xref: /linux-6.15/include/linux/bpf_verifier.h (revision c098564d)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6 
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11 
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13  * In practice this is far bigger than any realistic pointer offset; this limit
14  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15  */
16 #define BPF_MAX_VAR_OFF	(1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
18  * that converting umax_value to int cannot overflow.
19  */
20 #define BPF_MAX_VAR_SIZ	(1 << 29)
21 
22 /* Liveness marks, used for registers and spilled-regs (in stack slots).
23  * Read marks propagate upwards until they find a write mark; they record that
24  * "one of this state's descendants read this reg" (and therefore the reg is
25  * relevant for states_equal() checks).
26  * Write marks collect downwards and do not propagate; they record that "the
27  * straight-line code that reached this state (from its parent) wrote this reg"
28  * (and therefore that reads propagated from this state or its descendants
29  * should not propagate to its parent).
30  * A state with a write mark can receive read marks; it just won't propagate
31  * them to its parent, since the write mark is a property, not of the state,
32  * but of the link between it and its parent.  See mark_reg_read() and
33  * mark_stack_slot_read() in kernel/bpf/verifier.c.
34  */
35 enum bpf_reg_liveness {
36 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
37 	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
38 	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
39 	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
40 	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
41 	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
42 };
43 
44 struct bpf_reg_state {
45 	/* Ordering of fields matters.  See states_equal() */
46 	enum bpf_reg_type type;
47 	/* Fixed part of pointer offset, pointer types only */
48 	s32 off;
49 	union {
50 		/* valid when type == PTR_TO_PACKET */
51 		int range;
52 
53 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
54 		 *   PTR_TO_MAP_VALUE_OR_NULL
55 		 */
56 		struct bpf_map *map_ptr;
57 
58 		/* for PTR_TO_BTF_ID */
59 		struct {
60 			struct btf *btf;
61 			u32 btf_id;
62 		};
63 
64 		u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
65 
66 		/* Max size from any of the above. */
67 		struct {
68 			unsigned long raw1;
69 			unsigned long raw2;
70 		} raw;
71 
72 		u32 subprogno; /* for PTR_TO_FUNC */
73 	};
74 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
75 	 * offset, so they can share range knowledge.
76 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
77 	 * came from, when one is tested for != NULL.
78 	 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
79 	 * for the purpose of tracking that it's freed.
80 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
81 	 * same reference to the socket, to determine proper reference freeing.
82 	 */
83 	u32 id;
84 	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
85 	 * from a pointer-cast helper, bpf_sk_fullsock() and
86 	 * bpf_tcp_sock().
87 	 *
88 	 * Consider the following where "sk" is a reference counted
89 	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
90 	 *
91 	 * 1: sk = bpf_sk_lookup_tcp();
92 	 * 2: if (!sk) { return 0; }
93 	 * 3: fullsock = bpf_sk_fullsock(sk);
94 	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
95 	 * 5: tp = bpf_tcp_sock(fullsock);
96 	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
97 	 * 7: bpf_sk_release(sk);
98 	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
99 	 *
100 	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
101 	 * "tp" ptr should be invalidated also.  In order to do that,
102 	 * the reg holding "fullsock" and "sk" need to remember
103 	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
104 	 * such that the verifier can reset all regs which have
105 	 * ref_obj_id matching the sk_reg->id.
106 	 *
107 	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
108 	 * sk_reg->id will stay as NULL-marking purpose only.
109 	 * After NULL-marking is done, sk_reg->id can be reset to 0.
110 	 *
111 	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
112 	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
113 	 *
114 	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
115 	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
116 	 * which is the same as sk_reg->ref_obj_id.
117 	 *
118 	 * From the verifier perspective, if sk, fullsock and tp
119 	 * are not NULL, they are the same ptr with different
120 	 * reg->type.  In particular, bpf_sk_release(tp) is also
121 	 * allowed and has the same effect as bpf_sk_release(sk).
122 	 */
123 	u32 ref_obj_id;
124 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
125 	 * the actual value.
126 	 * For pointer types, this represents the variable part of the offset
127 	 * from the pointed-to object, and is shared with all bpf_reg_states
128 	 * with the same id as us.
129 	 */
130 	struct tnum var_off;
131 	/* Used to determine if any memory access using this register will
132 	 * result in a bad access.
133 	 * These refer to the same value as var_off, not necessarily the actual
134 	 * contents of the register.
