1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_VERIFIER_H 5 #define _LINUX_BPF_VERIFIER_H 1 6 7 #include <linux/bpf.h> /* for enum bpf_reg_type */ 8 #include <linux/btf.h> /* for struct btf and btf_id() */ 9 #include <linux/filter.h> /* for MAX_BPF_STACK */ 10 #include <linux/tnum.h> 11 12 /* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16 #define BPF_MAX_VAR_OFF (1 << 29) 17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20 #define BPF_MAX_VAR_SIZ (1 << 29) 21 /* size of tmp_str_buf in bpf_verifier. 22 * we need at least 306 bytes to fit full stack mask representation 23 * (in the "-8,-16,...,-512" form) 24 */ 25 #define TMP_STR_BUF_LEN 320 26 27 /* Liveness marks, used for registers and spilled-regs (in stack slots). 28 * Read marks propagate upwards until they find a write mark; they record that 29 * "one of this state's descendants read this reg" (and therefore the reg is 30 * relevant for states_equal() checks). 31 * Write marks collect downwards and do not propagate; they record that "the 32 * straight-line code that reached this state (from its parent) wrote this reg" 33 * (and therefore that reads propagated from this state or its descendants 34 * should not propagate to its parent). 35 * A state with a write mark can receive read marks; it just won't propagate 36 * them to its parent, since the write mark is a property, not of the state, 37 * but of the link between it and its parent. See mark_reg_read() and 38 * mark_stack_slot_read() in kernel/bpf/verifier.c. 39 */ 40 enum bpf_reg_liveness { 41 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 42 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 43 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 44 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 45 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 46 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 47 }; 48 49 /* For every reg representing a map value or allocated object pointer, 50 * we consider the tuple of (ptr, id) for them to be unique in verifier 51 * context and conside them to not alias each other for the purposes of 52 * tracking lock state. 53 */ 54 struct bpf_active_lock { 55 /* This can either be reg->map_ptr or reg->btf. If ptr is NULL, 56 * there's no active lock held, and other fields have no 57 * meaning. If non-NULL, it indicates that a lock is held and 58 * id member has the reg->id of the register which can be >= 0. 59 */ 60 void *ptr; 61 /* This will be reg->id */ 62 u32 id; 63 }; 64 65 #define ITER_PREFIX "bpf_iter_" 66 67 enum bpf_iter_state { 68 BPF_ITER_STATE_INVALID, /* for non-first slot */ 69 BPF_ITER_STATE_ACTIVE, 70 BPF_ITER_STATE_DRAINED, 71 }; 72 73 struct bpf_reg_state { 74 /* Ordering of fields matters. See states_equal() */ 75 enum bpf_reg_type type; 76 /* Fixed part of pointer offset, pointer types only */ 77 s32 off; 78 union { 79 /* valid when type == PTR_TO_PACKET */ 80 int range; 81 82 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 83 * PTR_TO_MAP_VALUE_OR_NULL 84 */ 85 struct { 86 struct bpf_map *map_ptr; 87 /* To distinguish map lookups from outer map 88 * the map_uid is non-zero for registers 89 * pointing to inner maps. 90 */ 91 u32 map_uid; 92 }; 93 94 /* for PTR_TO_BTF_ID */ 95 struct { 96 struct btf *btf; 97 u32 btf_id; 98 }; 99 100 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 101 u32 mem_size; 102 u32 dynptr_id; /* for dynptr slices */ 103 }; 104 105 /* For dynptr stack slots */ 106 struct { 107 enum bpf_dynptr_type type; 108 /* A dynptr is 16 bytes so it takes up 2 stack slots. 109 * We need to track which slot is the first slot 110 * to protect against cases where the user may try to 111 * pass in an address starting at the second slot of the 112 * dynptr. 113 */ 114 bool first_slot; 115 } dynptr; 116 117 /* For bpf_iter stack slots */ 118 struct { 119 /* BTF container and BTF type ID describing 120 * struct bpf_iter_<type> of an iterator state 121 */ 122 struct btf *btf; 123 u32 btf_id; 124 /* packing following two fields to fit iter state into 16 bytes */ 125 enum bpf_iter_state state:2; 126 int depth:30; 127 } iter; 128 129 /* Max size from any of the above. */ 130 struct { 131 unsigned long raw1; 132 unsigned long raw2; 133 } raw; 134 135 u32 subprogno; /* for PTR_TO_FUNC */ 136 }; 137 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 138 * the actual value. 