1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_CPUMASK_H 3 #define __LINUX_CPUMASK_H 4 5 /* 6 * Cpumasks provide a bitmap suitable for representing the 7 * set of CPUs in a system, one bit position per CPU number. In general, 8 * only nr_cpu_ids (<= NR_CPUS) bits are valid. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/threads.h> 12 #include <linux/bitmap.h> 13 #include <linux/atomic.h> 14 #include <linux/bug.h> 15 #include <linux/gfp_types.h> 16 #include <linux/numa.h> 17 18 /* Don't assign or return these: may not be this big! */ 19 typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; 20 21 /** 22 * cpumask_bits - get the bits in a cpumask 23 * @maskp: the struct cpumask * 24 * 25 * You should only assume nr_cpu_ids bits of this mask are valid. This is 26 * a macro so it's const-correct. 27 */ 28 #define cpumask_bits(maskp) ((maskp)->bits) 29 30 /** 31 * cpumask_pr_args - printf args to output a cpumask 32 * @maskp: cpumask to be printed 33 * 34 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. 35 */ 36 #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) 37 38 #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 39 #define nr_cpu_ids ((unsigned int)NR_CPUS) 40 #else 41 extern unsigned int nr_cpu_ids; 42 #endif 43 44 static inline void set_nr_cpu_ids(unsigned int nr) 45 { 46 #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 47 WARN_ON(nr != nr_cpu_ids); 48 #else 49 nr_cpu_ids = nr; 50 #endif 51 } 52 53 /* 54 * We have several different "preferred sizes" for the cpumask 55 * operations, depending on operation. 56 * 57 * For example, the bitmap scanning and operating operations have 58 * optimized routines that work for the single-word case, but only when 59 * the size is constant. So if NR_CPUS fits in one single word, we are 60 * better off using that small constant, in order to trigger the 61 * optimized bit finding. That is 'small_cpumask_size'. 62 * 63 * The clearing and copying operations will similarly perform better 64 * with a constant size, but we limit that size arbitrarily to four 65 * words. We call this 'large_cpumask_size'. 66 * 67 * Finally, some operations just want the exact limit, either because 68 * they set bits or just don't have any faster fixed-sized versions. We 69 * call this just 'nr_cpumask_bits'. 70 * 71 * Note that these optional constants are always guaranteed to be at 72 * least as big as 'nr_cpu_ids' itself is, and all our cpumask 73 * allocations are at least that size (see cpumask_size()). The 74 * optimization comes from being able to potentially use a compile-time 75 * constant instead of a run-time generated exact number of CPUs. 76 */ 77 #if NR_CPUS <= BITS_PER_LONG 78 #define small_cpumask_bits ((unsigned int)NR_CPUS) 79 #define large_cpumask_bits ((unsigned int)NR_CPUS) 80 #elif NR_CPUS <= 4*BITS_PER_LONG 81 #define small_cpumask_bits nr_cpu_ids 82 #define large_cpumask_bits ((unsigned int)NR_CPUS) 83 #else 84 #define small_cpumask_bits nr_cpu_ids 85 #define large_cpumask_bits nr_cpu_ids 86 #endif 87 #define nr_cpumask_bits nr_cpu_ids 88 89 /* 90 * The following particular system cpumasks and operations manage 91 * possible, present, active and online cpus. 92 * 93 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable 94 * cpu_present_mask - has bit 'cpu' set iff cpu is populated 95 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler 96 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration 97 * 98 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. 99 * 100 * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs 101 * that it is possible might ever be plugged in at anytime during the 102 * life of that system boot. The cpu_present_mask is dynamic(*), 103 * representing which CPUs are currently plugged in. And 104 * cpu_online_mask is the dynamic subset of cpu_present_mask, 105 * indicating those CPUs available for scheduling. 106 * 107 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, 108 * depending on what ACPI reports as currently plugged in, otherwise 109 * cpu_present_mask is just a copy of cpu_possible_mask. 110 * 111 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not 112 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. 113 * 114 * Subtleties: 115 * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 116 * assumption that their single CPU is online. The UP 117 * cpu_{online,possible,present}_masks are placebos. Changing them 118 * will have no useful affect on the following num_*_cpus() 119 * and cpu_*() macros in the UP case. This ugliness is a UP 120 * optimization - don't waste any instructions or memory references 121 * asking if you're online or how many CPUs there are if there is 122 * only one CPU. 123 */ 124 125 extern struct cpumask __cpu_possible_mask; 126 extern struct cpumask __cpu_online_mask; 127 extern struct cpumask __cpu_present_mask; 128 extern struct cpumask __cpu_active_mask; 129 extern struct cpumask __cpu_dying_mask; 130 #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) 