xref: /linux-6.15/include/linux/clocksource.h (revision b8bb7671)
1 /*  linux/include/linux/clocksource.h
2  *
3  *  This file contains the structure definitions for clocksources.
4  *
5  *  If you are not a clocksource, or timekeeping code, you should
6  *  not be including this file!
7  */
8 #ifndef _LINUX_CLOCKSOURCE_H
9 #define _LINUX_CLOCKSOURCE_H
10 
11 #include <linux/types.h>
12 #include <linux/timex.h>
13 #include <linux/time.h>
14 #include <linux/list.h>
15 #include <linux/cache.h>
16 #include <linux/timer.h>
17 #include <asm/div64.h>
18 #include <asm/io.h>
19 
20 /* clocksource cycle base type */
21 typedef u64 cycle_t;
22 struct clocksource;
23 
24 /**
25  * struct cyclecounter - hardware abstraction for a free running counter
26  *	Provides completely state-free accessors to the underlying hardware.
27  *	Depending on which hardware it reads, the cycle counter may wrap
28  *	around quickly. Locking rules (if necessary) have to be defined
29  *	by the implementor and user of specific instances of this API.
30  *
31  * @read:		returns the current cycle value
32  * @mask:		bitmask for two's complement
33  *			subtraction of non 64 bit counters,
34  *			see CLOCKSOURCE_MASK() helper macro
35  * @mult:		cycle to nanosecond multiplier
36  * @shift:		cycle to nanosecond divisor (power of two)
37  */
38 struct cyclecounter {
39 	cycle_t (*read)(const struct cyclecounter *cc);
40 	cycle_t mask;
41 	u32 mult;
42 	u32 shift;
43 };
44 
45 /**
46  * struct timecounter - layer above a %struct cyclecounter which counts nanoseconds
47  *	Contains the state needed by timecounter_read() to detect
48  *	cycle counter wrap around. Initialize with
49  *	timecounter_init(). Also used to convert cycle counts into the
50  *	corresponding nanosecond counts with timecounter_cyc2time(). Users
51  *	of this code are responsible for initializing the underlying
52  *	cycle counter hardware, locking issues and reading the time
53  *	more often than the cycle counter wraps around. The nanosecond
54  *	counter will only wrap around after ~585 years.
55  *
56  * @cc:			the cycle counter used by this instance
57  * @cycle_last:		most recent cycle counter value seen by
58  *			timecounter_read()
59  * @nsec:		continuously increasing count
60  */
61 struct timecounter {
62 	const struct cyclecounter *cc;
63 	cycle_t cycle_last;
64 	u64 nsec;
65 };
66 
67 /**
68  * cyclecounter_cyc2ns - converts cycle counter cycles to nanoseconds
69  * @tc:		Pointer to cycle counter.
70  * @cycles:	Cycles
71  *
72  * XXX - This could use some mult_lxl_ll() asm optimization. Same code
73  * as in cyc2ns, but with unsigned result.
74  */
75 static inline u64 cyclecounter_cyc2ns(const struct cyclecounter *cc,
76 				      cycle_t cycles)
77 {
78 	u64 ret = (u64)cycles;
79 	ret = (ret * cc->mult) >> cc->shift;
80 	return ret;
81 }
82 
83 /**
84  * timecounter_init - initialize a time counter
85  * @tc:			Pointer to time counter which is to be initialized/reset
86  * @cc:			A cycle counter, ready to be used.
87  * @start_tstamp:	Arbitrary initial time stamp.
88  *
89  * After this call the current cycle register (roughly) corresponds to
90  * the initial time stamp. Every call to timecounter_read() increments
91  * the time stamp counter by the number of elapsed nanoseconds.
92  */
93 extern void timecounter_init(struct timecounter *tc,
94 			     const struct cyclecounter *cc,
95 			     u64 start_tstamp);
96 
97 /**
98  * timecounter_read - return nanoseconds elapsed since timecounter_init()
99  *                    plus the initial time stamp
100  * @tc:          Pointer to time counter.
101  *
102  * In other words, keeps track of time since the same epoch as
103  * the function which generated the initial time stamp.
104  */
105 extern u64 timecounter_read(struct timecounter *tc);
106 
107 /**
108  * timecounter_cyc2time - convert a cycle counter to same
109  *                        time base as values returned by
110  *                        timecounter_read()
111  * @tc:		Pointer to time counter.