139 * For pointer types, this represents the variable part of the offset 140 * from the pointed-to object, and is shared with all bpf_reg_states 141 * with the same id as us. 142 */ 143 struct tnum var_off; 144 /* Used to determine if any memory access using this register will 145 * result in a bad access. 146 * These refer to the same value as var_off, not necessarily the actual 147 * contents of the register. 148 */ 149 s64 smin_value; /* minimum possible (s64)value */ 150 s64 smax_value; /* maximum possible (s64)value */ 151 u64 umin_value; /* minimum possible (u64)value */ 152 u64 umax_value; /* maximum possible (u64)value */ 153 s32 s32_min_value; /* minimum possible (s32)value */ 154 s32 s32_max_value; /* maximum possible (s32)value */ 155 u32 u32_min_value; /* minimum possible (u32)value */ 156 u32 u32_max_value; /* maximum possible (u32)value */ 157 /* For PTR_TO_PACKET, used to find other pointers with the same variable 158 * offset, so they can share range knowledge. 159 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 160 * came from, when one is tested for != NULL. 161 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 162 * for the purpose of tracking that it's freed. 163 * For PTR_TO_SOCKET this is used to share which pointers retain the 164 * same reference to the socket, to determine proper reference freeing. 165 * For stack slots that are dynptrs, this is used to track references to 166 * the dynptr to determine proper reference freeing. 167 * Similarly to dynptrs, we use ID to track "belonging" of a reference 168 * to a specific instance of bpf_iter. 169 */ 170 u32 id; 171 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 172 * from a pointer-cast helper, bpf_sk_fullsock() and 173 * bpf_tcp_sock(). 174 * 175 * Consider the following where "sk" is a reference counted 176 * pointer returned from "sk = bpf_sk_lookup_tcp();": 177 * 178 * 1: sk = bpf_sk_lookup_tcp(); 179 * 2: if (!sk) { return 0; } 180 * 3: fullsock = bpf_sk_fullsock(sk); 181 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 182 * 5: tp = bpf_tcp_sock(fullsock); 183 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 184 * 7: bpf_sk_release(sk); 185 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 186 * 187 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 188 * "tp" ptr should be invalidated also. In order to do that, 189 * the reg holding "fullsock" and "sk" need to remember 190 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 191 * such that the verifier can reset all regs which have 192 * ref_obj_id matching the sk_reg->id. 193 * 194 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 195 * sk_reg->id will stay as NULL-marking purpose only. 196 * After NULL-marking is done, sk_reg->id can be reset to 0. 197 * 198 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 199 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 200 * 201 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 202 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 203 * which is the same as sk_reg->ref_obj_id. 204 * 205 * From the verifier perspective, if sk, fullsock and tp 206 * are not NULL, they are the same ptr with different 207 * reg->type. In particular, bpf_sk_release(tp) is also 208 * allowed and has the same effect as bpf_sk_release(sk). 209 */ 210 u32 ref_obj_id; 211 /* parentage chain for liveness checking */ 212 struct bpf_reg_state *parent; 213 /* Inside the callee two registers can be both PTR_TO_STACK like 214 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 215 * while another to the caller's stack. To differentiate them 'frameno' 216 * is used which is an index in bpf_verifier_state->frame[] array 217 * pointing to bpf_func_state. 