1 /* 2 * linux/cgroup-defs.h - basic definitions for cgroup 3 * 4 * This file provides basic type and interface. Include this file directly 5 * only if necessary to avoid cyclic dependencies. 6 */ 7 #ifndef _LINUX_CGROUP_DEFS_H 8 #define _LINUX_CGROUP_DEFS_H 9 10 #include <linux/limits.h> 11 #include <linux/list.h> 12 #include <linux/idr.h> 13 #include <linux/wait.h> 14 #include <linux/mutex.h> 15 #include <linux/rcupdate.h> 16 #include <linux/refcount.h> 17 #include <linux/percpu-refcount.h> 18 #include <linux/percpu-rwsem.h> 19 #include <linux/workqueue.h> 20 #include <linux/bpf-cgroup.h> 21 22 #ifdef CONFIG_CGROUPS 23 24 struct cgroup; 25 struct cgroup_root; 26 struct cgroup_subsys; 27 struct cgroup_taskset; 28 struct kernfs_node; 29 struct kernfs_ops; 30 struct kernfs_open_file; 31 struct seq_file; 32 33 #define MAX_CGROUP_TYPE_NAMELEN 32 34 #define MAX_CGROUP_ROOT_NAMELEN 64 35 #define MAX_CFTYPE_NAME 64 36 37 /* define the enumeration of all cgroup subsystems */ 38 #define SUBSYS(_x) _x ## _cgrp_id, 39 enum cgroup_subsys_id { 40 #include <linux/cgroup_subsys.h> 41 CGROUP_SUBSYS_COUNT, 42 }; 43 #undef SUBSYS 44 45 /* bits in struct cgroup_subsys_state flags field */ 46 enum { 47 CSS_NO_REF = (1 << 0), /* no reference counting for this css */ 48 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */ 49 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */ 50 CSS_VISIBLE = (1 << 3), /* css is visible to userland */ 51 }; 52 53 /* bits in struct cgroup flags field */ 54 enum { 55 /* Control Group requires release notifications to userspace */ 56 CGRP_NOTIFY_ON_RELEASE, 57 /* 58 * Clone the parent's configuration when creating a new child 59 * cpuset cgroup. For historical reasons, this option can be 60 * specified at mount time and thus is implemented here. 61 */ 62 CGRP_CPUSET_CLONE_CHILDREN, 63 }; 64 65 /* cgroup_root->flags */ 66 enum { 67 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */ 68 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */ 69 }; 70 71 /* cftype->flags */ 72 enum { 73 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */ 74 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */ 75 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */ 76 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */ 77 78 /* internal flags, do not use outside cgroup core proper */ 79 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */ 80 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */ 81 }; 82 83 /* 84 * cgroup_file is the handle for a file instance created in a cgroup which 85 * is used, for example, to generate file changed notifications. This can 86 * be obtained by setting cftype->file_offset. 87 */ 88 struct cgroup_file { 89 /* do not access any fields from outside cgroup core */ 90 struct kernfs_node *kn; 91 }; 92 93 /* 94 * Per-subsystem/per-cgroup state maintained by the system. This is the 95 * fundamental structural building block that controllers deal with. 96 * 97 * Fields marked with "PI:" are public and immutable and may be accessed 98 * directly without synchronization. 99 */ 100 struct cgroup_subsys_state { 101 /* PI: the cgroup that this css is attached to */ 102 struct cgroup *cgroup; 103 104 /* PI: the cgroup subsystem that this css is attached to */ 105 struct cgroup_subsys *ss; 106 107 /* reference count - access via css_[try]get() and css_put() */ 108 struct percpu_ref refcnt; 109 110 /* siblings list anchored at the parent's ->children */ 111 struct list_head sibling; 112 struct list_head children; 113 114 /* 115 * PI: Subsys-unique ID. 0 is unused and root is always 1. The 116 * matching css can be looked up using css_from_id(). 117 */ 118 int id; 119 120 unsigned int flags; 121 122 /* 123 * Monotonically increasing unique serial number which defines a 124 * uniform order among all csses. It's guaranteed that all 125 * ->children lists are in the ascending order of ->serial_nr and 126 * used to allow interrupting and resuming iterations. 127 */ 128 u64 serial_nr; 129 130 /* 131 * Incremented by online self and children. Used to guarantee that 132 * parents are not offlined before their children. 133 */ 134 atomic_t online_cnt; 135 136 /* percpu_ref killing and RCU release */ 137 struct rcu_head rcu_head; 138 struct work_struct destroy_work; 139 140 /* 141 * PI: the parent css. Placed here for cache proximity to following 142 * fields of the containing structure. 