1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_VERIFIER_H 5 #define _LINUX_BPF_VERIFIER_H 1 6 7 #include <linux/bpf.h> /* for enum bpf_reg_type */ 8 #include <linux/btf.h> /* for struct btf and btf_id() */ 9 #include <linux/filter.h> /* for MAX_BPF_STACK */ 10 #include <linux/tnum.h> 11 12 /* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16 #define BPF_MAX_VAR_OFF (1 << 29) 17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20 #define BPF_MAX_VAR_SIZ (1 << 29) 21 /* size of tmp_str_buf in bpf_verifier. 22 * we need at least 306 bytes to fit full stack mask representation 23 * (in the "-8,-16,...,-512" form) 24 */ 25 #define TMP_STR_BUF_LEN 320 26 27 /* Liveness marks, used for registers and spilled-regs (in stack slots). 28 * Read marks propagate upwards until they find a write mark; they record that 29 * "one of this state's descendants read this reg" (and therefore the reg is 30 * relevant for states_equal() checks). 31 * Write marks collect downwards and do not propagate; they record that "the 32 * straight-line code that reached this state (from its parent) wrote this reg" 33 * (and therefore that reads propagated from this state or its descendants 34 * should not propagate to its parent). 35 * A state with a write mark can receive read marks; it just won't propagate 36 * them to its parent, since the write mark is a property, not of the state, 37 * but of the link between it and its parent. See mark_reg_read() and 38 * mark_stack_slot_read() in kernel/bpf/verifier.c. 39 */ 40 enum bpf_reg_liveness { 41 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 42 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 43 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 44 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 45 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 46 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 47 }; 48 49 /* For every reg representing a map value or allocated object pointer, 50 * we consider the tuple of (ptr, id) for them to be unique in verifier 51 * context and conside them to not alias each other for the purposes of 52 * tracking lock state. 53 */ 54 struct bpf_active_lock { 55 /* This can either be reg->map_ptr or reg->btf. If ptr is NULL, 56 * there's no active lock held, and other fields have no 57 * meaning. If non-NULL, it indicates that a lock is held and 58 * id member has the reg->id of the register which can be >= 0. 59 */ 60 void *ptr; 61 /* This will be reg->id */ 62 u32 id; 63 }; 64 65 #define ITER_PREFIX "bpf_iter_" 66 67 enum bpf_iter_state { 68 BPF_ITER_STATE_INVALID, /* for non-first slot */ 69 BPF_ITER_STATE_ACTIVE, 70 BPF_ITER_STATE_DRAINED, 71 }; 72 73 struct bpf_reg_state { 74 /* Ordering of fields matters. See states_equal() */ 75 enum bpf_reg_type type; 76 /* 77 * Fixed part of pointer offset, pointer types only. 78 * Or constant delta between "linked" scalars with the same ID. 79 */ 80 s32 off; 81 union { 82 /* valid when type == PTR_TO_PACKET */ 83 int range; 84 85 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 86 * PTR_TO_MAP_VALUE_OR_NULL 87 */ 88 struct { 89 struct bpf_map *map_ptr; 90 /* To distinguish map lookups from outer map 91 * the map_uid is non-zero for registers 92 * pointing to inner maps. 93 */ 94 u32 map_uid; 95 }; 96 97 /* for PTR_TO_BTF_ID */ 98 struct { 99 struct btf *btf; 100 u32 btf_id; 101 }; 102 103 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 104 u32 mem_size; 105 u32 dynptr_id; /* for dynptr slices */ 106 }; 107 108 /* For dynptr stack slots */ 109 struct { 110 enum bpf_dynptr_type type; 111 /* A dynptr is 16 bytes so it takes up 2 stack slots. 112 * We need to track which slot is the first slot 113 * to protect against cases where the user may try to 114 * pass in an address starting at the second slot of the 115 * dynptr. 116 */ 117 bool first_slot; 118 } dynptr; 119 120 /* For bpf_iter stack slots */ 121 struct { 122 /* BTF container and BTF type ID describing 123 * struct bpf_iter_<type> of an iterator state 124 */ 125 struct btf *btf; 126 u32 btf_id; 127 /* packing following two fields to fit iter state into 16 bytes */ 128 enum bpf_iter_state state:2; 129 int depth:30; 130 } iter; 131 132 /* Max size from any of the above. */ 133 struct { 134 unsigned long raw1; 135 unsigned long raw2; 136 } raw; 137 138 u32 subprogno; /* for PTR_TO_FUNC */ 139 }; 140 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 141 * the actual value. 142 * For pointer types, this represents the variable part of the offset 143 * from the pointed-to object, and is shared with all bpf_reg_states 144 * with the same id as us. 145 */ 146 struct tnum var_off; 147 /* Used to determine if any memory access using this register will 148 * result in a bad access. 149 * These refer to the same value as var_off, not necessarily the actual 150 * contents of the register. 151 */ 152 s64 smin_value; /* minimum possible (s64)value */ 153 s64 smax_value; /* maximum possible (s64)value */ 154 u64 umin_value; /* minimum possible (u64)value */ 155 u64 umax_value; /* maximum possible (u64)value */ 156 s32 s32_min_value; /* minimum possible (s32)value */ 157 s32 s32_max_value; /* maximum possible (s32)value */ 158 u32 u32_min_value; /* minimum possible (u32)value */ 159 u32 u32_max_value; /* maximum possible (u32)value */ 160 /* For PTR_TO_PACKET, used to find other pointers with the same variable 161 * offset, so they can share range knowledge. 162 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 163 * came from, when one is tested for != NULL. 164 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 165 * for the purpose of tracking that it's freed. 166 * For PTR_TO_SOCKET this is used to share which pointers retain the 167 * same reference to the socket, to determine proper reference freeing. 