218 */ 219 u32 frameno; 220 /* Tracks subreg definition. The stored value is the insn_idx of the 221 * writing insn. This is safe because subreg_def is used before any insn 222 * patching which only happens after main verification finished. 223 */ 224 s32 subreg_def; 225 enum bpf_reg_liveness live; 226 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 227 bool precise; 228 }; 229 230 enum bpf_stack_slot_type { 231 STACK_INVALID, /* nothing was stored in this stack slot */ 232 STACK_SPILL, /* register spilled into stack */ 233 STACK_MISC, /* BPF program wrote some data into this slot */ 234 STACK_ZERO, /* BPF program wrote constant zero */ 235 /* A dynptr is stored in this stack slot. The type of dynptr 236 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 237 */ 238 STACK_DYNPTR, 239 STACK_ITER, 240 }; 241 242 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 243 244 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \ 245 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \ 246 (1 << BPF_REG_5)) 247 248 #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 249 #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 250 251 struct bpf_stack_state { 252 struct bpf_reg_state spilled_ptr; 253 u8 slot_type[BPF_REG_SIZE]; 254 }; 255 256 struct bpf_reference_state { 257 /* Track each reference created with a unique id, even if the same 258 * instruction creates the reference multiple times (eg, via CALL). 259 */ 260 int id; 261 /* Instruction where the allocation of this reference occurred. This 262 * is used purely to inform the user of a reference leak. 263 */ 264 int insn_idx; 265 /* There can be a case like: 266 * main (frame 0) 267 * cb (frame 1) 268 * func (frame 3) 269 * cb (frame 4) 270 * Hence for frame 4, if callback_ref just stored boolean, it would be 271 * impossible to distinguish nested callback refs. Hence store the 272 * frameno and compare that to callback_ref in check_reference_leak when 273 * exiting a callback function. 274 */ 275 int callback_ref; 276 }; 277 278 struct bpf_retval_range { 279 s32 minval; 280 s32 maxval; 281 }; 282 283 /* state of the program: 284 * type of all registers and stack info 285 */ 286 struct bpf_func_state { 287 struct bpf_reg_state regs[MAX_BPF_REG]; 288 /* index of call instruction that called into this func */ 289 int callsite; 290 /* stack frame number of this function state from pov of 291 * enclosing bpf_verifier_state. 292 * 0 = main function, 1 = first callee. 293 */ 294 u32 frameno; 295 /* subprog number == index within subprog_info 296 * zero == main subprog 297 */ 298 u32 subprogno; 299 /* Every bpf_timer_start will increment async_entry_cnt. 300 * It's used to distinguish: 301 * void foo(void) { for(;;); } 302 * void foo(void) { bpf_timer_set_callback(,foo); } 303 */ 304 u32 async_entry_cnt; 305 struct bpf_retval_range callback_ret_range; 306 bool in_callback_fn; 307 bool in_async_callback_fn; 308 bool in_exception_callback_fn; 309 /* For callback calling functions that limit number of possible 310 * callback executions (e.g. bpf_loop) keeps track of current 311 * simulated iteration number. 312 * Value in frame N refers to number of times callback with frame 313 * N+1 was simulated, e.g. for the following call: 314 * 315 * bpf_loop(..., fn, ...); | suppose current frame is N 316 * | fn would be simulated in frame N+1 317 * | number of simulations is tracked in frame N 318 */ 319 u32 callback_depth; 320 321 /* The following fields should be last. See copy_func_state() */ 322 int acquired_refs; 323 struct bpf_reference_state *refs; 324 /* The state of the stack. Each element of the array describes BPF_REG_SIZE 325 * (i.e. 8) bytes worth of stack memory. 326 * stack[0] represents bytes [*(r10-8)..*(r10-1)] 327 * stack[1] represents bytes [*(r10-16)..*(r10-9)] 328 * ... 