src2p: the second input
650  * @src3p: the third input
651  *
652  * Return: true if first cpumask ORed with second cpumask == third cpumask,
653  *	   otherwise false
654  */
655 static inline bool cpumask_or_equal(const struct cpumask *src1p,
656 				    const struct cpumask *src2p,
657 				    const struct cpumask *src3p)
658 {
659 	return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p),
660 			       cpumask_bits(src3p), small_cpumask_bits);
661 }
662 
663 /**
664  * cpumask_intersects - (*src1p & *src2p) != 0
665  * @src1p: the first input
666  * @src2p: the second input
667  *
668  * Return: true if first cpumask ANDed with second cpumask is non-empty,
669  *	   otherwise false
670  */
671 static inline bool cpumask_intersects(const struct cpumask *src1p,
672 				     const struct cpumask *src2p)
673 {
674 	return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
675 						      small_cpumask_bits);
676 }
677 
678 /**
679  * cpumask_subset - (*src1p & ~*src2p) == 0
680  * @src1p: the first input
681  * @src2p: the second input
682  *
683  * Return: true if *@src1p is a subset of *@src2p, else returns false
684  */
685 static inline bool cpumask_subset(const struct cpumask *src1p,
686 				 const struct cpumask *src2p)
687 {
688 	return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
689 						  small_cpumask_bits);
690 }
691 
692 /**
693  * cpumask_empty - *srcp == 0
694  * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
695  *
696  * Return: true if srcp is empty (has no bits set), else false
697  */
698 static inline bool cpumask_empty(const struct cpumask *srcp)
699 {
700 	return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits);
701 }
702 
703 /**
704  * cpumask_full - *srcp == 0xFFFFFFFF...
705  * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
706  *
707  * Return: true if srcp is full (has all bits set), else false
708  */
709 static inline bool cpumask_full(const struct cpumask *srcp)
710 {
711 	return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
712 }
713 
714 /**
715  * cpumask_weight - Count of bits in *srcp
716  * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
717  *
718  * Return: count of bits set in *srcp
719  */
720 static inline unsigned int cpumask_weight(const struct cpumask *srcp)
721 {
722 	return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits);
723 }
724 
725 /**
726  * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2)
727  * @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
728  * @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
729  *
730  * Return: count of bits set in both *srcp1 and *srcp2
731  */
732 static inline unsigned int cpumask_weight_and(const struct cpumask *srcp1,
733 						const struct cpumask *srcp2)
734 {
735 	return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
736 }
737 
738 /**
739  * cpumask_shift_right - *dstp = *srcp >> n
740  * @dstp: the cpumask result
741  * @srcp: the input to shift
742  * @n: the number of bits to shift by
743  */
744 static inline void cpumask_shift_right(struct cpumask *dstp,
745 				       const struct cpumask *srcp, int n)
746 {
747 	bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
748 					       small_cpumask_bits);
749 }
750 
751 /**
752  * cpumask_shift_left - *dstp = *srcp << n
753  * @dstp: the cpumask result
754  * @srcp: the input to shift
755  * @n: the number of bits to shift by
756  */
757 static inline void cpumask_shift_left(struct cpumask *dstp,
758 				      const struct cpumask *srcp, int n)
759 {
760 	bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
761 					      nr_cpumask_bits);
762 }
763 
764 /**
765  * cpumask_copy - *dstp = *srcp
766  * @dstp: the result
767  * @srcp: the input cpumask
768  */
769 static inline void cpumask_copy(struct cpumask *dstp,
770 				const struct cpumask *srcp)
771 {
772 	bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits);
773 }
774 
775 /**
776  * cpumask_any - pick a "random" cpu from *srcp
777  * @srcp: the input cpumask
778  *
779  * Return: >= nr_cpu_ids if no cpus set.
780  */
781 #define cpumask_any(srcp) cpumask_first(srcp)
782 
783 /**
784  * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
785  * @mask1: the first input cpumask
786  * @mask2: the second input cpumask
787  *
788  * Return: >= nr_cpu_ids if no cpus set.
