1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 */ 7 #ifndef _LINUX_BPF_VERIFIER_H 8 #define _LINUX_BPF_VERIFIER_H 1 9 10 #include <linux/bpf.h> /* for enum bpf_reg_type */ 11 #include <linux/filter.h> /* for MAX_BPF_STACK */ 12 #include <linux/tnum.h> 13 14 /* Maximum variable offset umax_value permitted when resolving memory accesses. 15 * In practice this is far bigger than any realistic pointer offset; this limit 16 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 17 */ 18 #define BPF_MAX_VAR_OFF (1 << 29) 19 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 20 * that converting umax_value to int cannot overflow. 21 */ 22 #define BPF_MAX_VAR_SIZ (1 << 29) 23 24 /* Liveness marks, used for registers and spilled-regs (in stack slots). 25 * Read marks propagate upwards until they find a write mark; they record that 26 * "one of this state's descendants read this reg" (and therefore the reg is 27 * relevant for states_equal() checks). 28 * Write marks collect downwards and do not propagate; they record that "the 29 * straight-line code that reached this state (from its parent) wrote this reg" 30 * (and therefore that reads propagated from this state or its descendants 31 * should not propagate to its parent). 32 * A state with a write mark can receive read marks; it just won't propagate 33 * them to its parent, since the write mark is a property, not of the state, 34 * but of the link between it and its parent. See mark_reg_read() and 35 * mark_stack_slot_read() in kernel/bpf/verifier.c. 36 */ 37 enum bpf_reg_liveness { 38 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 39 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 40 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 41 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 42 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 43 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 44 }; 45 46 struct bpf_reg_state { 47 /* Ordering of fields matters. See states_equal() */ 48 enum bpf_reg_type type; 49 union { 50 /* valid when type == PTR_TO_PACKET */ 51 u16 range; 52 53 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 54 * PTR_TO_MAP_VALUE_OR_NULL 55 */ 56 struct bpf_map *map_ptr; 57 58 /* Max size from any of the above. */ 59 unsigned long raw; 60 }; 61 /* Fixed part of pointer offset, pointer types only */ 62 s32 off; 63 /* For PTR_TO_PACKET, used to find other pointers with the same variable 64 * offset, so they can share range knowledge. 65 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 66 * came from, when one is tested for != NULL. 67 * For PTR_TO_SOCKET this is used to share which pointers retain the 68 * same reference to the socket, to determine proper reference freeing. 69 */ 70 u32 id; 71 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 72 * from a pointer-cast helper, bpf_sk_fullsock() and 73 * bpf_tcp_sock(). 74 * 75 * Consider the following where "sk" is a reference counted 76 * pointer returned from "sk = bpf_sk_lookup_tcp();": 77 * 78 * 1: sk = bpf_sk_lookup_tcp(); 79 * 2: if (!sk) { return 0; } 80 * 3: fullsock = bpf_sk_fullsock(sk); 81 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 82 * 5: tp = bpf_tcp_sock(fullsock); 83 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 84 * 7: bpf_sk_release(sk); 85 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 86 * 87 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 88 * "tp" ptr should be invalidated also. In order to do that, 89 * the reg holding "fullsock" and "sk" need to remember 90 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 91 * such that the verifier can reset all regs which have 92 * ref_obj_id matching the sk_reg->id. 93 * 94 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 95 * sk_reg->id will stay as NULL-marking purpose only. 96 * After NULL-marking is done, sk_reg->id can be reset to 0. 97 * 98 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 99 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 100 * 101 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 102 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 103 * which is the same as sk_reg->ref_obj_id. 104 * 105 * From the verifier perspective, if sk, fullsock and tp 106 * are not NULL, they are the same ptr with different 107 * reg->type. In particular, bpf_sk_release(tp) is also 108 * allowed and has the same effect as bpf_sk_release(sk). 