329 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)] 330 */ 331 struct bpf_stack_state *stack; 332 /* Size of the current stack, in bytes. The stack state is tracked below, in 333 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE. 334 */ 335 int allocated_stack; 336 }; 337 338 #define MAX_CALL_FRAMES 8 339 340 /* instruction history flags, used in bpf_jmp_history_entry.flags field */ 341 enum { 342 /* instruction references stack slot through PTR_TO_STACK register; 343 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8) 344 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512, 345 * 8 bytes per slot, so slot index (spi) is [0, 63]) 346 */ 347 INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */ 348 349 INSN_F_SPI_MASK = 0x3f, /* 6 bits */ 350 INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */ 351 352 INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */ 353 }; 354 355 static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES); 356 static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8); 357 358 struct bpf_jmp_history_entry { 359 u32 idx; 360 /* insn idx can't be bigger than 1 million */ 361 u32 prev_idx : 22; 362 /* special flags, e.g., whether insn is doing register stack spill/load */ 363 u32 flags : 10; 364 }; 365 366 /* Maximum number of register states that can exist at once */ 367 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES) 368 struct bpf_verifier_state { 369 /* call stack tracking */ 370 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 371 struct bpf_verifier_state *parent; 372 /* 373 * 'branches' field is the number of branches left to explore: 374 * 0 - all possible paths from this state reached bpf_exit or 375 * were safely pruned 376 * 1 - at least one path is being explored. 377 * This state hasn't reached bpf_exit 378 * 2 - at least two paths are being explored. 379 * This state is an immediate parent of two children. 380 * One is fallthrough branch with branches==1 and another 381 * state is pushed into stack (to be explored later) also with 382 * branches==1. The parent of this state has branches==1. 383 * The verifier state tree connected via 'parent' pointer looks like: 384 * 1 385 * 1 386 * 2 -> 1 (first 'if' pushed into stack) 387 * 1 388 * 2 -> 1 (second 'if' pushed into stack) 389 * 1 390 * 1 391 * 1 bpf_exit. 392 * 393 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 394 * and the verifier state tree will look: 395 * 1 396 * 1 397 * 2 -> 1 (first 'if' pushed into stack) 398 * 1 399 * 1 -> 1 (second 'if' pushed into stack) 400 * 0 401 * 0 402 * 0 bpf_exit. 403 * After pop_stack() the do_check() will resume at second 'if'. 404 * 405 * If is_state_visited() sees a state with branches > 0 it means 406 * there is a loop. If such state is exactly equal to the current state 407 * it's an infinite loop. Note states_equal() checks for states 408 * equivalency, so two states being 'states_equal' does not mean 409 * infinite loop. The exact comparison is provided by 410 * states_maybe_looping() function. It's a stronger pre-check and 411 * much faster than states_equal(). 412 * 413 * This algorithm may not find all possible infinite loops or 414 * loop iteration count may be too high. 415 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 416 */ 417 u32 branches; 418 u32 insn_idx; 419 u32 curframe; 420 421 struct bpf_active_lock active_lock; 422 bool speculative; 423 bool active_rcu_lock; 424 u32 active_preempt_lock; 425 /* If this state was ever pointed-to by other state's loop_entry field 426 * this flag would be set to true. Used to avoid freeing such states 427 * while they are still in use. 428 */ 429 bool used_as_loop_entry; 430 bool in_sleepable; 431 432 /* first and last insn idx of this verifier state */ 433 u32 first_insn_idx; 434 u32 last_insn_idx; 435 /* If this state is a part of states loop this field points to some 436 * parent of this state such that: 437 * - it is also a member of the same states loop; 438 * - DFS states traversal starting from initial state visits loop_entry 439 * state before this state. 440 * Used to compute topmost loop entry for state loops. 441 * State loops might appear because of open coded iterators logic. 442 * See get_loop_entry() for more information. 443 */ 444 struct bpf_verifier_state *loop_entry; 445 /* jmp history recorded from first to last. 446 * backtracking is using it to go from last to first. 447 * For most states jmp_history_cnt is [0-3]. 448 * For loops can go up to ~40. 