131 #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) 132 #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) 133 #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) 134 #define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) 135 136 extern atomic_t __num_online_cpus; 137 138 extern cpumask_t cpus_booted_once_mask; 139 140 static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) 141 { 142 #ifdef CONFIG_DEBUG_PER_CPU_MAPS 143 WARN_ON_ONCE(cpu >= bits); 144 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ 145 } 146 147 /* verify cpu argument to cpumask_* operators */ 148 static __always_inline unsigned int cpumask_check(unsigned int cpu) 149 { 150 cpu_max_bits_warn(cpu, small_cpumask_bits); 151 return cpu; 152 } 153 154 /** 155 * cpumask_first - get the first cpu in a cpumask 156 * @srcp: the cpumask pointer 157 * 158 * Return: >= nr_cpu_ids if no cpus set. 159 */ 160 static inline unsigned int cpumask_first(const struct cpumask *srcp) 161 { 162 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits); 163 } 164 165 /** 166 * cpumask_first_zero - get the first unset cpu in a cpumask 167 * @srcp: the cpumask pointer 168 * 169 * Return: >= nr_cpu_ids if all cpus are set. 170 */ 171 static inline unsigned int cpumask_first_zero(const struct cpumask *srcp) 172 { 173 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits); 174 } 175 176 /** 177 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 178 * @srcp1: the first input 179 * @srcp2: the second input 180 * 181 * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). 182 */ 183 static inline 184 unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 185 { 186 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 187 } 188 189 /** 190 * cpumask_last - get the last CPU in a cpumask 191 * @srcp: - the cpumask pointer 192 * 193 * Return: >= nr_cpumask_bits if no CPUs set. 194 */ 195 static inline unsigned int cpumask_last(const struct cpumask *srcp) 196 { 197 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits); 198 } 199 200 /** 201 * cpumask_next - get the next cpu in a cpumask 202 * @n: the cpu prior to the place to search (i.e. return will be > @n) 203 * @srcp: the cpumask pointer 204 * 205 * Return: >= nr_cpu_ids if no further cpus set. 206 */ 207 static inline 208 unsigned int cpumask_next(int n, const struct cpumask *srcp) 209 { 210 /* -1 is a legal arg here. */ 211 if (n != -1) 212 cpumask_check(n); 213 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1); 214 } 215 216 /** 217 * cpumask_next_zero - get the next unset cpu in a cpumask 218 * @n: the cpu prior to the place to search (i.e. return will be > @n) 219 * @srcp: the cpumask pointer 220 * 221 * Return: >= nr_cpu_ids if no further cpus unset. 222 */ 223 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 224 { 225 /* -1 is a legal arg here. */ 226 if (n != -1) 227 cpumask_check(n); 228 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1); 229 } 230 231 #if NR_CPUS == 1 232 /* Uniprocessor: there is only one valid CPU */ 233 static inline unsigned int cpumask_local_spread(unsigned int i, int node) 234 { 235 return 0; 236 } 237 238 static inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 239 const struct cpumask *src2p) 240 { 241 return cpumask_first_and(src1p, src2p); 242 } 243 244 static inline unsigned int cpumask_any_distribute(const struct cpumask *srcp) 245 { 246 return cpumask_first(srcp); 247 } 248 #else 249 unsigned int cpumask_local_spread(unsigned int i, int node); 250 unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 251 const struct cpumask *src2p); 252 unsigned int cpumask_any_distribute(const struct cpumask *srcp); 253 #endif /* NR_CPUS */ 254 255 /** 256 * cpumask_next_and - get the next cpu in *src1p & *src2p 257 * @n: the cpu prior to the place to search (i.e. return will be > @n) 258 * @src1p: the first cpumask pointer 259 * @src2p: the second cpumask pointer 260 * 261 * Return: >= nr_cpu_ids if no further cpus set in both. 262 */ 263 static inline 264 unsigned int cpumask_next_and(int n, const struct cpumask *src1p, 265 const struct cpumask *src2p) 266 { 267 /* -1 is a legal arg here. */ 268 if (n != -1) 269 cpumask_check(n); 270 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p), 271 small_cpumask_bits, n + 1); 272 } 273 274 /** 275 * for_each_cpu - iterate over every cpu in a mask 276 * @cpu: the (optionally unsigned) integer iterator 277 * @mask: the cpumask pointer 278 * 279 * After the loop, cpu is >= nr_cpu_ids. 280 */ 281 #define for_each_cpu(cpu, mask) \ 282 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits) 283 284 #if NR_CPUS == 1 285 static inline 286 unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) 287 { 288 cpumask_check(start); 289 if (n != -1) 290 cpumask_check(n); 291 292 /* 293 * Return the first available CPU when wrapping, or when starting before cpu0, 294 * since there is only one valid option. 