112  * @cycle:	a value returned by tc->cc->read()
113  *
114  * Cycle counts that are converted correctly as long as they
115  * fall into the interval [-1/2 max cycle count, +1/2 max cycle count],
116  * with "max cycle count" == cs->mask+1.
117  *
118  * This allows conversion of cycle counter values which were generated
119  * in the past.
120  */
121 extern u64 timecounter_cyc2time(struct timecounter *tc,
122 				cycle_t cycle_tstamp);
123 
124 /**
125  * struct clocksource - hardware abstraction for a free running counter
126  *	Provides mostly state-free accessors to the underlying hardware.
127  *	This is the structure used for system time.
128  *
129  * @name:		ptr to clocksource name
130  * @list:		list head for registration
131  * @rating:		rating value for selection (higher is better)
132  *			To avoid rating inflation the following
133  *			list should give you a guide as to how
134  *			to assign your clocksource a rating
135  *			1-99: Unfit for real use
136  *				Only available for bootup and testing purposes.
137  *			100-199: Base level usability.
138  *				Functional for real use, but not desired.
139  *			200-299: Good.
140  *				A correct and usable clocksource.
141  *			300-399: Desired.
142  *				A reasonably fast and accurate clocksource.
143  *			400-499: Perfect
144  *				The ideal clocksource. A must-use where
145  *				available.
146  * @read:		returns a cycle value
147  * @mask:		bitmask for two's complement
148  *			subtraction of non 64 bit counters
149  * @mult:		cycle to nanosecond multiplier (adjusted by NTP)
150  * @mult_orig:		cycle to nanosecond multiplier (unadjusted by NTP)
151  * @shift:		cycle to nanosecond divisor (power of two)
152  * @flags:		flags describing special properties
153  * @vread:		vsyscall based read
154  * @resume:		resume function for the clocksource, if necessary
155  * @cycle_interval:	Used internally by timekeeping core, please ignore.
156  * @xtime_interval:	Used internally by timekeeping core, please ignore.
157  */
158 struct clocksource {
159 	/*
160 	 * First part of structure is read mostly
161 	 */
162 	char *name;
163 	struct list_head list;
164 	int rating;
165 	cycle_t (*read)(void);
166 	cycle_t mask;
167 	u32 mult;
168 	u32 mult_orig;
169 	u32 shift;
170 	unsigned long flags;
171 	cycle_t (*vread)(void);
172 	void (*resume)(void);
173 #ifdef CONFIG_IA64
174 	void *fsys_mmio;        /* used by fsyscall asm code */
175 #define CLKSRC_FSYS_MMIO_SET(mmio, addr)      ((mmio) = (addr))
176 #else
177 #define CLKSRC_FSYS_MMIO_SET(mmio, addr)      do { } while (0)
178 #endif
179 
180 	/* timekeeping specific data, ignore */
181 	cycle_t cycle_interval;
182 	u64	xtime_interval;
183 	u32	raw_interval;
184 	/*
185 	 * Second part is written at each timer interrupt
186 	 * Keep it in a different cache line to dirty no
187 	 * more than one cache line.
188 	 */
189 	cycle_t cycle_last ____cacheline_aligned_in_smp;
190 	u64 xtime_nsec;
191 	s64 error;
192 	struct timespec raw_time;
193 
194 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
195 	/* Watchdog related data, used by the framework */
196 	struct list_head wd_list;
197 	cycle_t wd_last;
198 #endif
199 };
200 
201 extern struct clocksource *clock;	/* current clocksource */
202 
203 /*
204  * Clock source flags bits::
205  */
206 #define CLOCK_SOURCE_IS_CONTINUOUS		0x01
207 #define CLOCK_SOURCE_MUST_VERIFY		0x02
208 
209 #define CLOCK_SOURCE_WATCHDOG			0x10
210 #define CLOCK_SOURCE_VALID_FOR_HRES		0x20
211 
212 /* simplify initialization of mask field */
213 #define CLOCKSOURCE_MASK(bits) (cycle_t)((bits) < 64 ? ((1ULL<<(bits))-1) : -1)
214 
215 /**
216  * clocksource_khz2mult - calculates mult from khz and shift
217  * @khz:		Clocksource frequency in KHz
218  * @shift_constant:	Clocksource shift factor
219  *
220  * Helper functions that converts a khz counter frequency to a timsource