789  */
790 #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
791 
792 /**
793  * cpumask_of - the cpumask containing just a given cpu
794  * @cpu: the cpu (<= nr_cpu_ids)
795  */
796 #define cpumask_of(cpu) (get_cpu_mask(cpu))
797 
798 /**
799  * cpumask_parse_user - extract a cpumask from a user string
800  * @buf: the buffer to extract from
801  * @len: the length of the buffer
802  * @dstp: the cpumask to set.
803  *
804  * Return: -errno, or 0 for success.
805  */
806 static inline int cpumask_parse_user(const char __user *buf, int len,
807 				     struct cpumask *dstp)
808 {
809 	return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
810 }
811 
812 /**
813  * cpumask_parselist_user - extract a cpumask from a user string
814  * @buf: the buffer to extract from
815  * @len: the length of the buffer
816  * @dstp: the cpumask to set.
817  *
818  * Return: -errno, or 0 for success.
819  */
820 static inline int cpumask_parselist_user(const char __user *buf, int len,
821 				     struct cpumask *dstp)
822 {
823 	return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
824 				     nr_cpumask_bits);
825 }
826 
827 /**
828  * cpumask_parse - extract a cpumask from a string
829  * @buf: the buffer to extract from
830  * @dstp: the cpumask to set.
831  *
832  * Return: -errno, or 0 for success.
833  */
834 static inline int cpumask_parse(const char *buf, struct cpumask *dstp)
835 {
836 	return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits);
837 }
838 
839 /**
840  * cpulist_parse - extract a cpumask from a user string of ranges
841  * @buf: the buffer to extract from
842  * @dstp: the cpumask to set.
843  *
844  * Return: -errno, or 0 for success.
845  */
846 static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
847 {
848 	return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
849 }
850 
851 /**
852  * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes
853  *
854  * Return: size to allocate for a &struct cpumask in bytes
855  */
856 static inline unsigned int cpumask_size(void)
857 {
858 	return BITS_TO_LONGS(large_cpumask_bits) * sizeof(long);
859 }
860 
861 /*
862  * cpumask_var_t: struct cpumask for stack usage.
863  *
864  * Oh, the wicked games we play!  In order to make kernel coding a
865  * little more difficult, we typedef cpumask_var_t to an array or a
866  * pointer: doing &mask on an array is a noop, so it still works.
867  *
868  * i.e.
869  *	cpumask_var_t tmpmask;
870  *	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
871  *		return -ENOMEM;
872  *
873  *	  ... use 'tmpmask' like a normal struct cpumask * ...
874  *
875  *	free_cpumask_var(tmpmask);
876  *
877  *
878  * However, one notable exception is there. alloc_cpumask_var() allocates
879  * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
880  * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
881  *
882  *	cpumask_var_t tmpmask;
883  *	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
884  *		return -ENOMEM;
885  *
886  *	var = *tmpmask;
887  *
888  * This code makes NR_CPUS length memcopy and brings to a memory corruption.
889  * cpumask_copy() provide safe copy functionality.
890  *
891  * Note that there is another evil here: If you define a cpumask_var_t
892  * as a percpu variable then the way to obtain the address of the cpumask
893  * structure differently influences what this_cpu_* operation needs to be
894  * used. Please use this_cpu_cpumask_var_t in those cases. The direct use
895  * of this_cpu_ptr() or this_cpu_read() will lead to failures when the
896  * other type of cpumask_var_t implementation is configured.
897  *
898  * Please also note that __cpumask_var_read_mostly can be used to declare
899  * a cpumask_var_t variable itself (not its content) as read mostly.
900  */
901 #ifdef CONFIG_CPUMASK_OFFSTACK
902 typedef struct cpumask *cpumask_var_t;
903 
904 #define this_cpu_cpumask_var_ptr(x)	this_cpu_read(x)
905 #define __cpumask_var_read_mostly	__read_mostly
906 
907 bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
908 
909 static inline
910 bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node)
911 {
912 	return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node);
913 }
914 
915 /**
916  * alloc_cpumask_var - allocate a struct cpumask
917  * @mask: pointer to cpumask_var_t where the cpumask is returned
918  * @flags: GFP_ flags
919  *
920  * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
921  * a nop returning a constant 1 (in <linux/cpumask.h>).
922  *
923  * See alloc_cpumask_var_node.