295 */ 296 if (wrap && n >= 0) 297 return nr_cpumask_bits; 298 299 return cpumask_first(mask); 300 } 301 #else 302 unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); 303 #endif 304 305 /** 306 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location 307 * @cpu: the (optionally unsigned) integer iterator 308 * @mask: the cpumask pointer 309 * @start: the start location 310 * 311 * The implementation does not assume any bit in @mask is set (including @start). 312 * 313 * After the loop, cpu is >= nr_cpu_ids. 314 */ 315 #define for_each_cpu_wrap(cpu, mask, start) \ 316 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start) 317 318 /** 319 * for_each_cpu_and - iterate over every cpu in both masks 320 * @cpu: the (optionally unsigned) integer iterator 321 * @mask1: the first cpumask pointer 322 * @mask2: the second cpumask pointer 323 * 324 * This saves a temporary CPU mask in many places. It is equivalent to: 325 * struct cpumask tmp; 326 * cpumask_and(&tmp, &mask1, &mask2); 327 * for_each_cpu(cpu, &tmp) 328 * ... 329 * 330 * After the loop, cpu is >= nr_cpu_ids. 331 */ 332 #define for_each_cpu_and(cpu, mask1, mask2) \ 333 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 334 335 /** 336 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding 337 * those present in another. 338 * @cpu: the (optionally unsigned) integer iterator 339 * @mask1: the first cpumask pointer 340 * @mask2: the second cpumask pointer 341 * 342 * This saves a temporary CPU mask in many places. It is equivalent to: 343 * struct cpumask tmp; 344 * cpumask_andnot(&tmp, &mask1, &mask2); 345 * for_each_cpu(cpu, &tmp) 346 * ... 347 * 348 * After the loop, cpu is >= nr_cpu_ids. 349 */ 350 #define for_each_cpu_andnot(cpu, mask1, mask2) \ 351 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 352 353 /** 354 * for_each_cpu_or - iterate over every cpu present in either mask 355 * @cpu: the (optionally unsigned) integer iterator 356 * @mask1: the first cpumask pointer 357 * @mask2: the second cpumask pointer 358 * 359 * This saves a temporary CPU mask in many places. It is equivalent to: 360 * struct cpumask tmp; 361 * cpumask_or(&tmp, &mask1, &mask2); 362 * for_each_cpu(cpu, &tmp) 363 * ... 364 * 365 * After the loop, cpu is >= nr_cpu_ids. 366 */ 367 #define for_each_cpu_or(cpu, mask1, mask2) \ 368 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 369 370 /** 371 * cpumask_any_but - return a "random" in a cpumask, but not this one. 372 * @mask: the cpumask to search 373 * @cpu: the cpu to ignore. 374 * 375 * Often used to find any cpu but smp_processor_id() in a mask. 376 * Return: >= nr_cpu_ids if no cpus set. 377 */ 378 static inline 379 unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) 380 { 381 unsigned int i; 382 383 cpumask_check(cpu); 384 for_each_cpu(i, mask) 385 if (i != cpu) 386 break; 387 return i; 388 } 389 390 /** 391 * cpumask_nth - get the Nth cpu in a cpumask 392 * @srcp: the cpumask pointer 393 * @cpu: the Nth cpu to find, starting from 0 394 * 395 * Return: >= nr_cpu_ids if such cpu doesn't exist. 396 */ 397 static inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp) 398 { 399 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu)); 400 } 401 402 /** 403 * cpumask_nth_and - get the Nth cpu in 2 cpumasks 404 * @srcp1: the cpumask pointer 405 * @srcp2: the cpumask pointer 406 * @cpu: the Nth cpu to find, starting from 0 407 * 408 * Return: >= nr_cpu_ids if such cpu doesn't exist. 409 */ 410 static inline 411 unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1, 412 const struct cpumask *srcp2) 413 { 414 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 415 small_cpumask_bits, cpumask_check(cpu)); 416 } 417 418 /** 419 * cpumask_nth_andnot - get the Nth cpu set in 1st cpumask, and clear in 2nd. 420 * @srcp1: the cpumask pointer 421 * @srcp2: the cpumask pointer 422 * @cpu: the Nth cpu to find, starting from 0 423 * 424 * Return: >= nr_cpu_ids if such cpu doesn't exist. 425 */ 426 static inline 427 unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1, 428 const struct cpumask *srcp2) 429 { 430 return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 431 small_cpumask_bits, cpumask_check(cpu)); 432 } 433 434 /** 435 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd. 436 * @srcp1: the cpumask pointer 437 * @srcp2: the cpumask pointer 438 * @srcp3: the cpumask pointer 439 * @cpu: the Nth cpu to find, starting from 0 440 * 441 * Return: >= nr_cpu_ids if such cpu doesn't exist. 