143 */ 144 struct cgroup_subsys_state *parent; 145 }; 146 147 /* 148 * A css_set is a structure holding pointers to a set of 149 * cgroup_subsys_state objects. This saves space in the task struct 150 * object and speeds up fork()/exit(), since a single inc/dec and a 151 * list_add()/del() can bump the reference count on the entire cgroup 152 * set for a task. 153 */ 154 struct css_set { 155 /* 156 * Set of subsystem states, one for each subsystem. This array is 157 * immutable after creation apart from the init_css_set during 158 * subsystem registration (at boot time). 159 */ 160 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; 161 162 /* reference count */ 163 refcount_t refcount; 164 165 /* the default cgroup associated with this css_set */ 166 struct cgroup *dfl_cgrp; 167 168 /* 169 * Lists running through all tasks using this cgroup group. 170 * mg_tasks lists tasks which belong to this cset but are in the 171 * process of being migrated out or in. Protected by 172 * css_set_rwsem, but, during migration, once tasks are moved to 173 * mg_tasks, it can be read safely while holding cgroup_mutex. 174 */ 175 struct list_head tasks; 176 struct list_head mg_tasks; 177 178 /* all css_task_iters currently walking this cset */ 179 struct list_head task_iters; 180 181 /* 182 * On the default hierarhcy, ->subsys[ssid] may point to a css 183 * attached to an ancestor instead of the cgroup this css_set is 184 * associated with. The following node is anchored at 185 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to 186 * iterate through all css's attached to a given cgroup. 187 */ 188 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT]; 189 190 /* 191 * List running through all cgroup groups in the same hash 192 * slot. Protected by css_set_lock 193 */ 194 struct hlist_node hlist; 195 196 /* 197 * List of cgrp_cset_links pointing at cgroups referenced from this 198 * css_set. Protected by css_set_lock. 199 */ 200 struct list_head cgrp_links; 201 202 /* 203 * List of csets participating in the on-going migration either as 204 * source or destination. Protected by cgroup_mutex. 205 */ 206 struct list_head mg_preload_node; 207 struct list_head mg_node; 208 209 /* 210 * If this cset is acting as the source of migration the following 211 * two fields are set. mg_src_cgrp and mg_dst_cgrp are 212 * respectively the source and destination cgroups of the on-going 213 * migration. mg_dst_cset is the destination cset the target tasks 214 * on this cset should be migrated to. Protected by cgroup_mutex. 215 */ 216 struct cgroup *mg_src_cgrp; 217 struct cgroup *mg_dst_cgrp; 218 struct css_set *mg_dst_cset; 219 220 /* dead and being drained, ignore for migration */ 221 bool dead; 222 223 /* For RCU-protected deletion */ 224 struct rcu_head rcu_head; 225 }; 226 227 struct cgroup { 228 /* self css with NULL ->ss, points back to this cgroup */ 229 struct cgroup_subsys_state self; 230 231 unsigned long flags; /* "unsigned long" so bitops work */ 232 233 /* 234 * idr allocated in-hierarchy ID. 235 * 236 * ID 0 is not used, the ID of the root cgroup is always 1, and a 237 * new cgroup will be assigned with a smallest available ID. 238 * 239 * Allocating/Removing ID must be protected by cgroup_mutex. 240 */ 241 int id; 242 243 /* 244 * The depth this cgroup is at. The root is at depth zero and each 245 * step down the hierarchy increments the level. This along with 246 * ancestor_ids[] can determine whether a given cgroup is a 247 * descendant of another without traversing the hierarchy. 248 */ 249 int level; 250 251 /* 252 * Each non-empty css_set associated with this cgroup contributes 253 * one to populated_cnt. All children with non-zero popuplated_cnt 254 * of their own contribute one. The count is zero iff there's no 255 * task in this cgroup or its subtree. 256 */ 257 int populated_cnt; 258 259 struct kernfs_node *kn; /* cgroup kernfs entry */ 260 struct cgroup_file procs_file; /* handle for "cgroup.procs" */ 261 struct cgroup_file events_file; /* handle for "cgroup.events" */ 262 263 /* 264 * The bitmask of subsystems enabled on the child cgroups. 265 * ->subtree_control is the one configured through 266 * "cgroup.subtree_control" while ->child_ss_mask is the effective 267 * one which may have more subsystems enabled. Controller knobs 268 * are made available iff it's enabled in ->subtree_control. 