924  *
925  * Return: %true if allocation succeeded, %false if not
926  */
927 static inline
928 bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
929 {
930 	return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE);
931 }
932 
933 static inline
934 bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
935 {
936 	return alloc_cpumask_var(mask, flags | __GFP_ZERO);
937 }
938 
939 void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
940 void free_cpumask_var(cpumask_var_t mask);
941 void free_bootmem_cpumask_var(cpumask_var_t mask);
942 
943 static inline bool cpumask_available(cpumask_var_t mask)
944 {
945 	return mask != NULL;
946 }
947 
948 #else
949 typedef struct cpumask cpumask_var_t[1];
950 
951 #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
952 #define __cpumask_var_read_mostly
953 
954 static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
955 {
956 	return true;
957 }
958 
959 static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
960 					  int node)
961 {
962 	return true;
963 }
964 
965 static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
966 {
967 	cpumask_clear(*mask);
968 	return true;
969 }
970 
971 static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
972 					  int node)
973 {
974 	cpumask_clear(*mask);
975 	return true;
976 }
977 
978 static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
979 {
980 }
981 
982 static inline void free_cpumask_var(cpumask_var_t mask)
983 {
984 }
985 
986 static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
987 {
988 }
989 
990 static inline bool cpumask_available(cpumask_var_t mask)
991 {
992 	return true;
993 }
994 #endif /* CONFIG_CPUMASK_OFFSTACK */
995 
996 /* It's common to want to use cpu_all_mask in struct member initializers,
997  * so it has to refer to an address rather than a pointer. */
998 extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
999 #define cpu_all_mask to_cpumask(cpu_all_bits)
1000 
1001 /* First bits of cpu_bit_bitmap are in fact unset. */
1002 #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
1003 
1004 #if NR_CPUS == 1
1005 /* Uniprocessor: the possible/online/present masks are always "1" */
1006 #define for_each_possible_cpu(cpu)	for ((cpu) = 0; (cpu) < 1; (cpu)++)
1007 #define for_each_online_cpu(cpu)	for ((cpu) = 0; (cpu) < 1; (cpu)++)
1008 #define for_each_present_cpu(cpu)	for ((cpu) = 0; (cpu) < 1; (cpu)++)
1009 #else
1010 #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
1011 #define for_each_online_cpu(cpu)   for_each_cpu((cpu), cpu_online_mask)
1012 #define for_each_present_cpu(cpu)  for_each_cpu((cpu), cpu_present_mask)
1013 #endif
1014 
1015 /* Wrappers for arch boot code to manipulate normally-constant masks */
1016 void init_cpu_present(const struct cpumask *src);
1017 void init_cpu_possible(const struct cpumask *src);
1018 void init_cpu_online(const struct cpumask *src);
1019 
1020 static inline void reset_cpu_possible_mask(void)
1021 {
1022 	bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS);
1023 }
1024 
1025 static inline void
1026 set_cpu_possible(unsigned int cpu, bool possible)
1027 {
1028 	if (possible)
1029 		cpumask_set_cpu(cpu, &__cpu_possible_mask);
1030 	else
1031 		cpumask_clear_cpu(cpu, &__cpu_possible_mask);
1032 }
1033 
1034 static inline void
1035 set_cpu_present(unsigned int cpu, bool present)
1036 {
1037 	if (present)
1038 		cpumask_set_cpu(cpu, &__cpu_present_mask);
1039 	else
1040 		cpumask_clear_cpu(cpu, &__cpu_present_mask);
1041 }
1042 
1043 void set_cpu_online(unsigned int cpu, bool online);
1044 
1045 static inline void
1046 set_cpu_active(unsigned int cpu, bool active)
1047 {
1048 	if (active)
1049 		cpumask_set_cpu(cpu, &__cpu_active_mask);
1050 	else
1051 		cpumask_clear_cpu(cpu, &__cpu_active_mask);
1052 }
1053 
1054 static inline void
1055 set_cpu_dying(unsigned int cpu, bool dying)
1056 {
1057 	if (dying)
1058 		cpumask_set_cpu(cpu, &__cpu_dying_mask);
1059 	else
1060 		cpumask_clear_cpu(cpu, &__cpu_dying_mask);
1061 }
1062 
1063 /**
1064  * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask *
1065  * @bitmap: the bitmap
1066  *
1067  * There are a few places where cpumask_var_t isn't appropriate and
1068  * static cpumasks must be used (eg. very early boot), yet we don't
1069  * expose the definition of 'struct cpumask'.