442 */ 443 static __always_inline 444 unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1, 445 const struct cpumask *srcp2, 446 const struct cpumask *srcp3) 447 { 448 return find_nth_and_andnot_bit(cpumask_bits(srcp1), 449 cpumask_bits(srcp2), 450 cpumask_bits(srcp3), 451 small_cpumask_bits, cpumask_check(cpu)); 452 } 453 454 #define CPU_BITS_NONE \ 455 { \ 456 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 457 } 458 459 #define CPU_BITS_CPU0 \ 460 { \ 461 [0] = 1UL \ 462 } 463 464 /** 465 * cpumask_set_cpu - set a cpu in a cpumask 466 * @cpu: cpu number (< nr_cpu_ids) 467 * @dstp: the cpumask pointer 468 */ 469 static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 470 { 471 set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 472 } 473 474 static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 475 { 476 __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 477 } 478 479 480 /** 481 * cpumask_clear_cpu - clear a cpu in a cpumask 482 * @cpu: cpu number (< nr_cpu_ids) 483 * @dstp: the cpumask pointer 484 */ 485 static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) 486 { 487 clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 488 } 489 490 static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) 491 { 492 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 493 } 494 495 /** 496 * cpumask_assign_cpu - assign a cpu in a cpumask 497 * @cpu: cpu number (< nr_cpu_ids) 498 * @dstp: the cpumask pointer 499 * @bool: the value to assign 500 */ 501 static __always_inline void cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value) 502 { 503 assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value); 504 } 505 506 static __always_inline void __cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value) 507 { 508 __assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value); 509 } 510 511 /** 512 * cpumask_test_cpu - test for a cpu in a cpumask 513 * @cpu: cpu number (< nr_cpu_ids) 514 * @cpumask: the cpumask pointer 515 * 516 * Return: true if @cpu is set in @cpumask, else returns false 517 */ 518 static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask) 519 { 520 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); 521 } 522 523 /** 524 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask 525 * @cpu: cpu number (< nr_cpu_ids) 526 * @cpumask: the cpumask pointer 527 * 528 * test_and_set_bit wrapper for cpumasks. 529 * 530 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 531 */ 532 static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) 533 { 534 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 535 } 536 537 /** 538 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask 539 * @cpu: cpu number (< nr_cpu_ids) 540 * @cpumask: the cpumask pointer 541 * 542 * test_and_clear_bit wrapper for cpumasks. 543 * 544 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 545 */ 546 static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) 547 { 548 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 549 } 550 551 /** 552 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask 553 * @dstp: the cpumask pointer 554 */ 555 static inline void cpumask_setall(struct cpumask *dstp) 556 { 557 if (small_const_nbits(small_cpumask_bits)) { 558 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits); 559 return; 560 } 561 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); 562 } 563 564 /** 565 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask 566 * @dstp: the cpumask pointer 567 */ 568 static inline void cpumask_clear(struct cpumask *dstp) 569 { 570 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits); 571 } 572 573 /** 574 * cpumask_and - *dstp = *src1p & *src2p 575 * @dstp: the cpumask result 576 * @src1p: the first input 577 * @src2p: the second input 578 * 579 * Return: false if *@dstp is empty, else returns true 580 */ 581 static inline bool cpumask_and(struct cpumask *dstp, 582 const struct cpumask *src1p, 583 const struct cpumask *src2p) 584 { 585 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), 586 cpumask_bits(src2p), small_cpumask_bits); 587 } 588 589 /** 590 * cpumask_or - *dstp = *src1p | *src2p 591 * @dstp: the cpumask result 592 * @src1p: the first input 593 * @src2p: the second input 594 */ 595 static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, 596 const struct cpumask *src2p) 597 { 598 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), 599 cpumask_bits(src2p), small_cpumask_bits); 600 } 601 602 /** 603 * cpumask_xor - *dstp = *src1p ^ *src2p 604 * @dstp: the cpumask result 605 * @src1p: the first input 606 * @src2p: the second input 607 */ 608 static inline void cpumask_xor(struct cpumask *dstp, 609 const struct cpumask *src1p, 610 const struct cpumask *src2p) 611 { 612 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), 613 cpumask_bits(src2p), small_cpumask_bits); 614 } 615 616 /** 617 * cpumask_andnot - *dstp = *src1p & ~*src2p 618 * @dstp: the cpumask result 619 * @src1p: the first input 620 * @src2p: the second input 621 * 622 * Return: false if *@dstp is empty, else returns true 623 */ 624 static inline bool cpumask_andnot(struct cpumask *dstp, 625 const struct cpumask *src1p, 626 const struct cpumask *src2p) 627 { 628 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), 629 cpumask_bits(src2p), small_cpumask_bits); 630 } 631 632 /** 633 * cpumask_equal - *src1p == *src2p 634 * @src1p: the first input 635 * @src2p: the second input 636 * 637 * Return: true if the cpumasks are equal, false if