1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * This is <linux/capability.h> 4 * 5 * Andrew G. Morgan <[email protected]> 6 * Alexander Kjeldaas <[email protected]> 7 * with help from Aleph1, Roland Buresund and Andrew Main. 8 * 9 * See here for the libcap library ("POSIX draft" compliance): 10 * 11 * ftp://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.6/ 12 */ 13 #ifndef _LINUX_CAPABILITY_H 14 #define _LINUX_CAPABILITY_H 15 16 #include <uapi/linux/capability.h> 17 18 19 #define _KERNEL_CAPABILITY_VERSION _LINUX_CAPABILITY_VERSION_3 20 #define _KERNEL_CAPABILITY_U32S _LINUX_CAPABILITY_U32S_3 21 22 extern int file_caps_enabled; 23 24 typedef struct kernel_cap_struct { 25 __u32 cap[_KERNEL_CAPABILITY_U32S]; 26 } kernel_cap_t; 27 28 /* exact same as vfs_cap_data but in cpu endian and always filled completely */ 29 struct cpu_vfs_cap_data { 30 __u32 magic_etc; 31 kernel_cap_t permitted; 32 kernel_cap_t inheritable; 33 }; 34 35 #define _USER_CAP_HEADER_SIZE (sizeof(struct __user_cap_header_struct)) 36 #define _KERNEL_CAP_T_SIZE (sizeof(kernel_cap_t)) 37 38 39 struct file; 40 struct inode; 41 struct dentry; 42 struct task_struct; 43 struct user_namespace; 44 45 extern const kernel_cap_t __cap_empty_set; 46 extern const kernel_cap_t __cap_init_eff_set; 47 48 /* 49 * Internal kernel functions only 50 */ 51 52 #define CAP_FOR_EACH_U32(__capi) \ 53 for (__capi = 0; __capi < _KERNEL_CAPABILITY_U32S; ++__capi) 54 55 /* 56 * CAP_FS_MASK and CAP_NFSD_MASKS: 57 * 58 * The fs mask is all the privileges that fsuid==0 historically meant. 59 * At one time in the past, that included CAP_MKNOD and CAP_LINUX_IMMUTABLE. 60 * 61 * It has never meant setting security.* and trusted.* xattrs. 62 * 63 * We could also define fsmask as follows: 64 * 1. CAP_FS_MASK is the privilege to bypass all fs-related DAC permissions 65 * 2. The security.* and trusted.* xattrs are fs-related MAC permissions 66 */ 67 68 # define CAP_FS_MASK_B0 (CAP_TO_MASK(CAP_CHOWN) \ 69 | CAP_TO_MASK(CAP_MKNOD) \ 70 | CAP_TO_MASK(CAP_DAC_OVERRIDE) \ 71 | CAP_TO_MASK(CAP_DAC_READ_SEARCH) \ 72 | CAP_TO_MASK(CAP_FOWNER) \ 73 | CAP_TO_MASK(CAP_FSETID)) 74 75 # define CAP_FS_MASK_B1 (CAP_TO_MASK(CAP_MAC_OVERRIDE)) 76 77 #if _KERNEL_CAPABILITY_U32S != 2 78 # error Fix up hand-coded capability macro initializers 79 #else /* HAND-CODED capability initializers */ 80 81 #define CAP_LAST_U32 ((_KERNEL_CAPABILITY_U32S) - 1) 82 #define CAP_LAST_U32_VALID_MASK (CAP_TO_MASK(CAP_LAST_CAP + 1) -1) 83 84 # define CAP_EMPTY_SET ((kernel_cap_t){{ 0, 0 }}) 85 # define CAP_FULL_SET ((kernel_cap_t){{ ~0, CAP_LAST_U32_VALID_MASK }}) 86 # define CAP_FS_SET ((kernel_cap_t){{ CAP_FS_MASK_B0 \ 87 | CAP_TO_MASK(CAP_LINUX_IMMUTABLE), \ 88 CAP_FS_MASK_B1 } }) 89 # define CAP_NFSD_SET ((kernel_cap_t){{ CAP_FS_MASK_B0 \ 90 | CAP_TO_MASK(CAP_SYS_RESOURCE), \ 91 CAP_FS_MASK_B1 } }) 92 93 #endif /* _KERNEL_CAPABILITY_U32S != 2 */ 94 95 # define cap_clear(c) do { (c) = __cap_empty_set; } while (0) 96 97 #define cap_raise(c, flag) ((c).cap[CAP_TO_INDEX(flag)] |= CAP_TO_MASK(flag)) 98 #define cap_lower(c, flag) ((c).cap[CAP_TO_INDEX(flag)] &= ~CAP_TO_MASK(flag)) 99 #define cap_raised(c, flag) ((c).cap[CAP_TO_INDEX(flag)] & CAP_TO_MASK(flag)) 100 101 #define CAP_BOP_ALL(c, a, b, OP) \ 102 do { \ 103 unsigned __capi; \ 104 CAP_FOR_EACH_U32(__capi) { \ 105 c.cap[__capi] = a.cap[__capi] OP b.cap[__capi]; \ 106 } \ 107 } while (0) 108 109 #define CAP_UOP_ALL(c, a, OP) \ 110 do { \ 111 unsigned __capi; \ 112 CAP_FOR_EACH_U32(__capi) { \ 113 c.cap[__capi] = OP a.cap[__capi]; \ 114 } \ 115 } while (0) 116 117 static inline kernel_cap_t cap_combine(const kernel_cap_t a, 118 const kernel_cap_t b) 119 { 120 kernel_cap_t dest; 121 CAP_BOP_ALL(dest, a, b, |); 122 return dest; 123 } 124 125 static inline kernel_cap_t cap_intersect(const kernel_cap_t a, 126 const kernel_cap_t b) 127 { 128 kernel_cap_t dest; 129 