xref: /linux-6.15/include/linux/compaction.h (revision 9861a62c)
1 #ifndef _LINUX_COMPACTION_H
2 #define _LINUX_COMPACTION_H
3 
4 /*
5  * Determines how hard direct compaction should try to succeed.
6  * Lower value means higher priority, analogically to reclaim priority.
7  */
8 enum compact_priority {
9 	COMPACT_PRIO_SYNC_FULL,
10 	MIN_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_FULL,
11 	COMPACT_PRIO_SYNC_LIGHT,
12 	DEF_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_LIGHT,
13 	COMPACT_PRIO_ASYNC,
14 	INIT_COMPACT_PRIORITY = COMPACT_PRIO_ASYNC
15 };
16 
17 /* Return values for compact_zone() and try_to_compact_pages() */
18 /* When adding new states, please adjust include/trace/events/compaction.h */
19 enum compact_result {
20 	/* For more detailed tracepoint output - internal to compaction */
21 	COMPACT_NOT_SUITABLE_ZONE,
22 	/*
23 	 * compaction didn't start as it was not possible or direct reclaim
24 	 * was more suitable
25 	 */
26 	COMPACT_SKIPPED,
27 	/* compaction didn't start as it was deferred due to past failures */
28 	COMPACT_DEFERRED,
29 
30 	/* compaction not active last round */
31 	COMPACT_INACTIVE = COMPACT_DEFERRED,
32 
33 	/* For more detailed tracepoint output - internal to compaction */
34 	COMPACT_NO_SUITABLE_PAGE,
35 	/* compaction should continue to another pageblock */
36 	COMPACT_CONTINUE,
37 
38 	/*
39 	 * The full zone was compacted scanned but wasn't successfull to compact
40 	 * suitable pages.
41 	 */
42 	COMPACT_COMPLETE,
43 	/*
44 	 * direct compaction has scanned part of the zone but wasn't successfull
45 	 * to compact suitable pages.
46 	 */
47 	COMPACT_PARTIAL_SKIPPED,
48 
49 	/* compaction terminated prematurely due to lock contentions */
50 	COMPACT_CONTENDED,
51 
52 	/*
53 	 * direct compaction terminated after concluding that the allocation
54 	 * should now succeed
55 	 */
56 	COMPACT_SUCCESS,
57 };
58 
59 struct alloc_context; /* in mm/internal.h */
60 
61 /*
62  * Number of free order-0 pages that should be available above given watermark
63  * to make sure compaction has reasonable chance of not running out of free
64  * pages that it needs to isolate as migration target during its work.
65  */
66 static inline unsigned long compact_gap(unsigned int order)
67 {
68 	/*
69 	 * Although all the isolations for migration are temporary, compaction
70 	 * free scanner may have up to 1 << order pages on its list and then
71 	 * try to split an (order - 1) free page. At that point, a gap of
72 	 * 1 << order might not be enough, so it's safer to require twice that
73 	 * amount. Note that the number of pages on the list is also
74 	 * effectively limited by COMPACT_CLUSTER_MAX, as that's the maximum
75 	 * that the migrate scanner can have isolated on migrate list, and free
76 	 * scanner is only invoked when the number of isolated free pages is
77 	 * lower than that. But it's not worth to complicate the formula here
78 	 * as a bigger gap for higher orders than strictly necessary can also
79 	 * improve chances of compaction success.
80 	 */
81 	return 2UL << order;
82 }
83 
84 #ifdef CONFIG_COMPACTION
85 extern int sysctl_compact_memory;
86 extern int sysctl_compaction_handler(struct ctl_table *table, int write,
87 			void __user *buffer, size_t *length, loff_t *ppos);
88 extern int sysctl_extfrag_threshold;
89 extern int sysctl_extfrag_handler(struct ctl_table *table, int write,
90 			void __user *buffer, size_t *length, loff_t *ppos);
91 extern int sysctl_compact_unevictable_allowed;
92 
93 extern int fragmentation_index(struct zone *zone, unsigned int order);
94 extern enum compact_result try_to_compact_pages(gfp_t gfp_mask,
95 		unsigned int order, unsigned int alloc_flags,
96 		const struct alloc_context *ac, enum compact_priority prio);
97 extern void reset_isolation_suitable(pg_data_t *pgdat);
98 extern enum compact_result compaction_suitable(struct zone *zone, int order,
99 		unsigned int alloc_flags, int classzone_idx);
100 
101 extern void defer_compaction(struct zone *zone, int order);
102 extern bool compaction_deferred(struct zone *zone, int order);
103 extern void compaction_defer_reset(struct zone *zone, int order,
104 				bool alloc_success);
105 extern bool compaction_restarting(struct zone *zone, int order);
106 
107 /* Compaction has made some progress and retrying makes sense */
108 static inline bool compaction_made_progress(enum compact_result result)
109 {
110 	/*
111 	 * Even though this might sound confusing this in fact tells us
112 	 * that the compaction successfully isolated and migrated some
113 	 * pageblocks.
