xref: /linux-6.15/include/linux/cgroup-defs.h (revision bb7e5ce7)
1 /*
2  * linux/cgroup-defs.h - basic definitions for cgroup
3  *
4  * This file provides basic type and interface.  Include this file directly
5  * only if necessary to avoid cyclic dependencies.
6  */
7 #ifndef _LINUX_CGROUP_DEFS_H
8 #define _LINUX_CGROUP_DEFS_H
9 
10 #include <linux/limits.h>
11 #include <linux/list.h>
12 #include <linux/idr.h>
13 #include <linux/wait.h>
14 #include <linux/mutex.h>
15 #include <linux/rcupdate.h>
16 #include <linux/refcount.h>
17 #include <linux/percpu-refcount.h>
18 #include <linux/percpu-rwsem.h>
19 #include <linux/workqueue.h>
20 #include <linux/bpf-cgroup.h>
21 
22 #ifdef CONFIG_CGROUPS
23 
24 struct cgroup;
25 struct cgroup_root;
26 struct cgroup_subsys;
27 struct cgroup_taskset;
28 struct kernfs_node;
29 struct kernfs_ops;
30 struct kernfs_open_file;
31 struct seq_file;
32 
33 #define MAX_CGROUP_TYPE_NAMELEN 32
34 #define MAX_CGROUP_ROOT_NAMELEN 64
35 #define MAX_CFTYPE_NAME		64
36 
37 /* define the enumeration of all cgroup subsystems */
38 #define SUBSYS(_x) _x ## _cgrp_id,
39 enum cgroup_subsys_id {
40 #include <linux/cgroup_subsys.h>
41 	CGROUP_SUBSYS_COUNT,
42 };
43 #undef SUBSYS
44 
45 /* bits in struct cgroup_subsys_state flags field */
46 enum {
47 	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
48 	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
49 	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
50 	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
51 	CSS_DYING	= (1 << 4), /* css is dying */
52 };
53 
54 /* bits in struct cgroup flags field */
55 enum {
56 	/* Control Group requires release notifications to userspace */
57 	CGRP_NOTIFY_ON_RELEASE,
58 	/*
59 	 * Clone the parent's configuration when creating a new child
60 	 * cpuset cgroup.  For historical reasons, this option can be
61 	 * specified at mount time and thus is implemented here.
62 	 */
63 	CGRP_CPUSET_CLONE_CHILDREN,
64 };
65 
66 /* cgroup_root->flags */
67 enum {
68 	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
69 	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
70 
71 	/*
72 	 * Consider namespaces as delegation boundaries.  If this flag is
73 	 * set, controller specific interface files in a namespace root
74 	 * aren't writeable from inside the namespace.
75 	 */
76 	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
77 
78 	/*
79 	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
80 	 */
81 	CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
82 };
83 
84 /* cftype->flags */
85 enum {
86 	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
87 	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
88 	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */
89 
90 	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
91 	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
92 
93 	/* internal flags, do not use outside cgroup core proper */
94 	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
95 	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
96 };
97 
98 /*
99  * cgroup_file is the handle for a file instance created in a cgroup which
100  * is used, for example, to generate file changed notifications.  This can
101  * be obtained by setting cftype->file_offset.
102  */
103 struct cgroup_file {
104 	/* do not access any fields from outside cgroup core */
105 	struct kernfs_node *kn;
106 };
107 
108 /*
109  * Per-subsystem/per-cgroup state maintained by the system.  This is the
110  * fundamental structural building block that controllers deal with.
111  *
112  * Fields marked with "PI:" are public and immutable and may be accessed
113  * directly without synchronization.
114  */
115 struct cgroup_subsys_state {
116 	/* PI: the cgroup that this css is attached to */
117 	struct cgroup *cgroup;
118 
119 	/* PI: the cgroup subsystem that this css is attached to */
120 	struct cgroup_subsys *ss;
121 
122 	/* reference count - access via css_[try]get() and css_put() */
123 	struct percpu_ref refcnt;
124 
125 	/* siblings list anchored at the parent's ->children */
126 	struct list_head sibling;
127 	struct list_head children;
128 
129 	/*
130 	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
131 	 * matching css can be looked up using css_from_id().