1070  *
1071  * This does the conversion, and can be used as a constant initializer.
1072  */
1073 #define to_cpumask(bitmap)						\
1074 	((struct cpumask *)(1 ? (bitmap)				\
1075 			    : (void *)sizeof(__check_is_bitmap(bitmap))))
1076 
1077 static inline int __check_is_bitmap(const unsigned long *bitmap)
1078 {
1079 	return 1;
1080 }
1081 
1082 /*
1083  * Special-case data structure for "single bit set only" constant CPU masks.
1084  *
1085  * We pre-generate all the 64 (or 32) possible bit positions, with enough
1086  * padding to the left and the right, and return the constant pointer
1087  * appropriately offset.
1088  */
1089 extern const unsigned long
1090 	cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
1091 
1092 static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
1093 {
1094 	const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
1095 	p -= cpu / BITS_PER_LONG;
1096 	return to_cpumask(p);
1097 }
1098 
1099 #if NR_CPUS > 1
1100 /**
1101  * num_online_cpus() - Read the number of online CPUs
1102  *
1103  * Despite the fact that __num_online_cpus is of type atomic_t, this
1104  * interface gives only a momentary snapshot and is not protected against
1105  * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held
1106  * region.
1107  *
1108  * Return: momentary snapshot of the number of online CPUs
1109  */
1110 static __always_inline unsigned int num_online_cpus(void)
1111 {
1112 	return raw_atomic_read(&__num_online_cpus);
1113 }
1114 #define num_possible_cpus()	cpumask_weight(cpu_possible_mask)
1115 #define num_present_cpus()	cpumask_weight(cpu_present_mask)
1116 #define num_active_cpus()	cpumask_weight(cpu_active_mask)
1117 
1118 static inline bool cpu_online(unsigned int cpu)
1119 {
1120 	return cpumask_test_cpu(cpu, cpu_online_mask);
1121 }
1122 
1123 static inline bool cpu_possible(unsigned int cpu)
1124 {
1125 	return cpumask_test_cpu(cpu, cpu_possible_mask);
1126 }
1127 
1128 static inline bool cpu_present(unsigned int cpu)
1129 {
1130 	return cpumask_test_cpu(cpu, cpu_present_mask);
1131 }
1132 
1133 static inline bool cpu_active(unsigned int cpu)
1134 {
1135 	return cpumask_test_cpu(cpu, cpu_active_mask);
1136 }
1137 
1138 static inline bool cpu_dying(unsigned int cpu)
1139 {
1140 	return cpumask_test_cpu(cpu, cpu_dying_mask);
1141 }
1142 
1143 #else
1144 
1145 #define num_online_cpus()	1U
1146 #define num_possible_cpus()	1U
1147 #define num_present_cpus()	1U
1148 #define num_active_cpus()	1U
1149 
1150 static inline bool cpu_online(unsigned int cpu)
1151 {
1152 	return cpu == 0;
1153 }
1154 
1155 static inline bool cpu_possible(unsigned int cpu)
1156 {
1157 	return cpu == 0;
1158 }
1159 
1160 static inline bool cpu_present(unsigned int cpu)
1161 {
1162 	return cpu == 0;
1163 }
1164 
1165 static inline bool cpu_active(unsigned int cpu)
1166 {
1167 	return cpu == 0;
1168 }
1169 
1170 static inline bool cpu_dying(unsigned int cpu)
1171 {
1172 	return false;
1173 }
1174 
1175 #endif /* NR_CPUS > 1 */
1176 
1177 #define cpu_is_offline(cpu)	unlikely(!cpu_online(cpu))
1178 
1179 #if NR_CPUS <= BITS_PER_LONG
1180 #define CPU_BITS_ALL						\
1181 {								\
1182 	[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS)	\
1183 }
1184 
1185 #else /* NR_CPUS > BITS_PER_LONG */
1186 
1187 #define CPU_BITS_ALL						\
1188 {								\
1189 	[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL,		\
1190 	[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS)	\
1191 }
1192 #endif /* NR_CPUS > BITS_PER_LONG */
1193 
1194 /**
1195  * cpumap_print_to_pagebuf  - copies the cpumask into the buffer either
1196  *	as comma-separated list of cpus or hex values of cpumask
1197  * @list: indicates whether the cpumap must be list
1198  * @mask: the cpumask to copy
1199  * @buf: the buffer to copy into
1200  *
1201  * Return: the length of the (null-terminated) @buf string, zero if
1202  * nothing is copied.