449 */ 450 struct bpf_jmp_history_entry *jmp_history; 451 u32 jmp_history_cnt; 452 u32 dfs_depth; 453 u32 callback_unroll_depth; 454 u32 may_goto_depth; 455 }; 456 457 #define bpf_get_spilled_reg(slot, frame, mask) \ 458 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 459 ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \ 460 ? &frame->stack[slot].spilled_ptr : NULL) 461 462 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 463 #define bpf_for_each_spilled_reg(iter, frame, reg, mask) \ 464 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \ 465 iter < frame->allocated_stack / BPF_REG_SIZE; \ 466 iter++, reg = bpf_get_spilled_reg(iter, frame, mask)) 467 468 #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \ 469 ({ \ 470 struct bpf_verifier_state *___vstate = __vst; \ 471 int ___i, ___j; \ 472 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ 473 struct bpf_reg_state *___regs; \ 474 __state = ___vstate->frame[___i]; \ 475 ___regs = __state->regs; \ 476 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ 477 __reg = &___regs[___j]; \ 478 (void)(__expr); \ 479 } \ 480 bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \ 481 if (!__reg) \ 482 continue; \ 483 (void)(__expr); \ 484 } \ 485 } \ 486 }) 487 488 /* Invoke __expr over regsiters in __vst, setting __state and __reg */ 489 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ 490 bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr) 491 492 /* linked list of verifier states used to prune search */ 493 struct bpf_verifier_state_list { 494 struct bpf_verifier_state state; 495 struct bpf_verifier_state_list *next; 496 int miss_cnt, hit_cnt; 497 }; 498 499 struct bpf_loop_inline_state { 500 unsigned int initialized:1; /* set to true upon first entry */ 501 unsigned int fit_for_inline:1; /* true if callback function is the same 502 * at each call and flags are always zero 503 */ 504 u32 callback_subprogno; /* valid when fit_for_inline is true */ 505 }; 506 507 /* pointer and state for maps */ 508 struct bpf_map_ptr_state { 509 struct bpf_map *map_ptr; 510 bool poison; 511 bool unpriv; 512 }; 513 514 /* Possible states for alu_state member. */ 515 #define BPF_ALU_SANITIZE_SRC (1U << 0) 516 #define BPF_ALU_SANITIZE_DST (1U << 1) 517 #define BPF_ALU_NEG_VALUE (1U << 2) 518 #define BPF_ALU_NON_POINTER (1U << 3) 519 #define BPF_ALU_IMMEDIATE (1U << 4) 520 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 521 BPF_ALU_SANITIZE_DST) 522 523 struct bpf_insn_aux_data { 524 union { 525 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 526 struct bpf_map_ptr_state map_ptr_state; 527 s32 call_imm; /* saved imm field of call insn */ 528 u32 alu_limit; /* limit for add/sub register with pointer */ 529 struct { 530 u32 map_index; /* index into used_maps[] */ 531 u32 map_off; /* offset from value base address */ 532 }; 533 struct { 534 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 535 union { 536 struct { 537 struct btf *btf; 538 u32 btf_id; /* btf_id for struct typed var */ 539 }; 540 u32 mem_size; /* mem_size for non-struct typed var */ 541 }; 542 } btf_var; 543 /* if instruction is a call to bpf_loop this field tracks 544 * the state of the relevant registers to make decision about inlining 545 */ 546 struct bpf_loop_inline_state loop_inline_state; 547 }; 548 union { 549 /* remember the size of type passed to bpf_obj_new to rewrite R1 */ 550 u64 obj_new_size; 551 /* remember the offset of node field within type to rewrite */ 552 u64 insert_off; 553 }; 554 struct btf_struct_meta *kptr_struct_meta; 555 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 556 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 557 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 558 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ 559 bool zext_dst; /* this insn zero extends dst reg */ 560 bool needs_zext; /* alu op needs to clear upper bits */ 561 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */ 562 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */ 563 bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */ 564 u8 alu_state; /* used in combination with alu_limit */ 565 566 /* below fields are initialized once */ 567 unsigned int orig_idx; /* original instruction index */ 568 bool jmp_point; 569 bool prune_point; 570 /* ensure we check state equivalence and save state checkpoint and 571 * this instruction, regardless of any heuristics 572 */ 573 bool force_checkpoint; 574 /* true if instruction is a call to a helper function that 575 * accepts callback function as a parameter. 