269 */ 270 u16 subtree_control; 271 u16 subtree_ss_mask; 272 u16 old_subtree_control; 273 u16 old_subtree_ss_mask; 274 275 /* Private pointers for each registered subsystem */ 276 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT]; 277 278 struct cgroup_root *root; 279 280 /* 281 * List of cgrp_cset_links pointing at css_sets with tasks in this 282 * cgroup. Protected by css_set_lock. 283 */ 284 struct list_head cset_links; 285 286 /* 287 * On the default hierarchy, a css_set for a cgroup with some 288 * susbsys disabled will point to css's which are associated with 289 * the closest ancestor which has the subsys enabled. The 290 * following lists all css_sets which point to this cgroup's css 291 * for the given subsystem. 292 */ 293 struct list_head e_csets[CGROUP_SUBSYS_COUNT]; 294 295 /* 296 * list of pidlists, up to two for each namespace (one for procs, one 297 * for tasks); created on demand. 298 */ 299 struct list_head pidlists; 300 struct mutex pidlist_mutex; 301 302 /* used to wait for offlining of csses */ 303 wait_queue_head_t offline_waitq; 304 305 /* used to schedule release agent */ 306 struct work_struct release_agent_work; 307 308 /* used to store eBPF programs */ 309 struct cgroup_bpf bpf; 310 311 /* ids of the ancestors at each level including self */ 312 int ancestor_ids[]; 313 }; 314 315 /* 316 * A cgroup_root represents the root of a cgroup hierarchy, and may be 317 * associated with a kernfs_root to form an active hierarchy. This is 318 * internal to cgroup core. Don't access directly from controllers. 319 */ 320 struct cgroup_root { 321 struct kernfs_root *kf_root; 322 323 /* The bitmask of subsystems attached to this hierarchy */ 324 unsigned int subsys_mask; 325 326 /* Unique id for this hierarchy. */ 327 int hierarchy_id; 328 329 /* The root cgroup. Root is destroyed on its release. */ 330 struct cgroup cgrp; 331 332 /* for cgrp->ancestor_ids[0] */ 333 int cgrp_ancestor_id_storage; 334 335 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */ 336 atomic_t nr_cgrps; 337 338 /* A list running through the active hierarchies */ 339 struct list_head root_list; 340 341 /* Hierarchy-specific flags */ 342 unsigned int flags; 343 344 /* IDs for cgroups in this hierarchy */ 345 struct idr cgroup_idr; 346 347 /* The path to use for release notifications. */ 348 char release_agent_path[PATH_MAX]; 349 350 /* The name for this hierarchy - may be empty */ 351 char name[MAX_CGROUP_ROOT_NAMELEN]; 352 }; 353 354 /* 355 * struct cftype: handler definitions for cgroup control files 356 * 357 * When reading/writing to a file: 358 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata 359 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata 360 */ 361 struct cftype { 362 /* 363 * By convention, the name should begin with the name of the 364 * subsystem, followed by a period. Zero length string indicates 365 * end of cftype array. 366 */ 367 char name[MAX_CFTYPE_NAME]; 368 unsigned long private; 369 370 /* 371 * The maximum length of string, excluding trailing nul, that can 372 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed. 373 */ 374 size_t max_write_len; 375 376 /* CFTYPE_* flags */ 377 unsigned int flags; 378 379 /* 380 * If non-zero, should contain the offset from the start of css to 381 * a struct cgroup_file field. cgroup will record the handle of 382 * the created file into it. The recorded handle can be used as 383 * long as the containing css remains accessible. 384 */ 385 unsigned int file_offset; 386 387 /* 388 * Fields used for internal bookkeeping. Initialized automatically 389 * during registration. 390 */ 391 struct cgroup_subsys *ss; /* NULL for cgroup core files */ 392 struct list_head node; /* anchored at ss->cfts */ 393 struct kernfs_ops *kf_ops; 394 395 int (*open)(struct kernfs_open_file *of); 396 void (*release)(struct kernfs_open_file *of); 397 398 /* 399 * read_u64() is a shortcut for the common case of returning a 400 * single integer. Use it in place of read() 401 */ 402 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft); 403 /* 404 * read_s64() is a signed version of read_u64() 405 */ 406 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft); 407 408 /* generic seq_file read interface */ 409 int (*seq_show)(struct seq_file *sf, void *v); 410 411 /* optional ops, implement all or none */ 412 void *(*seq_start)(struct seq_file *sf, loff_t *ppos); 413 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); 414 void (*seq_stop)(struct seq_file *sf, void *v); 415 416 /* 417 * write_u64() is a shortcut for the common case of accepting 418 * a single integer (as parsed by simple_strtoull) from 419 * userspace. Use in place of write(); return 0 or error. 