135 	 */
136 	s64 smin_value; /* minimum possible (s64)value */
137 	s64 smax_value; /* maximum possible (s64)value */
138 	u64 umin_value; /* minimum possible (u64)value */
139 	u64 umax_value; /* maximum possible (u64)value */
140 	s32 s32_min_value; /* minimum possible (s32)value */
141 	s32 s32_max_value; /* maximum possible (s32)value */
142 	u32 u32_min_value; /* minimum possible (u32)value */
143 	u32 u32_max_value; /* maximum possible (u32)value */
144 	/* parentage chain for liveness checking */
145 	struct bpf_reg_state *parent;
146 	/* Inside the callee two registers can be both PTR_TO_STACK like
147 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
148 	 * while another to the caller's stack. To differentiate them 'frameno'
149 	 * is used which is an index in bpf_verifier_state->frame[] array
150 	 * pointing to bpf_func_state.
151 	 */
152 	u32 frameno;
153 	/* Tracks subreg definition. The stored value is the insn_idx of the
154 	 * writing insn. This is safe because subreg_def is used before any insn
155 	 * patching which only happens after main verification finished.
156 	 */
157 	s32 subreg_def;
158 	enum bpf_reg_liveness live;
159 	/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
160 	bool precise;
161 };
162 
163 enum bpf_stack_slot_type {
164 	STACK_INVALID,    /* nothing was stored in this stack slot */
165 	STACK_SPILL,      /* register spilled into stack */
166 	STACK_MISC,	  /* BPF program wrote some data into this slot */
167 	STACK_ZERO,	  /* BPF program wrote constant zero */
168 };
169 
170 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
171 
172 struct bpf_stack_state {
173 	struct bpf_reg_state spilled_ptr;
174 	u8 slot_type[BPF_REG_SIZE];
175 };
176 
177 struct bpf_reference_state {
178 	/* Track each reference created with a unique id, even if the same
179 	 * instruction creates the reference multiple times (eg, via CALL).
180 	 */
181 	int id;
182 	/* Instruction where the allocation of this reference occurred. This
183 	 * is used purely to inform the user of a reference leak.
184 	 */
185 	int insn_idx;
186 };
187 
188 /* state of the program:
189  * type of all registers and stack info
190  */
191 struct bpf_func_state {
192 	struct bpf_reg_state regs[MAX_BPF_REG];
193 	/* index of call instruction that called into this func */
194 	int callsite;
195 	/* stack frame number of this function state from pov of
196 	 * enclosing bpf_verifier_state.
197 	 * 0 = main function, 1 = first callee.
198 	 */
199 	u32 frameno;
200 	/* subprog number == index within subprog_info
201 	 * zero == main subprog
202 	 */
203 	u32 subprogno;
204 
205 	/* The following fields should be last. See copy_func_state() */
206 	int acquired_refs;
207 	struct bpf_reference_state *refs;
208 	int allocated_stack;
209 	bool in_callback_fn;
210 	struct bpf_stack_state *stack;
211 };
212 
213 struct bpf_idx_pair {
214 	u32 prev_idx;
215 	u32 idx;
216 };
217 
218 #define MAX_CALL_FRAMES 8
219 struct bpf_verifier_state {
220 	/* call stack tracking */
221 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
222 	struct bpf_verifier_state *parent;
223 	/*
224 	 * 'branches' field is the number of branches left to explore:
225 	 * 0 - all possible paths from this state reached bpf_exit or
226 	 * were safely pruned
227 	 * 1 - at least one path is being explored.
228 	 * This state hasn't reached bpf_exit
229 	 * 2 - at least two paths are being explored.
230 	 * This state is an immediate parent of two children.
231 	 * One is fallthrough branch with branches==1 and another
232 	 * state is pushed into stack (to be explored later) also with
233 	 * branches==1. The parent of this state has branches==1.
234 	 * The verifier state tree connected via 'parent' pointer looks like:
235 	 * 1
236 	 * 1
237 	 * 2 -> 1 (first 'if' pushed into stack)
238 	 * 1
239 	 * 2 -> 1 (second 'if' pushed into stack)
240 	 * 1
241 	 * 1
242 	 * 1 bpf_exit.
243 	 *
244 	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
245 	 * and the verifier state tree will look:
246 	 * 1
247 	 * 1
248 	 * 2 -> 1 (first 'if' pushed into stack)
249 	 * 1
250 	 * 1 -> 1 (second 'if' pushed into stack)
251 	 * 0
252 	 * 0
253 	 * 0 bpf_exit.