576 */ 577 bool calls_callback; 578 }; 579 580 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 581 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 582 583 #define BPF_VERIFIER_TMP_LOG_SIZE 1024 584 585 struct bpf_verifier_log { 586 /* Logical start and end positions of a "log window" of the verifier log. 587 * start_pos == 0 means we haven't truncated anything. 588 * Once truncation starts to happen, start_pos + len_total == end_pos, 589 * except during log reset situations, in which (end_pos - start_pos) 590 * might get smaller than len_total (see bpf_vlog_reset()). 591 * Generally, (end_pos - start_pos) gives number of useful data in 592 * user log buffer. 593 */ 594 u64 start_pos; 595 u64 end_pos; 596 char __user *ubuf; 597 u32 level; 598 u32 len_total; 599 u32 len_max; 600 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 601 }; 602 603 #define BPF_LOG_LEVEL1 1 604 #define BPF_LOG_LEVEL2 2 605 #define BPF_LOG_STATS 4 606 #define BPF_LOG_FIXED 8 607 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 608 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED) 609 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 610 #define BPF_LOG_MIN_ALIGNMENT 8U 611 #define BPF_LOG_ALIGNMENT 40U 612 613 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 614 { 615 return log && log->level; 616 } 617 618 #define BPF_MAX_SUBPROGS 256 619 620 struct bpf_subprog_arg_info { 621 enum bpf_arg_type arg_type; 622 union { 623 u32 mem_size; 624 u32 btf_id; 625 }; 626 }; 627 628 struct bpf_subprog_info { 629 /* 'start' has to be the first field otherwise find_subprog() won't work */ 630 u32 start; /* insn idx of function entry point */ 631 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 632 u16 stack_depth; /* max. stack depth used by this function */ 633 u16 stack_extra; 634 bool has_tail_call: 1; 635 bool tail_call_reachable: 1; 636 bool has_ld_abs: 1; 637 bool is_cb: 1; 638 bool is_async_cb: 1; 639 bool is_exception_cb: 1; 640 bool args_cached: 1; 641 642 u8 arg_cnt; 643 struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS]; 644 }; 645 646 struct bpf_verifier_env; 647 648 struct backtrack_state { 649 struct bpf_verifier_env *env; 650 u32 frame; 651 u32 reg_masks[MAX_CALL_FRAMES]; 652 u64 stack_masks[MAX_CALL_FRAMES]; 653 }; 654 655 struct bpf_id_pair { 656 u32 old; 657 u32 cur; 658 }; 659 660 struct bpf_idmap { 661 u32 tmp_id_gen; 662 struct bpf_id_pair map[BPF_ID_MAP_SIZE]; 663 }; 664 665 struct bpf_idset { 666 u32 count; 667 u32 ids[BPF_ID_MAP_SIZE]; 668 }; 669 670 /* single container for all structs 671 * one verifier_env per bpf_check() call 672 */ 673 struct bpf_verifier_env { 674 u32 insn_idx; 675 u32 prev_insn_idx; 676 struct bpf_prog *prog; /* eBPF program being verified */ 677 const struct bpf_verifier_ops *ops; 678 struct module *attach_btf_mod; /* The owner module of prog->aux->attach_btf */ 679 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 680 int stack_size; /* number of states to be processed */ 681 bool strict_alignment; /* perform strict pointer alignment checks */ 682 bool test_state_freq; /* test verifier with different pruning frequency */ 683 bool test_reg_invariants; /* fail verification on register invariants violations */ 684 struct bpf_verifier_state *cur_state; /* current verifier state */ 685 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 686 struct bpf_verifier_state_list *free_list; 687 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 688 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 689 u32 used_map_cnt; /* number of used maps */ 690 u32 used_btf_cnt; /* number of used BTF objects */ 691 u32 id_gen; /* used to generate unique reg IDs */ 692 u32 hidden_subprog_cnt; /* number of hidden subprogs */ 693 int exception_callback_subprog; 694 bool explore_alu_limits; 695 bool allow_ptr_leaks; 696 /* Allow access to uninitialized stack memory. Writes with fixed offset are 697 * always allowed, so this refers to reads (with fixed or variable offset), 698 * to writes with variable offset and to indirect (helper) accesses. 