420 */ 421 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft, 422 u64 val); 423 /* 424 * write_s64() is a signed version of write_u64() 425 */ 426 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft, 427 s64 val); 428 429 /* 430 * write() is the generic write callback which maps directly to 431 * kernfs write operation and overrides all other operations. 432 * Maximum write size is determined by ->max_write_len. Use 433 * of_css/cft() to access the associated css and cft. 434 */ 435 ssize_t (*write)(struct kernfs_open_file *of, 436 char *buf, size_t nbytes, loff_t off); 437 438 #ifdef CONFIG_DEBUG_LOCK_ALLOC 439 struct lock_class_key lockdep_key; 440 #endif 441 }; 442 443 /* 444 * Control Group subsystem type. 445 * See Documentation/cgroups/cgroups.txt for details 446 */ 447 struct cgroup_subsys { 448 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css); 449 int (*css_online)(struct cgroup_subsys_state *css); 450 void (*css_offline)(struct cgroup_subsys_state *css); 451 void (*css_released)(struct cgroup_subsys_state *css); 452 void (*css_free)(struct cgroup_subsys_state *css); 453 void (*css_reset)(struct cgroup_subsys_state *css); 454 455 int (*can_attach)(struct cgroup_taskset *tset); 456 void (*cancel_attach)(struct cgroup_taskset *tset); 457 void (*attach)(struct cgroup_taskset *tset); 458 void (*post_attach)(void); 459 int (*can_fork)(struct task_struct *task); 460 void (*cancel_fork)(struct task_struct *task); 461 void (*fork)(struct task_struct *task); 462 void (*exit)(struct task_struct *task); 463 void (*free)(struct task_struct *task); 464 void (*bind)(struct cgroup_subsys_state *root_css); 465 466 bool early_init:1; 467 468 /* 469 * If %true, the controller, on the default hierarchy, doesn't show 470 * up in "cgroup.controllers" or "cgroup.subtree_control", is 471 * implicitly enabled on all cgroups on the default hierarchy, and 472 * bypasses the "no internal process" constraint. This is for 473 * utility type controllers which is transparent to userland. 474 * 475 * An implicit controller can be stolen from the default hierarchy 476 * anytime and thus must be okay with offline csses from previous 477 * hierarchies coexisting with csses for the current one. 478 */ 479 bool implicit_on_dfl:1; 480 481 /* 482 * If %false, this subsystem is properly hierarchical - 483 * configuration, resource accounting and restriction on a parent 484 * cgroup cover those of its children. If %true, hierarchy support 485 * is broken in some ways - some subsystems ignore hierarchy 486 * completely while others are only implemented half-way. 487 * 488 * It's now disallowed to create nested cgroups if the subsystem is 489 * broken and cgroup core will emit a warning message on such 490 * cases. Eventually, all subsystems will be made properly 491 * hierarchical and this will go away. 492 */ 493 bool broken_hierarchy:1; 494 bool warned_broken_hierarchy:1; 495 496 /* the following two fields are initialized automtically during boot */ 497 int id; 498 const char *name; 499 500 /* optional, initialized automatically during boot if not set */ 501 const char *legacy_name; 502 503 /* link to parent, protected by cgroup_lock() */ 504 struct cgroup_root *root; 505 506 /* idr for css->id */ 507 struct idr css_idr; 508 509 /* 510 * List of cftypes. Each entry is the first entry of an array 511 * terminated by zero length name. 512 */ 513 struct list_head cfts; 514 515 /* 516 * Base cftypes which are automatically registered. The two can 517 * point to the same array. 518 */ 519 struct cftype *dfl_cftypes; /* for the default hierarchy */ 520 struct cftype *legacy_cftypes; /* for the legacy hierarchies */ 521 522 /* 523 * A subsystem may depend on other subsystems. When such subsystem 524 * is enabled on a cgroup, the depended-upon subsystems are enabled 525 * together if available. Subsystems enabled due to dependency are 526 * not visible to userland until explicitly enabled. The following 527 * specifies the mask of subsystems that this one depends on. 528 */ 529 unsigned int depends_on; 530 }; 531 532 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 533 534 /** 535 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups 536 * @tsk: target task 537 * 538 * Allows cgroup operations to synchronize against threadgroup changes 539 * using a percpu_rw_semaphore. 