CAP_BOP_ALL(dest, a, b, &); 130 return dest; 131 } 132 133 static inline kernel_cap_t cap_drop(const kernel_cap_t a, 134 const kernel_cap_t drop) 135 { 136 kernel_cap_t dest; 137 CAP_BOP_ALL(dest, a, drop, &~); 138 return dest; 139 } 140 141 static inline kernel_cap_t cap_invert(const kernel_cap_t c) 142 { 143 kernel_cap_t dest; 144 CAP_UOP_ALL(dest, c, ~); 145 return dest; 146 } 147 148 static inline bool cap_isclear(const kernel_cap_t a) 149 { 150 unsigned __capi; 151 CAP_FOR_EACH_U32(__capi) { 152 if (a.cap[__capi] != 0) 153 return false; 154 } 155 return true; 156 } 157 158 /* 159 * Check if "a" is a subset of "set". 160 * return true if ALL of the capabilities in "a" are also in "set" 161 * cap_issubset(0101, 1111) will return true 162 * return false if ANY of the capabilities in "a" are not in "set" 163 * cap_issubset(1111, 0101) will return false 164 */ 165 static inline bool cap_issubset(const kernel_cap_t a, const kernel_cap_t set) 166 { 167 kernel_cap_t dest; 168 dest = cap_drop(a, set); 169 return cap_isclear(dest); 170 } 171 172 /* Used to decide between falling back on the old suser() or fsuser(). */ 173 174 static inline kernel_cap_t cap_drop_fs_set(const kernel_cap_t a) 175 { 176 const kernel_cap_t __cap_fs_set = CAP_FS_SET; 177 return cap_drop(a, __cap_fs_set); 178 } 179 180 static inline kernel_cap_t cap_raise_fs_set(const kernel_cap_t a, 181 const kernel_cap_t permitted) 182 { 183 const kernel_cap_t __cap_fs_set = CAP_FS_SET; 184 return cap_combine(a, 185 cap_intersect(permitted, __cap_fs_set)); 186 } 187 188 static inline kernel_cap_t cap_drop_nfsd_set(const kernel_cap_t a) 189 { 190 const kernel_cap_t __cap_fs_set = CAP_NFSD_SET; 191 return cap_drop(a, __cap_fs_set); 192 } 193 194 static inline kernel_cap_t cap_raise_nfsd_set(const kernel_cap_t a, 195 const kernel_cap_t permitted) 196 { 197 const kernel_cap_t __cap_nfsd_set = CAP_NFSD_SET; 198 return cap_combine(a, 199 cap_intersect(permitted, __cap_nfsd_set)); 200 } 201 202 #ifdef CONFIG_MULTIUSER 203 extern bool has_capability(struct task_struct *t, int cap); 204 extern bool has_ns_capability(struct task_struct *t, 205 struct user_namespace *ns, int cap); 206 extern bool has_capability_noaudit(struct task_struct *t, int cap); 207 extern bool has_ns_capability_noaudit(struct task_struct *t, 208 struct user_namespace *ns, int cap); 209 extern bool capable(int cap); 210 extern bool ns_capable(struct user_namespace *ns, int cap); 211 extern bool ns_capable_noaudit(struct user_namespace *ns, int cap); 212 #else 213 static inline bool has_capability(struct task_struct *t, int cap) 214 { 215 return true; 216 } 217 static inline bool has_ns_capability(struct task_struct *t, 218 struct user_namespace *ns, int cap) 219 { 220 return true; 221 } 222 static inline bool has_capability_noaudit(struct task_struct *t, int cap) 223 { 224 return true; 225 } 226 static inline bool has_ns_capability_noaudit(struct task_struct *t, 227 struct user_namespace *ns, int cap) 228 { 229 return true; 230 } 231 static inline bool capable(int cap) 232 { 233 return true; 234 } 235 static inline bool ns_capable(struct user_namespace *ns, int cap) 236 { 237 return true; 238 } 239 static inline bool ns_capable_noaudit(struct user_namespace *ns, int cap) 240 { 241 return true; 242 } 243 #endif /* CONFIG_MULTIUSER */ 244 extern bool privileged_wrt_inode_uidgid(struct user_namespace *ns, const struct inode *inode); 245 extern bool capable_wrt_inode_uidgid(const struct inode *inode, int cap); 246 extern bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap); 247 extern bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns); 248 249 /* audit system wants to get cap info from files as well */ 250 extern int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps); 251 252 extern int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size); 253 254 #endif /* !_LINUX_CAPABILITY_H */ 255