699 */ 700 bool allow_uninit_stack; 701 bool bpf_capable; 702 bool bypass_spec_v1; 703 bool bypass_spec_v4; 704 bool seen_direct_write; 705 bool seen_exception; 706 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 707 const struct bpf_line_info *prev_linfo; 708 struct bpf_verifier_log log; 709 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */ 710 union { 711 struct bpf_idmap idmap_scratch; 712 struct bpf_idset idset_scratch; 713 }; 714 struct { 715 int *insn_state; 716 int *insn_stack; 717 int cur_stack; 718 } cfg; 719 struct backtrack_state bt; 720 struct bpf_jmp_history_entry *cur_hist_ent; 721 u32 pass_cnt; /* number of times do_check() was called */ 722 u32 subprog_cnt; 723 /* number of instructions analyzed by the verifier */ 724 u32 prev_insn_processed, insn_processed; 725 /* number of jmps, calls, exits analyzed so far */ 726 u32 prev_jmps_processed, jmps_processed; 727 /* total verification time */ 728 u64 verification_time; 729 /* maximum number of verifier states kept in 'branching' instructions */ 730 u32 max_states_per_insn; 731 /* total number of allocated verifier states */ 732 u32 total_states; 733 /* some states are freed during program analysis. 734 * this is peak number of states. this number dominates kernel 735 * memory consumption during verification 736 */ 737 u32 peak_states; 738 /* longest register parentage chain walked for liveness marking */ 739 u32 longest_mark_read_walk; 740 bpfptr_t fd_array; 741 742 /* bit mask to keep track of whether a register has been accessed 743 * since the last time the function state was printed 744 */ 745 u32 scratched_regs; 746 /* Same as scratched_regs but for stack slots */ 747 u64 scratched_stack_slots; 748 u64 prev_log_pos, prev_insn_print_pos; 749 /* buffer used to generate temporary string representations, 750 * e.g., in reg_type_str() to generate reg_type string 751 */ 752 char tmp_str_buf[TMP_STR_BUF_LEN]; 753 }; 754 755 static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog) 756 { 757 return &env->prog->aux->func_info_aux[subprog]; 758 } 759 760 static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog) 761 { 762 return &env->subprog_info[subprog]; 763 } 764 765 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 766 const char *fmt, va_list args); 767 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 768 const char *fmt, ...); 769 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 770 const char *fmt, ...); 771 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, 772 char __user *log_buf, u32 log_size); 773 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos); 774 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual); 775 776 __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, 777 u32 insn_off, 778 const char *prefix_fmt, ...); 779 780 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 781 { 782 struct bpf_verifier_state *cur = env->cur_state; 783 784 return cur->frame[cur->curframe]; 785 } 786 787 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 788 { 789 return cur_func(env)->regs; 790 } 791 792 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 793 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 794 int insn_idx, int prev_insn_idx); 795 int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 796 void 797 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 798 struct bpf_insn *insn); 799 void 800 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 801 802 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 803 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 804 struct btf *btf, u32 btf_id) 805 { 806 if (tgt_prog) 807 return ((u64)tgt_prog->aux->id << 32) | btf_id; 808 else 809 