not 638 */ 639 static inline bool cpumask_equal(const struct cpumask *src1p, 640 const struct cpumask *src2p) 641 { 642 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), 643 small_cpumask_bits); 644 } 645 646 /** 647 * cpumask_or_equal - *src1p | *src2p == *src3p 648 * @src1p: the first input 649 * @src2p: the second input 650 * @src3p: the third input 651 * 652 * Return: true if first cpumask ORed with second cpumask == third cpumask, 653 * otherwise false 654 */ 655 static inline bool cpumask_or_equal(const struct cpumask *src1p, 656 const struct cpumask *src2p, 657 const struct cpumask *src3p) 658 { 659 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), 660 cpumask_bits(src3p), small_cpumask_bits); 661 } 662 663 /** 664 * cpumask_intersects - (*src1p & *src2p) != 0 665 * @src1p: the first input 666 * @src2p: the second input 667 * 668 * Return: true if first cpumask ANDed with second cpumask is non-empty, 669 * otherwise false 670 */ 671 static inline bool cpumask_intersects(const struct cpumask *src1p, 672 const struct cpumask *src2p) 673 { 674 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), 675 small_cpumask_bits); 676 } 677 678 /** 679 * cpumask_subset - (*src1p & ~*src2p) == 0 680 * @src1p: the first input 681 * @src2p: the second input 682 * 683 * Return: true if *@src1p is a subset of *@src2p, else returns false 684 */ 685 static inline bool cpumask_subset(const struct cpumask *src1p, 686 const struct cpumask *src2p) 687 { 688 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), 689 small_cpumask_bits); 690 } 691 692 /** 693 * cpumask_empty - *srcp == 0 694 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. 695 * 696 * Return: true if srcp is empty (has no bits set), else false 697 */ 698 static inline bool cpumask_empty(const struct cpumask *srcp) 699 { 700 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits); 701 } 702 703 /** 704 * cpumask_full - *srcp == 0xFFFFFFFF... 705 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. 706 * 707 * Return: true if srcp is full (has all bits set), else false 708 */ 709 static inline bool cpumask_full(const struct cpumask *srcp) 710 { 711 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); 712 } 713 714 /** 715 * cpumask_weight - Count of bits in *srcp 716 * @srcp: the cpumask to count bits (< nr_cpu_ids) in. 717 * 718 * Return: count of bits set in *srcp 719 */ 720 static inline unsigned int cpumask_weight(const struct cpumask *srcp) 721 { 722 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits); 723 } 724 725 /** 726 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2) 727 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 728 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 729 * 730 * Return: count of bits set in both *srcp1 and *srcp2 731 */ 732 static inline unsigned int cpumask_weight_and(const struct cpumask *srcp1, 733 const struct cpumask *srcp2) 734 { 735 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 736 } 737 738 /** 739 * cpumask_shift_right - *dstp = *srcp >> n 740 * @dstp: the cpumask result 741 * @srcp: the input to shift 742 * @n: the number of bits to shift by 743 */ 744 static inline void cpumask_shift_right(struct cpumask *dstp, 745 const struct cpumask *srcp, int n) 746 { 747 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, 748 small_cpumask_bits); 749 } 750 751 /** 752 * cpumask_shift_left - *dstp = *srcp << n 753 * @dstp: the cpumask result 754 * @srcp: the input to shift 755 * @n: the number of bits to shift by 756 */ 757 static inline void cpumask_shift_left(struct cpumask *dstp, 758 const struct cpumask *srcp, int n) 759 { 760 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, 761 nr_cpumask_bits); 762 } 763 764 /** 765 * cpumask_copy - *dstp = *srcp 766 * @dstp: the result 767 * @srcp: the input cpumask 768 */ 769 static inline void cpumask_copy(struct cpumask *dstp, 770 const struct cpumask *srcp) 771 { 772 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits); 773 } 774 775 /** 776 * cpumask_any - pick a "random" cpu from *srcp 777 * @srcp: the input cpumask 778 * 779 * Return: >= nr_cpu_ids if no cpus set. 780 */ 781 #define cpumask_any(srcp) cpumask_first(srcp) 782 783 /** 784 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 785 * @mask1: the first input cpumask 786 * @mask2: the second input cpumask 787 * 788 * Return: >= nr_cpu_ids if no cpus set. 789 */ 790 #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) 791 792 /** 793 * cpumask_of - the cpumask containing just a given cpu 794 * @cpu: the cpu (<= nr_cpu_ids) 795 */ 796 #define cpumask_of(cpu) (get_cpu_mask(cpu)) 797 798 /** 799 * cpumask_parse_user - extract a cpumask from a user string 800 * @buf: the buffer to extract from 801 * @len: the length of the buffer 802 * @dstp: the cpumask to set. 803 * 804 * Return: -errno, or 0 for success. 