254 	 * After pop_stack() the do_check() will resume at second 'if'.
255 	 *
256 	 * If is_state_visited() sees a state with branches > 0 it means
257 	 * there is a loop. If such state is exactly equal to the current state
258 	 * it's an infinite loop. Note states_equal() checks for states
259 	 * equvalency, so two states being 'states_equal' does not mean
260 	 * infinite loop. The exact comparison is provided by
261 	 * states_maybe_looping() function. It's a stronger pre-check and
262 	 * much faster than states_equal().
263 	 *
264 	 * This algorithm may not find all possible infinite loops or
265 	 * loop iteration count may be too high.
266 	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
267 	 */
268 	u32 branches;
269 	u32 insn_idx;
270 	u32 curframe;
271 	u32 active_spin_lock;
272 	bool speculative;
273 
274 	/* first and last insn idx of this verifier state */
275 	u32 first_insn_idx;
276 	u32 last_insn_idx;
277 	/* jmp history recorded from first to last.
278 	 * backtracking is using it to go from last to first.
279 	 * For most states jmp_history_cnt is [0-3].
280 	 * For loops can go up to ~40.
281 	 */
282 	struct bpf_idx_pair *jmp_history;
283 	u32 jmp_history_cnt;
284 };
285 
286 #define bpf_get_spilled_reg(slot, frame)				\
287 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
288 	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
289 	 ? &frame->stack[slot].spilled_ptr : NULL)
290 
291 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
292 #define bpf_for_each_spilled_reg(iter, frame, reg)			\
293 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
294 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
295 	     iter++, reg = bpf_get_spilled_reg(iter, frame))
296 
297 /* linked list of verifier states used to prune search */
298 struct bpf_verifier_state_list {
299 	struct bpf_verifier_state state;
300 	struct bpf_verifier_state_list *next;
301 	int miss_cnt, hit_cnt;
302 };
303 
304 /* Possible states for alu_state member. */
305 #define BPF_ALU_SANITIZE_SRC		(1U << 0)
306 #define BPF_ALU_SANITIZE_DST		(1U << 1)
307 #define BPF_ALU_NEG_VALUE		(1U << 2)
308 #define BPF_ALU_NON_POINTER		(1U << 3)
309 #define BPF_ALU_IMMEDIATE		(1U << 4)
310 #define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
311 					 BPF_ALU_SANITIZE_DST)
312 
313 struct bpf_insn_aux_data {
314 	union {
315 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
316 		unsigned long map_ptr_state;	/* pointer/poison value for maps */
317 		s32 call_imm;			/* saved imm field of call insn */
318 		u32 alu_limit;			/* limit for add/sub register with pointer */
319 		struct {
320 			u32 map_index;		/* index into used_maps[] */
321 			u32 map_off;		/* offset from value base address */
322 		};
323 		struct {
324 			enum bpf_reg_type reg_type;	/* type of pseudo_btf_id */
325 			union {
326 				struct {
327 					struct btf *btf;
328 					u32 btf_id;	/* btf_id for struct typed var */
329 				};
330 				u32 mem_size;	/* mem_size for non-struct typed var */
331 			};
332 		} btf_var;
333 	};
334 	u64 map_key_state; /* constant (32 bit) key tracking for maps */
335 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
336 	int sanitize_stack_off; /* stack slot to be cleared */
337 	u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
338 	bool zext_dst; /* this insn zero extends dst reg */
339 	u8 alu_state; /* used in combination with alu_limit */
340 
341 	/* below fields are initialized once */
342 	unsigned int orig_idx; /* original instruction index */
343 	bool prune_point;
344 };
345 
346 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
347 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
348 
349 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
350 
351 struct bpf_verifier_log {
352 	u32 level;
353 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
354 	char __user *ubuf;
355 	u32 len_used;
356 	u32 len_total;
357 };
358 
359 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
360 {
361 	return log->len_used >= log->len_total - 1;
362 }
363 
364 #define BPF_LOG_LEVEL1	1
365 #define BPF_LOG_LEVEL2	2
366 #define BPF_LOG_STATS	4
367 #define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
368 #define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS)
369 #define BPF_LOG_KERNEL	(BPF_LOG_MASK + 1) /* kernel internal flag */
370 
371 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
372 {
373 	return log &&
374 		((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
375 		 log->level == BPF_LOG_KERNEL);
376 }
377 
378 #define BPF_MAX_SUBPROGS 256
379 
380 struct bpf_subprog_info {
381 	/* 'start' has to be the first field otherwise find_subprog() won't work */