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 810 } 811 812 /* unpack the IDs from the key as constructed above */ 813 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 814 { 815 if (obj_id) 816 *obj_id = key >> 32; 817 if (btf_id) 818 *btf_id = key & 0x7FFFFFFF; 819 } 820 821 int bpf_check_attach_target(struct bpf_verifier_log *log, 822 const struct bpf_prog *prog, 823 const struct bpf_prog *tgt_prog, 824 u32 btf_id, 825 struct bpf_attach_target_info *tgt_info); 826 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 827 828 int mark_chain_precision(struct bpf_verifier_env *env, int regno); 829 830 #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 831 832 /* extract base type from bpf_{arg, return, reg}_type. */ 833 static inline u32 base_type(u32 type) 834 { 835 return type & BPF_BASE_TYPE_MASK; 836 } 837 838 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */ 839 static inline u32 type_flag(u32 type) 840 { 841 return type & ~BPF_BASE_TYPE_MASK; 842 } 843 844 /* only use after check_attach_btf_id() */ 845 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog) 846 { 847 return prog->type == BPF_PROG_TYPE_EXT ? 848 prog->aux->dst_prog->type : prog->type; 849 } 850 851 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) 852 { 853 switch (resolve_prog_type(prog)) { 854 case BPF_PROG_TYPE_TRACING: 855 return prog->expected_attach_type != BPF_TRACE_ITER; 856 case BPF_PROG_TYPE_STRUCT_OPS: 857 case BPF_PROG_TYPE_LSM: 858 return false; 859 default: 860 return true; 861 } 862 } 863 864 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF) 865 866 static inline bool bpf_type_has_unsafe_modifiers(u32 type) 867 { 868 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; 869 } 870 871 static inline bool type_is_ptr_alloc_obj(u32 type) 872 { 873 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 874 } 875 876 static inline bool type_is_non_owning_ref(u32 type) 877 { 878 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 879 } 880 881 static inline bool type_is_pkt_pointer(enum bpf_reg_type type) 882 { 883 type = base_type(type); 884 return type == PTR_TO_PACKET || 885 type == PTR_TO_PACKET_META; 886 } 887 888 static inline bool type_is_sk_pointer(enum bpf_reg_type type) 889 { 890 return type == PTR_TO_SOCKET || 891 type == PTR_TO_SOCK_COMMON || 892 type == PTR_TO_TCP_SOCK || 893 type == PTR_TO_XDP_SOCK; 894 } 895 896 static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 897 { 898 env->scratched_regs |= 1U << regno; 899 } 900 901 static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 902 { 903 env->scratched_stack_slots |= 1ULL << spi; 904 } 905 906 static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 907 { 908 return (env->scratched_regs >> regno) & 1; 909 } 910 911 static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 912 { 913 return (env->scratched_stack_slots >> regno) & 1; 914 } 915 916 static inline bool verifier_state_scratched(const struct bpf_verifier_env *env) 917 { 918 return env->scratched_regs || env->scratched_stack_slots; 919 } 920 921 static inline void mark_verifier_state_clean(struct bpf_verifier_env *env) 922 { 923 env->scratched_regs = 0U; 924 env->scratched_stack_slots = 0ULL; 925 } 926 927 /* Used for printing the entire verifier state. */ 928 static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env) 929 { 930 env->scratched_regs = ~0U; 931 env->scratched_stack_slots = ~0ULL; 932 } 933 934 static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size) 935 { 936 #ifdef __BIG_ENDIAN 937 off -= spill_size - fill_size; 938 #endif 939 940 return !(off % BPF_REG_SIZE); 941 } 942 943 const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type); 944 const char *dynptr_type_str(enum bpf_dynptr_type type); 945 const char *iter_type_str(const struct btf *btf, u32 btf_id); 946 const char *iter_state_str(enum bpf_iter_state state); 947 948 void print_verifier_state(struct bpf_verifier_env *env, 949 const struct bpf_func_state *state, bool print_all); 950 void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state); 951 952 #endif /* _LINUX_BPF_VERIFIER_H */ 953