109 */ 110 u32 ref_obj_id; 111 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 112 * the actual value. 113 * For pointer types, this represents the variable part of the offset 114 * from the pointed-to object, and is shared with all bpf_reg_states 115 * with the same id as us. 116 */ 117 struct tnum var_off; 118 /* Used to determine if any memory access using this register will 119 * result in a bad access. 120 * These refer to the same value as var_off, not necessarily the actual 121 * contents of the register. 122 */ 123 s64 smin_value; /* minimum possible (s64)value */ 124 s64 smax_value; /* maximum possible (s64)value */ 125 u64 umin_value; /* minimum possible (u64)value */ 126 u64 umax_value; /* maximum possible (u64)value */ 127 /* parentage chain for liveness checking */ 128 struct bpf_reg_state *parent; 129 /* Inside the callee two registers can be both PTR_TO_STACK like 130 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 131 * while another to the caller's stack. To differentiate them 'frameno' 132 * is used which is an index in bpf_verifier_state->frame[] array 133 * pointing to bpf_func_state. 134 */ 135 u32 frameno; 136 /* Tracks subreg definition. The stored value is the insn_idx of the 137 * writing insn. This is safe because subreg_def is used before any insn 138 * patching which only happens after main verification finished. 139 */ 140 s32 subreg_def; 141 enum bpf_reg_liveness live; 142 }; 143 144 enum bpf_stack_slot_type { 145 STACK_INVALID, /* nothing was stored in this stack slot */ 146 STACK_SPILL, /* register spilled into stack */ 147 STACK_MISC, /* BPF program wrote some data into this slot */ 148 STACK_ZERO, /* BPF program wrote constant zero */ 149 }; 150 151 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 152 153 struct bpf_stack_state { 154 struct bpf_reg_state spilled_ptr; 155 u8 slot_type[BPF_REG_SIZE]; 156 }; 157 158 struct bpf_reference_state { 159 /* Track each reference created with a unique id, even if the same 160 * instruction creates the reference multiple times (eg, via CALL). 161 */ 162 int id; 163 /* Instruction where the allocation of this reference occurred. This 164 * is used purely to inform the user of a reference leak. 165 */ 166 int insn_idx; 167 }; 168 169 /* state of the program: 170 * type of all registers and stack info 171 */ 172 struct bpf_func_state { 173 struct bpf_reg_state regs[MAX_BPF_REG]; 174 /* index of call instruction that called into this func */ 175 int callsite; 176 /* stack frame number of this function state from pov of 177 * enclosing bpf_verifier_state. 178 * 0 = main function, 1 = first callee. 179 */ 180 u32 frameno; 181 /* subprog number == index within subprog_stack_depth 182 * zero == main subprog 183 */ 184 u32 subprogno; 185 186 /* The following fields should be last. See copy_func_state() */ 187 int acquired_refs; 188 struct bpf_reference_state *refs; 189 int allocated_stack; 190 struct bpf_stack_state *stack; 191 }; 192 193 #define MAX_CALL_FRAMES 8 194 struct bpf_verifier_state { 195 /* call stack tracking */ 196 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 197 u32 insn_idx; 198 u32 curframe; 199 u32 active_spin_lock; 200 bool speculative; 201 }; 202 203 #define bpf_get_spilled_reg(slot, frame) \ 204 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 205 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \ 206 ? &frame->stack[slot].spilled_ptr : NULL) 207 208 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 209 #define bpf_for_each_spilled_reg(iter, frame, reg) \ 210 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \ 211 iter < frame->allocated_stack / BPF_REG_SIZE; \ 212 iter++, reg = bpf_get_spilled_reg(iter, frame)) 213 214 /* linked list of verifier states used to prune search */ 215 struct bpf_verifier_state_list { 216 struct bpf_verifier_state state; 217 struct bpf_verifier_state_list *next; 218 int miss_cnt, hit_cnt; 219 }; 220 221 /* Possible states for alu_state member. */ 222 #define BPF_ALU_SANITIZE_SRC 1U 223 #define BPF_ALU_SANITIZE_DST 2U 224 #define BPF_ALU_NEG_VALUE (1U << 2) 225 #define BPF_ALU_NON_POINTER (1U << 3) 226 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 227 BPF_ALU_SANITIZE_DST) 228 229 struct bpf_insn_aux_data { 230 union { 231 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 232 