132 	 */
133 	int id;
134 
135 	unsigned int flags;
136 
137 	/*
138 	 * Monotonically increasing unique serial number which defines a
139 	 * uniform order among all csses.  It's guaranteed that all
140 	 * ->children lists are in the ascending order of ->serial_nr and
141 	 * used to allow interrupting and resuming iterations.
142 	 */
143 	u64 serial_nr;
144 
145 	/*
146 	 * Incremented by online self and children.  Used to guarantee that
147 	 * parents are not offlined before their children.
148 	 */
149 	atomic_t online_cnt;
150 
151 	/* percpu_ref killing and RCU release */
152 	struct rcu_head rcu_head;
153 	struct work_struct destroy_work;
154 
155 	/*
156 	 * PI: the parent css.	Placed here for cache proximity to following
157 	 * fields of the containing structure.
158 	 */
159 	struct cgroup_subsys_state *parent;
160 };
161 
162 /*
163  * A css_set is a structure holding pointers to a set of
164  * cgroup_subsys_state objects. This saves space in the task struct
165  * object and speeds up fork()/exit(), since a single inc/dec and a
166  * list_add()/del() can bump the reference count on the entire cgroup
167  * set for a task.
168  */
169 struct css_set {
170 	/*
171 	 * Set of subsystem states, one for each subsystem. This array is
172 	 * immutable after creation apart from the init_css_set during
173 	 * subsystem registration (at boot time).
174 	 */
175 	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
176 
177 	/* reference count */
178 	refcount_t refcount;
179 
180 	/*
181 	 * For a domain cgroup, the following points to self.  If threaded,
182 	 * to the matching cset of the nearest domain ancestor.  The
183 	 * dom_cset provides access to the domain cgroup and its csses to
184 	 * which domain level resource consumptions should be charged.
185 	 */
186 	struct css_set *dom_cset;
187 
188 	/* the default cgroup associated with this css_set */
189 	struct cgroup *dfl_cgrp;
190 
191 	/* internal task count, protected by css_set_lock */
192 	int nr_tasks;
193 
194 	/*
195 	 * Lists running through all tasks using this cgroup group.
196 	 * mg_tasks lists tasks which belong to this cset but are in the
197 	 * process of being migrated out or in.  Protected by
198 	 * css_set_rwsem, but, during migration, once tasks are moved to
199 	 * mg_tasks, it can be read safely while holding cgroup_mutex.
200 	 */
201 	struct list_head tasks;
202 	struct list_head mg_tasks;
203 
204 	/* all css_task_iters currently walking this cset */
205 	struct list_head task_iters;
206 
207 	/*
208 	 * On the default hierarhcy, ->subsys[ssid] may point to a css
209 	 * attached to an ancestor instead of the cgroup this css_set is
210 	 * associated with.  The following node is anchored at
211 	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
212 	 * iterate through all css's attached to a given cgroup.
213 	 */
214 	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
215 
216 	/* all threaded csets whose ->dom_cset points to this cset */
217 	struct list_head threaded_csets;
218 	struct list_head threaded_csets_node;
219 
220 	/*
221 	 * List running through all cgroup groups in the same hash
222 	 * slot. Protected by css_set_lock
223 	 */
224 	struct hlist_node hlist;
225 
226 	/*
227 	 * List of cgrp_cset_links pointing at cgroups referenced from this
228 	 * css_set.  Protected by css_set_lock.
229 	 */
230 	struct list_head cgrp_links;
231 
232 	/*
233 	 * List of csets participating in the on-going migration either as
234 	 * source or destination.  Protected by cgroup_mutex.
235 	 */
236 	struct list_head mg_preload_node;
237 	struct list_head mg_node;
238 
239 	/*
240 	 * If this cset is acting as the source of migration the following
241 	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
242 	 * respectively the source and destination cgroups of the on-going
243 	 * migration.  mg_dst_cset is the destination cset the target tasks
244 	 * on this cset should be migrated to.  Protected by cgroup_mutex.
245 	 */
246 	struct cgroup *mg_src_cgrp;
247 	struct cgroup *mg_dst_cgrp;
248 	struct css_set *mg_dst_cset;
249 
250 	/* dead and being drained, ignore for migration */
251 	bool dead;
252 
253 	/* For RCU-protected deletion */
254 	struct rcu_head rcu_head;
255 };
256 
257 struct cgroup {
258 	/* self css with NULL ->ss, points back to this cgroup */
259 	struct cgroup_subsys_state self;
260 
261 	unsigned long flags;		/* "unsigned long" so bitops work */
262 
263 	/*
264 	 * idr allocated in-hierarchy ID.