805 */ 806 static inline int cpumask_parse_user(const char __user *buf, int len, 807 struct cpumask *dstp) 808 { 809 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); 810 } 811 812 /** 813 * cpumask_parselist_user - extract a cpumask from a user string 814 * @buf: the buffer to extract from 815 * @len: the length of the buffer 816 * @dstp: the cpumask to set. 817 * 818 * Return: -errno, or 0 for success. 819 */ 820 static inline int cpumask_parselist_user(const char __user *buf, int len, 821 struct cpumask *dstp) 822 { 823 return bitmap_parselist_user(buf, len, cpumask_bits(dstp), 824 nr_cpumask_bits); 825 } 826 827 /** 828 * cpumask_parse - extract a cpumask from a string 829 * @buf: the buffer to extract from 830 * @dstp: the cpumask to set. 831 * 832 * Return: -errno, or 0 for success. 833 */ 834 static inline int cpumask_parse(const char *buf, struct cpumask *dstp) 835 { 836 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); 837 } 838 839 /** 840 * cpulist_parse - extract a cpumask from a user string of ranges 841 * @buf: the buffer to extract from 842 * @dstp: the cpumask to set. 843 * 844 * Return: -errno, or 0 for success. 845 */ 846 static inline int cpulist_parse(const char *buf, struct cpumask *dstp) 847 { 848 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); 849 } 850 851 /** 852 * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes 853 * 854 * Return: size to allocate for a &struct cpumask in bytes 855 */ 856 static inline unsigned int cpumask_size(void) 857 { 858 return BITS_TO_LONGS(large_cpumask_bits) * sizeof(long); 859 } 860 861 /* 862 * cpumask_var_t: struct cpumask for stack usage. 863 * 864 * Oh, the wicked games we play! In order to make kernel coding a 865 * little more difficult, we typedef cpumask_var_t to an array or a 866 * pointer: doing &mask on an array is a noop, so it still works. 867 * 868 * i.e. 869 * cpumask_var_t tmpmask; 870 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) 871 * return -ENOMEM; 872 * 873 * ... use 'tmpmask' like a normal struct cpumask * ... 874 * 875 * free_cpumask_var(tmpmask); 876 * 877 * 878 * However, one notable exception is there. alloc_cpumask_var() allocates 879 * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has 880 * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. 881 * 882 * cpumask_var_t tmpmask; 883 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) 884 * return -ENOMEM; 885 * 886 * var = *tmpmask; 887 * 888 * This code makes NR_CPUS length memcopy and brings to a memory corruption. 889 * cpumask_copy() provide safe copy functionality. 890 * 891 * Note that there is another evil here: If you define a cpumask_var_t 892 * as a percpu variable then the way to obtain the address of the cpumask 893 * structure differently influences what this_cpu_* operation needs to be 894 * used. Please use this_cpu_cpumask_var_t in those cases. The direct use 895 * of this_cpu_ptr() or this_cpu_read() will lead to failures when the 896 * other type of cpumask_var_t implementation is configured. 897 * 898 * Please also note that __cpumask_var_read_mostly can be used to declare 899 * a cpumask_var_t variable itself (not its content) as read mostly. 900 */ 901 #ifdef CONFIG_CPUMASK_OFFSTACK 902 typedef struct cpumask *cpumask_var_t; 903 904 #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) 905 #define __cpumask_var_read_mostly __read_mostly 906 907 bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 908 909 static inline 910 bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) 911 { 912 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node); 913 } 914 915 /** 916 * alloc_cpumask_var - allocate a struct cpumask 917 * @mask: pointer to cpumask_var_t where the cpumask is returned 918 * @flags: GFP_ flags 919 * 920 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is 921 * a nop returning a constant 1 (in <linux/cpumask.h>). 922 * 923 * See alloc_cpumask_var_node. 924 * 925 * Return: %true if allocation succeeded, %false if not 926 */ 927 static inline 928 bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 929 { 930 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE); 931 } 932 933 static inline 934 bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 935 { 936 return alloc_cpumask_var(mask, flags | __GFP_ZERO); 937 } 938 939 void alloc_bootmem_cpumask_var(cpumask_var_t *mask); 940 void free_cpumask_var(cpumask_var_t mask); 941 void free_bootmem_cpumask_var(cpumask_var_t mask); 942 943 static inline bool cpumask_available(cpumask_var_t mask) 944 { 945 return mask != NULL; 946 } 947 948 #else 949 typedef struct cpumask cpumask_var_t[1]; 950 951 #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) 952 #define __cpumask_var_read_mostly 953 954 static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 955 { 956 return true; 957 } 958 959 static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 960 int node) 961 { 962 return true; 963 } 964 965 static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 966 { 967 cpumask_clear(*mask); 968 return true; 969 } 970 971 static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 