1203  */
1204 static inline ssize_t
1205 cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
1206 {
1207 	return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
1208 				      nr_cpu_ids);
1209 }
1210 
1211 /**
1212  * cpumap_print_bitmask_to_buf  - copies the cpumask into the buffer as
1213  *	hex values of cpumask
1214  *
1215  * @buf: the buffer to copy into
1216  * @mask: the cpumask to copy
1217  * @off: in the string from which we are copying, we copy to @buf
1218  * @count: the maximum number of bytes to print
1219  *
1220  * The function prints the cpumask into the buffer as hex values of
1221  * cpumask; Typically used by bin_attribute to export cpumask bitmask
1222  * ABI.
1223  *
1224  * Return: the length of how many bytes have been copied, excluding
1225  * terminating '\0'.
1226  */
1227 static inline ssize_t
1228 cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask,
1229 		loff_t off, size_t count)
1230 {
1231 	return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask),
1232 				   nr_cpu_ids, off, count) - 1;
1233 }
1234 
1235 /**
1236  * cpumap_print_list_to_buf  - copies the cpumask into the buffer as
1237  *	comma-separated list of cpus
1238  * @buf: the buffer to copy into
1239  * @mask: the cpumask to copy
1240  * @off: in the string from which we are copying, we copy to @buf
1241  * @count: the maximum number of bytes to print
1242  *
1243  * Everything is same with the above cpumap_print_bitmask_to_buf()
1244  * except the print format.
1245  *
1246  * Return: the length of how many bytes have been copied, excluding
1247  * terminating '\0'.
1248  */
1249 static inline ssize_t
1250 cpumap_print_list_to_buf(char *buf, const struct cpumask *mask,
1251 		loff_t off, size_t count)
1252 {
1253 	return bitmap_print_list_to_buf(buf, cpumask_bits(mask),
1254 				   nr_cpu_ids, off, count) - 1;
1255 }
1256 
1257 #if NR_CPUS <= BITS_PER_LONG
1258 #define CPU_MASK_ALL							\
1259 (cpumask_t) { {								\
1260 	[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS)	\
1261 } }
1262 #else
1263 #define CPU_MASK_ALL							\
1264 (cpumask_t) { {								\
1265 	[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL,			\
1266 	[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS)	\
1267 } }
1268 #endif /* NR_CPUS > BITS_PER_LONG */
1269 
1270 #define CPU_MASK_NONE							\
1271 (cpumask_t) { {								\
1272 	[0 ... BITS_TO_LONGS(NR_CPUS)-1] =  0UL				\
1273 } }
1274 
1275 #define CPU_MASK_CPU0							\
1276 (cpumask_t) { {								\
1277 	[0] =  1UL							\
1278 } }
1279 
1280 /*
1281  * Provide a valid theoretical max size for cpumap and cpulist sysfs files
1282  * to avoid breaking userspace which may allocate a buffer based on the size
1283  * reported by e.g. fstat.
1284  *
1285  * for cpumap NR_CPUS * 9/32 - 1 should be an exact length.
1286  *
1287  * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up
1288  * to 2 orders of magnitude larger than 8192. And then we divide by 2 to
1289  * cover a worst-case of every other cpu being on one of two nodes for a
1290  * very large NR_CPUS.
1291  *
1292  *  Use PAGE_SIZE as a minimum for smaller configurations while avoiding
1293  *  unsigned comparison to -1.
1294  */
1295 #define CPUMAP_FILE_MAX_BYTES  (((NR_CPUS * 9)/32 > PAGE_SIZE) \
1296 					? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE)
1297 #define CPULIST_FILE_MAX_BYTES  (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE)
1298 
1299 #endif /* __LINUX_CPUMASK_H */
1300