265 	 *
266 	 * ID 0 is not used, the ID of the root cgroup is always 1, and a
267 	 * new cgroup will be assigned with a smallest available ID.
268 	 *
269 	 * Allocating/Removing ID must be protected by cgroup_mutex.
270 	 */
271 	int id;
272 
273 	/*
274 	 * The depth this cgroup is at.  The root is at depth zero and each
275 	 * step down the hierarchy increments the level.  This along with
276 	 * ancestor_ids[] can determine whether a given cgroup is a
277 	 * descendant of another without traversing the hierarchy.
278 	 */
279 	int level;
280 
281 	/* Maximum allowed descent tree depth */
282 	int max_depth;
283 
284 	/*
285 	 * Keep track of total numbers of visible and dying descent cgroups.
286 	 * Dying cgroups are cgroups which were deleted by a user,
287 	 * but are still existing because someone else is holding a reference.
288 	 * max_descendants is a maximum allowed number of descent cgroups.
289 	 */
290 	int nr_descendants;
291 	int nr_dying_descendants;
292 	int max_descendants;
293 
294 	/*
295 	 * Each non-empty css_set associated with this cgroup contributes
296 	 * one to nr_populated_csets.  The counter is zero iff this cgroup
297 	 * doesn't have any tasks.
298 	 *
299 	 * All children which have non-zero nr_populated_csets and/or
300 	 * nr_populated_children of their own contribute one to either
301 	 * nr_populated_domain_children or nr_populated_threaded_children
302 	 * depending on their type.  Each counter is zero iff all cgroups
303 	 * of the type in the subtree proper don't have any tasks.
304 	 */
305 	int nr_populated_csets;
306 	int nr_populated_domain_children;
307 	int nr_populated_threaded_children;
308 
309 	int nr_threaded_children;	/* # of live threaded child cgroups */
310 
311 	struct kernfs_node *kn;		/* cgroup kernfs entry */
312 	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
313 	struct cgroup_file events_file;	/* handle for "cgroup.events" */
314 
315 	/*
316 	 * The bitmask of subsystems enabled on the child cgroups.
317 	 * ->subtree_control is the one configured through
318 	 * "cgroup.subtree_control" while ->child_ss_mask is the effective
319 	 * one which may have more subsystems enabled.  Controller knobs
320 	 * are made available iff it's enabled in ->subtree_control.
321 	 */
322 	u16 subtree_control;
323 	u16 subtree_ss_mask;
324 	u16 old_subtree_control;
325 	u16 old_subtree_ss_mask;
326 
327 	/* Private pointers for each registered subsystem */
328 	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
329 
330 	struct cgroup_root *root;
331 
332 	/*
333 	 * List of cgrp_cset_links pointing at css_sets with tasks in this
334 	 * cgroup.  Protected by css_set_lock.
335 	 */
336 	struct list_head cset_links;
337 
338 	/*
339 	 * On the default hierarchy, a css_set for a cgroup with some
340 	 * susbsys disabled will point to css's which are associated with
341 	 * the closest ancestor which has the subsys enabled.  The
342 	 * following lists all css_sets which point to this cgroup's css
343 	 * for the given subsystem.
344 	 */
345 	struct list_head e_csets[CGROUP_SUBSYS_COUNT];
346 
347 	/*
348 	 * If !threaded, self.  If threaded, it points to the nearest
349 	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
350 	 * from process granularity and no-internal-task constraint.
351 	 * Domain level resource consumptions which aren't tied to a
352 	 * specific task are charged to the dom_cgrp.
353 	 */
354 	struct cgroup *dom_cgrp;
355 
356 	/*
357 	 * list of pidlists, up to two for each namespace (one for procs, one
358 	 * for tasks); created on demand.
359 	 */
360 	struct list_head pidlists;
361 	struct mutex pidlist_mutex;
362 
363 	/* used to wait for offlining of csses */
364 	wait_queue_head_t offline_waitq;
365 
366 	/* used to schedule release agent */
367 	struct work_struct release_agent_work;
368 
369 	/* used to store eBPF programs */
370 	struct cgroup_bpf bpf;
371 
372 	/* ids of the ancestors at each level including self */
373 	int ancestor_ids[];
374 };
375 
376 /*
377  * A cgroup_root represents the root of a cgroup hierarchy, and may be
378  * associated with a kernfs_root to form an active hierarchy.  This is
379  * internal to cgroup core.  Don't access directly from controllers.