972 int node) 973 { 974 cpumask_clear(*mask); 975 return true; 976 } 977 978 static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) 979 { 980 } 981 982 static inline void free_cpumask_var(cpumask_var_t mask) 983 { 984 } 985 986 static inline void free_bootmem_cpumask_var(cpumask_var_t mask) 987 { 988 } 989 990 static inline bool cpumask_available(cpumask_var_t mask) 991 { 992 return true; 993 } 994 #endif /* CONFIG_CPUMASK_OFFSTACK */ 995 996 /* It's common to want to use cpu_all_mask in struct member initializers, 997 * so it has to refer to an address rather than a pointer. */ 998 extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); 999 #define cpu_all_mask to_cpumask(cpu_all_bits) 1000 1001 /* First bits of cpu_bit_bitmap are in fact unset. */ 1002 #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) 1003 1004 #if NR_CPUS == 1 1005 /* Uniprocessor: the possible/online/present masks are always "1" */ 1006 #define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1007 #define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1008 #define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1009 #else 1010 #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) 1011 #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) 1012 #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) 1013 #endif 1014 1015 /* Wrappers for arch boot code to manipulate normally-constant masks */ 1016 void init_cpu_present(const struct cpumask *src); 1017 void init_cpu_possible(const struct cpumask *src); 1018 void init_cpu_online(const struct cpumask *src); 1019 1020 static inline void reset_cpu_possible_mask(void) 1021 { 1022 bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); 1023 } 1024 1025 static inline void 1026 set_cpu_possible(unsigned int cpu, bool possible) 1027 { 1028 if (possible) 1029 cpumask_set_cpu(cpu, &__cpu_possible_mask); 1030 else 1031 cpumask_clear_cpu(cpu, &__cpu_possible_mask); 1032 } 1033 1034 static inline void 1035 set_cpu_present(unsigned int cpu, bool present) 1036 { 1037 if (present) 1038 cpumask_set_cpu(cpu, &__cpu_present_mask); 1039 else 1040 cpumask_clear_cpu(cpu, &__cpu_present_mask); 1041 } 1042 1043 void set_cpu_online(unsigned int cpu, bool online); 1044 1045 static inline void 1046 set_cpu_active(unsigned int cpu, bool active) 1047 { 1048 if (active) 1049 cpumask_set_cpu(cpu, &__cpu_active_mask); 1050 else 1051 cpumask_clear_cpu(cpu, &__cpu_active_mask); 1052 } 1053 1054 static inline void 1055 set_cpu_dying(unsigned int cpu, bool dying) 1056 { 1057 if (dying) 1058 cpumask_set_cpu(cpu, &__cpu_dying_mask); 1059 else 1060 cpumask_clear_cpu(cpu, &__cpu_dying_mask); 1061 } 1062 1063 /** 1064 * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask * 1065 * @bitmap: the bitmap 1066 * 1067 * There are a few places where cpumask_var_t isn't appropriate and 1068 * static cpumasks must be used (eg. very early boot), yet we don't 1069 * expose the definition of 'struct cpumask'. 1070 * 1071 * This does the conversion, and can be used as a constant initializer. 1072 */ 1073 #define to_cpumask(bitmap) \ 1074 ((struct cpumask *)(1 ? (bitmap) \ 1075 : (void *)sizeof(__check_is_bitmap(bitmap)))) 1076 1077 static inline int __check_is_bitmap(const unsigned long *bitmap) 1078 { 1079 return 1; 1080 } 1081 1082 /* 1083 * Special-case data structure for "single bit set only" constant CPU masks. 1084 * 1085 * We pre-generate all the 64 (or 32) possible bit positions, with enough 1086 * padding to the left and the right, and return the constant pointer 1087 * appropriately offset. 1088 */ 1089 extern const unsigned long 1090 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 1091 1092 static inline const struct cpumask *get_cpu_mask(unsigned int cpu) 1093 { 1094 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 1095 p -= cpu / BITS_PER_LONG; 1096 return to_cpumask(p); 1097 } 1098 1099 #if NR_CPUS > 1 1100 /** 1101 * num_online_cpus() - Read the number of online CPUs 1102 * 1103 * Despite the fact that __num_online_cpus is of type atomic_t, this 1104 * interface gives only a momentary snapshot and is not protected against 1105 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held 1106 * region. 1107 * 1108 * Return: momentary snapshot of the number of online CPUs 1109 */ 1110 static __always_inline unsigned int num_online_cpus(void) 1111 { 1112 return raw_atomic_read(&__num_online_cpus); 1113 } 1114 #define num_possible_cpus() cpumask_weight(cpu_possible_mask) 1115 #define num_present_cpus() cpumask_weight(cpu_present_mask) 1116 #define num_active_cpus() cpumask_weight(cpu_active_mask) 1117 1118 static inline bool cpu_online(unsigned int cpu) 1119 { 1120 return cpumask_test_cpu(cpu, cpu_online_mask); 1121 } 1122 1123 static inline bool cpu_possible(unsigned int cpu) 1124 { 1125 return cpumask_test_cpu(cpu, cpu_possible_mask); 1126 } 1127 1128 static inline bool cpu_present(unsigned int cpu) 1129 { 1130 return cpumask_test_cpu(cpu, cpu_present_mask); 