221  * multiplier, given the clocksource shift value
222  */
223 static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant)
224 {
225 	/*  khz = cyc/(Million ns)
226 	 *  mult/2^shift  = ns/cyc
227 	 *  mult = ns/cyc * 2^shift
228 	 *  mult = 1Million/khz * 2^shift
229 	 *  mult = 1000000 * 2^shift / khz
230 	 *  mult = (1000000<<shift) / khz
231 	 */
232 	u64 tmp = ((u64)1000000) << shift_constant;
233 
234 	tmp += khz/2; /* round for do_div */
235 	do_div(tmp, khz);
236 
237 	return (u32)tmp;
238 }
239 
240 /**
241  * clocksource_hz2mult - calculates mult from hz and shift
242  * @hz:			Clocksource frequency in Hz
243  * @shift_constant:	Clocksource shift factor
244  *
245  * Helper functions that converts a hz counter
246  * frequency to a timsource multiplier, given the
247  * clocksource shift value
248  */
249 static inline u32 clocksource_hz2mult(u32 hz, u32 shift_constant)
250 {
251 	/*  hz = cyc/(Billion ns)
252 	 *  mult/2^shift  = ns/cyc
253 	 *  mult = ns/cyc * 2^shift
254 	 *  mult = 1Billion/hz * 2^shift
255 	 *  mult = 1000000000 * 2^shift / hz
256 	 *  mult = (1000000000<<shift) / hz
257 	 */
258 	u64 tmp = ((u64)1000000000) << shift_constant;
259 
260 	tmp += hz/2; /* round for do_div */
261 	do_div(tmp, hz);
262 
263 	return (u32)tmp;
264 }
265 
266 /**
267  * clocksource_read: - Access the clocksource's current cycle value
268  * @cs:		pointer to clocksource being read
269  *
270  * Uses the clocksource to return the current cycle_t value
271  */
272 static inline cycle_t clocksource_read(struct clocksource *cs)
273 {
274 	return cs->read();
275 }
276 
277 /**
278  * cyc2ns - converts clocksource cycles to nanoseconds
279  * @cs:		Pointer to clocksource
280  * @cycles:	Cycles
281  *
282  * Uses the clocksource and ntp ajdustment to convert cycle_ts to nanoseconds.
283  *
284  * XXX - This could use some mult_lxl_ll() asm optimization
285  */
286 static inline s64 cyc2ns(struct clocksource *cs, cycle_t cycles)
287 {
288 	u64 ret = (u64)cycles;
289 	ret = (ret * cs->mult) >> cs->shift;
290 	return ret;
291 }
292 
293 /**
294  * clocksource_calculate_interval - Calculates a clocksource interval struct
295  *
296  * @c:		Pointer to clocksource.
297  * @length_nsec: Desired interval length in nanoseconds.
298  *
299  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
300  * pair and interval request.
301  *
302  * Unless you're the timekeeping code, you should not be using this!
303  */
304 static inline void clocksource_calculate_interval(struct clocksource *c,
305 					  	  unsigned long length_nsec)
306 {
307 	u64 tmp;
308 
309 	/* Do the ns -> cycle conversion first, using original mult */
310 	tmp = length_nsec;
311 	tmp <<= c->shift;
312 	tmp += c->mult_orig/2;
313 	do_div(tmp, c->mult_orig);
314 
315 	c->cycle_interval = (cycle_t)tmp;
316 	if (c->cycle_interval == 0)
317 		c->cycle_interval = 1;
318 
319 	/* Go back from cycles -> shifted ns, this time use ntp adjused mult */
320 	c->xtime_interval = (u64)c->cycle_interval * c->mult;
321 	c->raw_interval = ((u64)c->cycle_interval * c->mult_orig) >> c->shift;
322 }
323 
324 
325 /* used to install a new clocksource */
326 extern int clocksource_register(struct clocksource*);
327 extern void clocksource_unregister(struct clocksource*);
328 extern void clocksource_touch_watchdog(void);
329 extern struct clocksource* clocksource_get_next(void);
330 extern void clocksource_change_rating(struct clocksource *cs, int rating);
331 extern void clocksource_resume(void);
332 
333 #ifdef CONFIG_GENERIC_TIME_VSYSCALL
334 extern void update_vsyscall(struct timespec *ts, struct clocksource *c);
335 extern void update_vsyscall_tz(void);
336 #else
337 static inline void update_vsyscall(struct timespec *ts, struct clocksource *c)
338 {
339 }
340 
341 static inline void update_vsyscall_tz(void)
342 {
343 }
344 #endif
345 
346 #endif /* _LINUX_CLOCKSOURCE_H */
347