380  */
381 struct cgroup_root {
382 	struct kernfs_root *kf_root;
383 
384 	/* The bitmask of subsystems attached to this hierarchy */
385 	unsigned int subsys_mask;
386 
387 	/* Unique id for this hierarchy. */
388 	int hierarchy_id;
389 
390 	/* The root cgroup.  Root is destroyed on its release. */
391 	struct cgroup cgrp;
392 
393 	/* for cgrp->ancestor_ids[0] */
394 	int cgrp_ancestor_id_storage;
395 
396 	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
397 	atomic_t nr_cgrps;
398 
399 	/* A list running through the active hierarchies */
400 	struct list_head root_list;
401 
402 	/* Hierarchy-specific flags */
403 	unsigned int flags;
404 
405 	/* IDs for cgroups in this hierarchy */
406 	struct idr cgroup_idr;
407 
408 	/* The path to use for release notifications. */
409 	char release_agent_path[PATH_MAX];
410 
411 	/* The name for this hierarchy - may be empty */
412 	char name[MAX_CGROUP_ROOT_NAMELEN];
413 };
414 
415 /*
416  * struct cftype: handler definitions for cgroup control files
417  *
418  * When reading/writing to a file:
419  *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
420  *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
421  */
422 struct cftype {
423 	/*
424 	 * By convention, the name should begin with the name of the
425 	 * subsystem, followed by a period.  Zero length string indicates
426 	 * end of cftype array.
427 	 */
428 	char name[MAX_CFTYPE_NAME];
429 	unsigned long private;
430 
431 	/*
432 	 * The maximum length of string, excluding trailing nul, that can
433 	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
434 	 */
435 	size_t max_write_len;
436 
437 	/* CFTYPE_* flags */
438 	unsigned int flags;
439 
440 	/*
441 	 * If non-zero, should contain the offset from the start of css to
442 	 * a struct cgroup_file field.  cgroup will record the handle of
443 	 * the created file into it.  The recorded handle can be used as
444 	 * long as the containing css remains accessible.
445 	 */
446 	unsigned int file_offset;
447 
448 	/*
449 	 * Fields used for internal bookkeeping.  Initialized automatically
450 	 * during registration.
451 	 */
452 	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
453 	struct list_head node;		/* anchored at ss->cfts */
454 	struct kernfs_ops *kf_ops;
455 
456 	int (*open)(struct kernfs_open_file *of);
457 	void (*release)(struct kernfs_open_file *of);
458 
459 	/*
460 	 * read_u64() is a shortcut for the common case of returning a
461 	 * single integer. Use it in place of read()
462 	 */
463 	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
464 	/*
465 	 * read_s64() is a signed version of read_u64()
466 	 */
467 	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
468 
469 	/* generic seq_file read interface */
470 	int (*seq_show)(struct seq_file *sf, void *v);
471 
472 	/* optional ops, implement all or none */
473 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
474 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
475 	void (*seq_stop)(struct seq_file *sf, void *v);
476 
477 	/*
478 	 * write_u64() is a shortcut for the common case of accepting
479 	 * a single integer (as parsed by simple_strtoull) from
480 	 * userspace. Use in place of write(); return 0 or error.
481 	 */
482 	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
483 			 u64 val);
484 	/*
485 	 * write_s64() is a signed version of write_u64()
486 	 */
487 	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
488 			 s64 val);
489 
490 	/*
491 	 * write() is the generic write callback which maps directly to
492 	 * kernfs write operation and overrides all other operations.
493 	 * Maximum write size is determined by ->max_write_len.  Use
494 	 * of_css/cft() to access the associated css and cft.
495 	 */
496 	ssize_t (*write)(struct kernfs_open_file *of,
497 			 char *buf, size_t nbytes, loff_t off);
498 
499 #ifdef CONFIG_DEBUG_LOCK_ALLOC
500 	struct lock_class_key	lockdep_key;
501 #endif
502 };
503 
504 /*
505  * Control Group subsystem type.