1131 } 1132 1133 static inline bool cpu_active(unsigned int cpu) 1134 { 1135 return cpumask_test_cpu(cpu, cpu_active_mask); 1136 } 1137 1138 static inline bool cpu_dying(unsigned int cpu) 1139 { 1140 return cpumask_test_cpu(cpu, cpu_dying_mask); 1141 } 1142 1143 #else 1144 1145 #define num_online_cpus() 1U 1146 #define num_possible_cpus() 1U 1147 #define num_present_cpus() 1U 1148 #define num_active_cpus() 1U 1149 1150 static inline bool cpu_online(unsigned int cpu) 1151 { 1152 return cpu == 0; 1153 } 1154 1155 static inline bool cpu_possible(unsigned int cpu) 1156 { 1157 return cpu == 0; 1158 } 1159 1160 static inline bool cpu_present(unsigned int cpu) 1161 { 1162 return cpu == 0; 1163 } 1164 1165 static inline bool cpu_active(unsigned int cpu) 1166 { 1167 return cpu == 0; 1168 } 1169 1170 static inline bool cpu_dying(unsigned int cpu) 1171 { 1172 return false; 1173 } 1174 1175 #endif /* NR_CPUS > 1 */ 1176 1177 #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 1178 1179 #if NR_CPUS <= BITS_PER_LONG 1180 #define CPU_BITS_ALL \ 1181 { \ 1182 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1183 } 1184 1185 #else /* NR_CPUS > BITS_PER_LONG */ 1186 1187 #define CPU_BITS_ALL \ 1188 { \ 1189 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1190 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1191 } 1192 #endif /* NR_CPUS > BITS_PER_LONG */ 1193 1194 /** 1195 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either 1196 * as comma-separated list of cpus or hex values of cpumask 1197 * @list: indicates whether the cpumap must be list 1198 * @mask: the cpumask to copy 1199 * @buf: the buffer to copy into 1200 * 1201 * Return: the length of the (null-terminated) @buf string, zero if 1202 * nothing is copied. 1203 */ 1204 static inline ssize_t 1205 cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) 1206 { 1207 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), 1208 nr_cpu_ids); 1209 } 1210 1211 /** 1212 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as 1213 * hex values of cpumask 1214 * 1215 * @buf: the buffer to copy into 1216 * @mask: the cpumask to copy 1217 * @off: in the string from which we are copying, we copy to @buf 1218 * @count: the maximum number of bytes to print 1219 * 1220 * The function prints the cpumask into the buffer as hex values of 1221 * cpumask; Typically used by bin_attribute to export cpumask bitmask 1222 * ABI. 1223 * 1224 * Return: the length of how many bytes have been copied, excluding 1225 * terminating '\0'. 1226 */ 1227 static inline ssize_t 1228 cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, 1229 loff_t off, size_t count) 1230 { 1231 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), 1232 nr_cpu_ids, off, count) - 1; 1233 } 1234 1235 /** 1236 * cpumap_print_list_to_buf - copies the cpumask into the buffer as 1237 * comma-separated list of cpus 1238 * @buf: the buffer to copy into 1239 * @mask: the cpumask to copy 1240 * @off: in the string from which we are copying, we copy to @buf 1241 * @count: the maximum number of bytes to print 1242 * 1243 * Everything is same with the above cpumap_print_bitmask_to_buf() 1244 * except the print format. 1245 * 1246 * Return: the length of how many bytes have been copied, excluding 1247 * terminating '\0'. 1248 */ 1249 static inline ssize_t 1250 cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, 1251 loff_t off, size_t count) 1252 { 1253 return bitmap_print_list_to_buf(buf, cpumask_bits(mask), 1254 nr_cpu_ids, off, count) - 1; 1255 } 1256 1257 #if NR_CPUS <= BITS_PER_LONG 1258 #define CPU_MASK_ALL \ 1259 (cpumask_t) { { \ 1260 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1261 } } 1262 #else 1263 #define CPU_MASK_ALL \ 1264 (cpumask_t) { { \ 1265 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1266 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1267 } } 1268 #endif /* NR_CPUS > BITS_PER_LONG */ 1269 1270 #define CPU_MASK_NONE \ 1271 (cpumask_t) { { \ 1272 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 1273 } } 1274 1275 #define CPU_MASK_CPU0 \ 1276 (cpumask_t) { { \ 1277 [0] = 1UL \ 1278 } } 1279 1280 /* 1281 * Provide a valid theoretical max size for cpumap and cpulist sysfs files 1282 * to avoid breaking userspace which may allocate a buffer based on the size 1283 * reported by e.g. fstat. 1284 * 1285 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length. 1286 * 1287 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up 1288 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to 1289 * cover a worst-case of every other cpu being on one of two nodes for a 1290 * very large NR_CPUS. 1291 * 1292 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding 1293 * unsigned comparison to -1. 1294 */ 1295 #define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \ 1296 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE) 1297 #define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE) 1298 1299 #endif /* __LINUX_CPUMASK_H */ 1300