540 */ 541 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 542 { 543 percpu_down_read(&cgroup_threadgroup_rwsem); 544 } 545 546 /** 547 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups 548 * @tsk: target task 549 * 550 * Counterpart of cgroup_threadcgroup_change_begin(). 551 */ 552 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) 553 { 554 percpu_up_read(&cgroup_threadgroup_rwsem); 555 } 556 557 #else /* CONFIG_CGROUPS */ 558 559 #define CGROUP_SUBSYS_COUNT 0 560 561 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 562 { 563 might_sleep(); 564 } 565 566 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {} 567 568 #endif /* CONFIG_CGROUPS */ 569 570 #ifdef CONFIG_SOCK_CGROUP_DATA 571 572 /* 573 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains 574 * per-socket cgroup information except for memcg association. 575 * 576 * On legacy hierarchies, net_prio and net_cls controllers directly set 577 * attributes on each sock which can then be tested by the network layer. 578 * On the default hierarchy, each sock is associated with the cgroup it was 579 * created in and the networking layer can match the cgroup directly. 580 * 581 * To avoid carrying all three cgroup related fields separately in sock, 582 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer. 583 * On boot, sock_cgroup_data records the cgroup that the sock was created 584 * in so that cgroup2 matches can be made; however, once either net_prio or 585 * net_cls starts being used, the area is overriden to carry prioidx and/or 586 * classid. The two modes are distinguished by whether the lowest bit is 587 * set. Clear bit indicates cgroup pointer while set bit prioidx and 588 * classid. 589 * 590 * While userland may start using net_prio or net_cls at any time, once 591 * either is used, cgroup2 matching no longer works. There is no reason to 592 * mix the two and this is in line with how legacy and v2 compatibility is 593 * handled. On mode switch, cgroup references which are already being 594 * pointed to by socks may be leaked. While this can be remedied by adding 595 * synchronization around sock_cgroup_data, given that the number of leaked 596 * cgroups is bound and highly unlikely to be high, this seems to be the 597 * better trade-off. 598 */ 599 struct sock_cgroup_data { 600 union { 601 #ifdef __LITTLE_ENDIAN 602 struct { 603 u8 is_data; 604 u8 padding; 605 u16 prioidx; 606 u32 classid; 607 } __packed; 608 #else 609 struct { 610 u32 classid; 611 u16 prioidx; 612 u8 padding; 613 u8 is_data; 614 } __packed; 615 #endif 616 u64 val; 617 }; 618 }; 619 620 /* 621 * There's a theoretical window where the following accessors race with 622 * updaters and return part of the previous pointer as the prioidx or 623 * classid. Such races are short-lived and the result isn't critical. 624 */ 625 static inline u16 sock_cgroup_prioidx(struct sock_cgroup_data *skcd) 626 { 627 /* fallback to 1 which is always the ID of the root cgroup */ 628 return (skcd->is_data & 1) ? skcd->prioidx : 1; 629 } 630 631 static inline u32 sock_cgroup_classid(struct sock_cgroup_data *skcd) 632 { 633 /* fallback to 0 which is the unconfigured default classid */ 634 return (skcd->is_data & 1) ? skcd->classid : 0; 635 } 636 637 /* 638 * If invoked concurrently, the updaters may clobber each other. The 639 * caller is responsible for synchronization. 640 */ 641 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd, 642 u16 prioidx) 643 { 644 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 645 646 if (sock_cgroup_prioidx(&skcd_buf) == prioidx) 647 return; 648 649 if (!(skcd_buf.is_data & 1)) { 650 skcd_buf.val = 0; 651 skcd_buf.is_data = 1; 652 } 653 654 skcd_buf.prioidx = prioidx; 655 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 656 } 657 658 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd, 659 u32 classid) 660 { 661 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 662 663 if (sock_cgroup_classid(&skcd_buf) == classid) 664 return; 665 666 if (!(skcd_buf.is_data & 1)) { 667 skcd_buf.val = 0; 668 skcd_buf.is_data = 1; 669 } 670 671 skcd_buf.classid = classid; 672 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 673 } 674 675 #else /* CONFIG_SOCK_CGROUP_DATA */ 676 677 struct sock_cgroup_data { 678 }; 679 680 #endif /* CONFIG_SOCK_CGROUP_DATA */ 681 682 #endif /* _LINUX_CGROUP_DEFS_H */ 683