506  * See Documentation/cgroups/cgroups.txt for details
507  */
508 struct cgroup_subsys {
509 	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
510 	int (*css_online)(struct cgroup_subsys_state *css);
511 	void (*css_offline)(struct cgroup_subsys_state *css);
512 	void (*css_released)(struct cgroup_subsys_state *css);
513 	void (*css_free)(struct cgroup_subsys_state *css);
514 	void (*css_reset)(struct cgroup_subsys_state *css);
515 
516 	int (*can_attach)(struct cgroup_taskset *tset);
517 	void (*cancel_attach)(struct cgroup_taskset *tset);
518 	void (*attach)(struct cgroup_taskset *tset);
519 	void (*post_attach)(void);
520 	int (*can_fork)(struct task_struct *task);
521 	void (*cancel_fork)(struct task_struct *task);
522 	void (*fork)(struct task_struct *task);
523 	void (*exit)(struct task_struct *task);
524 	void (*free)(struct task_struct *task);
525 	void (*bind)(struct cgroup_subsys_state *root_css);
526 
527 	bool early_init:1;
528 
529 	/*
530 	 * If %true, the controller, on the default hierarchy, doesn't show
531 	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
532 	 * implicitly enabled on all cgroups on the default hierarchy, and
533 	 * bypasses the "no internal process" constraint.  This is for
534 	 * utility type controllers which is transparent to userland.
535 	 *
536 	 * An implicit controller can be stolen from the default hierarchy
537 	 * anytime and thus must be okay with offline csses from previous
538 	 * hierarchies coexisting with csses for the current one.
539 	 */
540 	bool implicit_on_dfl:1;
541 
542 	/*
543 	 * If %true, the controller, supports threaded mode on the default
544 	 * hierarchy.  In a threaded subtree, both process granularity and
545 	 * no-internal-process constraint are ignored and a threaded
546 	 * controllers should be able to handle that.
547 	 *
548 	 * Note that as an implicit controller is automatically enabled on
549 	 * all cgroups on the default hierarchy, it should also be
550 	 * threaded.  implicit && !threaded is not supported.
551 	 */
552 	bool threaded:1;
553 
554 	/*
555 	 * If %false, this subsystem is properly hierarchical -
556 	 * configuration, resource accounting and restriction on a parent
557 	 * cgroup cover those of its children.  If %true, hierarchy support
558 	 * is broken in some ways - some subsystems ignore hierarchy
559 	 * completely while others are only implemented half-way.
560 	 *
561 	 * It's now disallowed to create nested cgroups if the subsystem is
562 	 * broken and cgroup core will emit a warning message on such
563 	 * cases.  Eventually, all subsystems will be made properly
564 	 * hierarchical and this will go away.
565 	 */
566 	bool broken_hierarchy:1;
567 	bool warned_broken_hierarchy:1;
568 
569 	/* the following two fields are initialized automtically during boot */
570 	int id;
571 	const char *name;
572 
573 	/* optional, initialized automatically during boot if not set */
574 	const char *legacy_name;
575 
576 	/* link to parent, protected by cgroup_lock() */
577 	struct cgroup_root *root;
578 
579 	/* idr for css->id */
580 	struct idr css_idr;
581 
582 	/*
583 	 * List of cftypes.  Each entry is the first entry of an array
584 	 * terminated by zero length name.
585 	 */
586 	struct list_head cfts;
587 
588 	/*
589 	 * Base cftypes which are automatically registered.  The two can
590 	 * point to the same array.
591 	 */
592 	struct cftype *dfl_cftypes;	/* for the default hierarchy */
593 	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */
594 
595 	/*
596 	 * A subsystem may depend on other subsystems.  When such subsystem
597 	 * is enabled on a cgroup, the depended-upon subsystems are enabled
598 	 * together if available.  Subsystems enabled due to dependency are
599 	 * not visible to userland until explicitly enabled.  The following
600 	 * specifies the mask of subsystems that this one depends on.
601 	 */
602 	unsigned int depends_on;
603 };
604 
605 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
606 
607 /**
608  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
609  * @tsk: target task
610  *
611  * Allows cgroup operations to synchronize against threadgroup changes
612  * using a percpu_rw_semaphore.