114 	 */
115 	if (result == COMPACT_SUCCESS)
116 		return true;
117 
118 	return false;
119 }
120 
121 /* Compaction has failed and it doesn't make much sense to keep retrying. */
122 static inline bool compaction_failed(enum compact_result result)
123 {
124 	/* All zones were scanned completely and still not result. */
125 	if (result == COMPACT_COMPLETE)
126 		return true;
127 
128 	return false;
129 }
130 
131 /*
132  * Compaction  has backed off for some reason. It might be throttling or
133  * lock contention. Retrying is still worthwhile.
134  */
135 static inline bool compaction_withdrawn(enum compact_result result)
136 {
137 	/*
138 	 * Compaction backed off due to watermark checks for order-0
139 	 * so the regular reclaim has to try harder and reclaim something.
140 	 */
141 	if (result == COMPACT_SKIPPED)
142 		return true;
143 
144 	/*
145 	 * If compaction is deferred for high-order allocations, it is
146 	 * because sync compaction recently failed. If this is the case
147 	 * and the caller requested a THP allocation, we do not want
148 	 * to heavily disrupt the system, so we fail the allocation
149 	 * instead of entering direct reclaim.
150 	 */
151 	if (result == COMPACT_DEFERRED)
152 		return true;
153 
154 	/*
155 	 * If compaction in async mode encounters contention or blocks higher
156 	 * priority task we back off early rather than cause stalls.
157 	 */
158 	if (result == COMPACT_CONTENDED)
159 		return true;
160 
161 	/*
162 	 * Page scanners have met but we haven't scanned full zones so this
163 	 * is a back off in fact.
164 	 */
165 	if (result == COMPACT_PARTIAL_SKIPPED)
166 		return true;
167 
168 	return false;
169 }
170 
171 
172 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
173 					int alloc_flags);
174 
175 extern int kcompactd_run(int nid);
176 extern void kcompactd_stop(int nid);
177 extern void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx);
178 
179 #else
180 static inline void reset_isolation_suitable(pg_data_t *pgdat)
181 {
182 }
183 
184 static inline enum compact_result compaction_suitable(struct zone *zone, int order,
185 					int alloc_flags, int classzone_idx)
186 {
187 	return COMPACT_SKIPPED;
188 }
189 
190 static inline void defer_compaction(struct zone *zone, int order)
191 {
192 }
193 
194 static inline bool compaction_deferred(struct zone *zone, int order)
195 {
196 	return true;
197 }
198 
199 static inline bool compaction_made_progress(enum compact_result result)
200 {
201 	return false;
202 }
203 
204 static inline bool compaction_failed(enum compact_result result)
205 {
206 	return false;
207 }
208 
209 static inline bool compaction_withdrawn(enum compact_result result)
210 {
211 	return true;
212 }
213 
214 static inline int kcompactd_run(int nid)
215 {
216 	return 0;
217 }
218 static inline void kcompactd_stop(int nid)
219 {
220 }
221 
222 static inline void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
223 {
224 }
225 
226 #endif /* CONFIG_COMPACTION */
227 
228 #if defined(CONFIG_COMPACTION) && defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
229 struct node;
230 extern int compaction_register_node(struct node *node);
231 extern void compaction_unregister_node(struct node *node);
232 
233 #else
234 
235 static inline int compaction_register_node(struct node *node)
236 {
237 	return 0;
238 }
239 
240 static inline void compaction_unregister_node(struct node *node)
241 {
242 }
243 #endif /* CONFIG_COMPACTION && CONFIG_SYSFS && CONFIG_NUMA */
244 
245 #endif /* _LINUX_COMPACTION_H */
246