382 	u32 start; /* insn idx of function entry point */
383 	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
384 	u16 stack_depth; /* max. stack depth used by this function */
385 	bool has_tail_call;
386 	bool tail_call_reachable;
387 	bool has_ld_abs;
388 };
389 
390 /* single container for all structs
391  * one verifier_env per bpf_check() call
392  */
393 struct bpf_verifier_env {
394 	u32 insn_idx;
395 	u32 prev_insn_idx;
396 	struct bpf_prog *prog;		/* eBPF program being verified */
397 	const struct bpf_verifier_ops *ops;
398 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
399 	int stack_size;			/* number of states to be processed */
400 	bool strict_alignment;		/* perform strict pointer alignment checks */
401 	bool test_state_freq;		/* test verifier with different pruning frequency */
402 	struct bpf_verifier_state *cur_state; /* current verifier state */
403 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
404 	struct bpf_verifier_state_list *free_list;
405 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
406 	struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
407 	u32 used_map_cnt;		/* number of used maps */
408 	u32 used_btf_cnt;		/* number of used BTF objects */
409 	u32 id_gen;			/* used to generate unique reg IDs */
410 	bool allow_ptr_leaks;
411 	bool allow_uninit_stack;
412 	bool allow_ptr_to_map_access;
413 	bool bpf_capable;
414 	bool bypass_spec_v1;
415 	bool bypass_spec_v4;
416 	bool seen_direct_write;
417 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
418 	const struct bpf_line_info *prev_linfo;
419 	struct bpf_verifier_log log;
420 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
421 	struct {
422 		int *insn_state;
423 		int *insn_stack;
424 		int cur_stack;
425 	} cfg;
426 	u32 pass_cnt; /* number of times do_check() was called */
427 	u32 subprog_cnt;
428 	/* number of instructions analyzed by the verifier */
429 	u32 prev_insn_processed, insn_processed;
430 	/* number of jmps, calls, exits analyzed so far */
431 	u32 prev_jmps_processed, jmps_processed;
432 	/* total verification time */
433 	u64 verification_time;
434 	/* maximum number of verifier states kept in 'branching' instructions */
435 	u32 max_states_per_insn;
436 	/* total number of allocated verifier states */
437 	u32 total_states;
438 	/* some states are freed during program analysis.
439 	 * this is peak number of states. this number dominates kernel
440 	 * memory consumption during verification
441 	 */
442 	u32 peak_states;
443 	/* longest register parentage chain walked for liveness marking */
444 	u32 longest_mark_read_walk;
445 };
446 
447 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
448 				      const char *fmt, va_list args);
449 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
450 					   const char *fmt, ...);
451 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
452 			    const char *fmt, ...);
453 
454 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
455 {
456 	struct bpf_verifier_state *cur = env->cur_state;
457 
458 	return cur->frame[cur->curframe];
459 }
460 
461 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
462 {
463 	return cur_func(env)->regs;
464 }
465 
466 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
467 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
468 				 int insn_idx, int prev_insn_idx);
469 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
470 void
471 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
472 			      struct bpf_insn *insn);
473 void
474 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
475 
476 int check_ctx_reg(struct bpf_verifier_env *env,
477 		  const struct bpf_reg_state *reg, int regno);
478 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
479 		   u32 regno, u32 mem_size);
480 
481 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
482 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
483 					     struct btf *btf, u32 btf_id)
484 {
485 	if (tgt_prog)
486 		return ((u64)tgt_prog->aux->id << 32) | btf_id;
487 	else
488 		return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
489 }
490 
491 /* unpack the IDs from the key as constructed above */
492 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
493 {
494 	if (obj_id)
495 		*obj_id = key >> 32;
496 	if (btf_id)
497 		*btf_id = key & 0x7FFFFFFF;
498 }
499 
500 int bpf_check_attach_target(struct bpf_verifier_log *log,
501 			    const struct bpf_prog *prog,
502 			    const struct bpf_prog *tgt_prog,
503 			    u32 btf_id,
504 			    struct bpf_attach_target_info *tgt_info);
505 
506 #endif /* _LINUX_BPF_VERIFIER_H */
507