613  */
614 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
615 {
616 	percpu_down_read(&cgroup_threadgroup_rwsem);
617 }
618 
619 /**
620  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
621  * @tsk: target task
622  *
623  * Counterpart of cgroup_threadcgroup_change_begin().
624  */
625 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
626 {
627 	percpu_up_read(&cgroup_threadgroup_rwsem);
628 }
629 
630 #else	/* CONFIG_CGROUPS */
631 
632 #define CGROUP_SUBSYS_COUNT 0
633 
634 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
635 {
636 	might_sleep();
637 }
638 
639 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
640 
641 #endif	/* CONFIG_CGROUPS */
642 
643 #ifdef CONFIG_SOCK_CGROUP_DATA
644 
645 /*
646  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
647  * per-socket cgroup information except for memcg association.
648  *
649  * On legacy hierarchies, net_prio and net_cls controllers directly set
650  * attributes on each sock which can then be tested by the network layer.
651  * On the default hierarchy, each sock is associated with the cgroup it was
652  * created in and the networking layer can match the cgroup directly.
653  *
654  * To avoid carrying all three cgroup related fields separately in sock,
655  * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
656  * On boot, sock_cgroup_data records the cgroup that the sock was created
657  * in so that cgroup2 matches can be made; however, once either net_prio or
658  * net_cls starts being used, the area is overriden to carry prioidx and/or
659  * classid.  The two modes are distinguished by whether the lowest bit is
660  * set.  Clear bit indicates cgroup pointer while set bit prioidx and
661  * classid.
662  *
663  * While userland may start using net_prio or net_cls at any time, once
664  * either is used, cgroup2 matching no longer works.  There is no reason to
665  * mix the two and this is in line with how legacy and v2 compatibility is
666  * handled.  On mode switch, cgroup references which are already being
667  * pointed to by socks may be leaked.  While this can be remedied by adding
668  * synchronization around sock_cgroup_data, given that the number of leaked
669  * cgroups is bound and highly unlikely to be high, this seems to be the
670  * better trade-off.
671  */
672 struct sock_cgroup_data {
673 	union {
674 #ifdef __LITTLE_ENDIAN
675 		struct {
676 			u8	is_data;
677 			u8	padding;
678 			u16	prioidx;
679 			u32	classid;
680 		} __packed;
681 #else
682 		struct {
683 			u32	classid;
684 			u16	prioidx;
685 			u8	padding;
686 			u8	is_data;
687 		} __packed;
688 #endif
689 		u64		val;
690 	};
691 };
692 
693 /*
694  * There's a theoretical window where the following accessors race with
695  * updaters and return part of the previous pointer as the prioidx or
696  * classid.  Such races are short-lived and the result isn't critical.
697  */
698 static inline u16 sock_cgroup_prioidx(struct sock_cgroup_data *skcd)
699 {
700 	/* fallback to 1 which is always the ID of the root cgroup */
701 	return (skcd->is_data & 1) ? skcd->prioidx : 1;
702 }
703 
704 static inline u32 sock_cgroup_classid(struct sock_cgroup_data *skcd)
705 {
706 	/* fallback to 0 which is the unconfigured default classid */
707 	return (skcd->is_data & 1) ? skcd->classid : 0;
708 }
709 
710 /*
711  * If invoked concurrently, the updaters may clobber each other.  The
712  * caller is responsible for synchronization.
713  */
714 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
715 					   u16 prioidx)
716 {
717 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
718 
719 	if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
720 		return;
721 
722 	if (!(skcd_buf.is_data & 1)) {
723 		skcd_buf.val = 0;
724 		skcd_buf.is_data = 1;
725 	}
726 
727 	skcd_buf.prioidx = prioidx;
728 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
729 }
730 
731 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
732 					   u32 classid)
733 {
734 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
735 
736 	if (sock_cgroup_classid(&skcd_buf) == classid)
737 		return;
738 
739 	if (!(skcd_buf.is_data & 1)) {
740 		skcd_buf.val = 0;
741 		skcd_buf.is_data = 1;
742 	}
743 
744 	skcd_buf.classid = classid;
745 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
746 }
747 
748 #else	/* CONFIG_SOCK_CGROUP_DATA */
749 
750 struct sock_cgroup_data {
751 };
752 
753 #endif	/* CONFIG_SOCK_CGROUP_DATA */
754 
755 #endif	/* _LINUX_CGROUP_DEFS_H */
756