unsigned long map_state; /* pointer/poison value for maps */ 233 s32 call_imm; /* saved imm field of call insn */ 234 u32 alu_limit; /* limit for add/sub register with pointer */ 235 struct { 236 u32 map_index; /* index into used_maps[] */ 237 u32 map_off; /* offset from value base address */ 238 }; 239 }; 240 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 241 int sanitize_stack_off; /* stack slot to be cleared */ 242 bool seen; /* this insn was processed by the verifier */ 243 bool zext_dst; /* this insn zero extends dst reg */ 244 u8 alu_state; /* used in combination with alu_limit */ 245 bool prune_point; 246 unsigned int orig_idx; /* original instruction index */ 247 }; 248 249 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 250 251 #define BPF_VERIFIER_TMP_LOG_SIZE 1024 252 253 struct bpf_verifier_log { 254 u32 level; 255 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 256 char __user *ubuf; 257 u32 len_used; 258 u32 len_total; 259 }; 260 261 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log) 262 { 263 return log->len_used >= log->len_total - 1; 264 } 265 266 #define BPF_LOG_LEVEL1 1 267 #define BPF_LOG_LEVEL2 2 268 #define BPF_LOG_STATS 4 269 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 270 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS) 271 272 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 273 { 274 return log->level && log->ubuf && !bpf_verifier_log_full(log); 275 } 276 277 #define BPF_MAX_SUBPROGS 256 278 279 struct bpf_subprog_info { 280 u32 start; /* insn idx of function entry point */ 281 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 282 u16 stack_depth; /* max. stack depth used by this function */ 283 }; 284 285 /* single container for all structs 286 * one verifier_env per bpf_check() call 287 */ 288 struct bpf_verifier_env { 289 u32 insn_idx; 290 u32 prev_insn_idx; 291 struct bpf_prog *prog; /* eBPF program being verified */ 292 const struct bpf_verifier_ops *ops; 293 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 294 int stack_size; /* number of states to be processed */ 295 bool strict_alignment; /* perform strict pointer alignment checks */ 296 struct bpf_verifier_state *cur_state; /* current verifier state */ 297 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 298 struct bpf_verifier_state_list *free_list; 299 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 300 u32 used_map_cnt; /* number of used maps */ 301 u32 id_gen; /* used to generate unique reg IDs */ 302 bool allow_ptr_leaks; 303 bool seen_direct_write; 304 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 305 const struct bpf_line_info *prev_linfo; 306 struct bpf_verifier_log log; 307 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; 308 struct { 309 int *insn_state; 310 int *insn_stack; 311 int cur_stack; 312 } cfg; 313 u32 subprog_cnt; 314 /* number of instructions analyzed by the verifier */ 315 u32 insn_processed; 316 /* total verification time */ 317 u64 verification_time; 318 /* maximum number of verifier states kept in 'branching' instructions */ 319 u32 max_states_per_insn; 320 /* total number of allocated verifier states */ 321 u32 total_states; 322 /* some states are freed during program analysis. 323 * this is peak number of states. this number dominates kernel 324 * memory consumption during verification 325 */ 326 u32 peak_states; 327 /* longest register parentage chain walked for liveness marking */ 328 u32 longest_mark_read_walk; 329 }; 330 331 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 332 const char *fmt, va_list args); 333 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 334 const char *fmt, ...); 335 336 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 337 { 338 struct bpf_verifier_state *cur = env->cur_state; 339 340 return cur->frame[cur->curframe]; 341 } 342 343 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 344 { 345 return cur_func(env)->regs; 346 } 347 348 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 349 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 350 int insn_idx, int prev_insn_idx); 351 int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 352 void 353 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 354 struct bpf_insn *insn); 355 void 356 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 357 358 #endif /* _LINUX_BPF_VERIFIER_H */ 359