168 * For stack slots that are dynptrs, this is used to track references to 169 * the dynptr to determine proper reference freeing. 170 * Similarly to dynptrs, we use ID to track "belonging" of a reference 171 * to a specific instance of bpf_iter. 172 */ 173 /* 174 * Upper bit of ID is used to remember relationship between "linked" 175 * registers. Example: 176 * r1 = r2; both will have r1->id == r2->id == N 177 * r1 += 10; r1->id == N | BPF_ADD_CONST and r1->off == 10 178 */ 179 #define BPF_ADD_CONST (1U << 31) 180 u32 id; 181 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 182 * from a pointer-cast helper, bpf_sk_fullsock() and 183 * bpf_tcp_sock(). 184 * 185 * Consider the following where "sk" is a reference counted 186 * pointer returned from "sk = bpf_sk_lookup_tcp();": 187 * 188 * 1: sk = bpf_sk_lookup_tcp(); 189 * 2: if (!sk) { return 0; } 190 * 3: fullsock = bpf_sk_fullsock(sk); 191 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 192 * 5: tp = bpf_tcp_sock(fullsock); 193 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 194 * 7: bpf_sk_release(sk); 195 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 196 * 197 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 198 * "tp" ptr should be invalidated also. In order to do that, 199 * the reg holding "fullsock" and "sk" need to remember 200 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 201 * such that the verifier can reset all regs which have 202 * ref_obj_id matching the sk_reg->id. 203 * 204 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 205 * sk_reg->id will stay as NULL-marking purpose only. 206 * After NULL-marking is done, sk_reg->id can be reset to 0. 207 * 208 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 209 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 210 * 211 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 212 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 213 * which is the same as sk_reg->ref_obj_id. 214 * 215 * From the verifier perspective, if sk, fullsock and tp 216 * are not NULL, they are the same ptr with different 217 * reg->type. In particular, bpf_sk_release(tp) is also 218 * allowed and has the same effect as bpf_sk_release(sk). 219 */ 220 u32 ref_obj_id; 221 /* parentage chain for liveness checking */ 222 struct bpf_reg_state *parent; 223 /* Inside the callee two registers can be both PTR_TO_STACK like 224 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 225 * while another to the caller's stack. To differentiate them 'frameno' 226 * is used which is an index in bpf_verifier_state->frame[] array 227 * pointing to bpf_func_state. 228 */ 229 u32 frameno; 230 /* Tracks subreg definition. The stored value is the insn_idx of the 231 * writing insn. This is safe because subreg_def is used before any insn 232 * patching which only happens after main verification finished. 233 */ 234 s32 subreg_def; 235 enum bpf_reg_liveness live; 236 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 237 bool precise; 238 }; 239 240 enum bpf_stack_slot_type { 241 STACK_INVALID, /* nothing was stored in this stack slot */ 242 STACK_SPILL, /* register spilled into stack */ 243 STACK_MISC, /* BPF program wrote some data into this slot */ 244 STACK_ZERO, /* BPF program wrote constant zero */ 245 /* A dynptr is stored in this stack slot. The type of dynptr 246 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 247 */ 248 STACK_DYNPTR, 249 STACK_ITER, 250 }; 251 252 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 253 254 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \ 255 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \ 256 (1 << BPF_REG_5)) 257 258 #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 259 #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 260 261 struct bpf_stack_state { 262 struct bpf_reg_state spilled_ptr; 263 u8 slot_type[BPF_REG_SIZE]; 264 }; 265 266 struct bpf_reference_state { 267 /* Track each reference created with a unique id, even if the same 268 * instruction creates the reference multiple times (eg, via CALL). 269 */ 270 int id; 271 /* Instruction where the allocation of this reference occurred. This 272 * is used purely to inform the user of a reference leak. 273 */ 274 int insn_idx; 275 /* There can be a case like: 276 * main (frame 0) 277 * cb (frame 1) 278 * func (frame 3) 279 * cb (frame 4) 280 * Hence for frame 4, if callback_ref just stored boolean, it would be 281 * impossible to distinguish nested callback refs. Hence store the 282 * frameno and compare that to callback_ref in check_reference_leak when 283 * exiting a callback function. 284 */ 285 int callback_ref; 286 }; 287 288 struct bpf_retval_range { 289 s32 minval; 290 s32 maxval; 291 }; 292 293 /* state of the program: 294 * type of all registers and stack info 295 */ 296 struct bpf_func_state { 297 struct bpf_reg_state regs[MAX_BPF_REG]; 298 /* index of call instruction that called into this func */ 299 int callsite; 300 /* stack frame number of this function state from pov of 301 * enclosing bpf_verifier_state. 302 * 0 = main function, 1 = first callee. 303 */ 304 u32 frameno; 305 /* subprog number == index within subprog_info 306 * zero == main subprog 307 */ 308 u32 subprogno; 309 /* Every bpf_timer_start will increment async_entry_cnt. 310 * It's used to distinguish: 311 * void foo(void) { for(;;); } 312 * void foo(void) { bpf_timer_set_callback(,foo); } 313 */ 314 u32 async_entry_cnt; 315 struct bpf_retval_range callback_ret_range; 316 bool in_callback_fn; 317 bool in_async_callback_fn; 318 bool in_exception_callback_fn; 319 /* For callback calling functions that limit number of possible 320 * callback executions (e.g. bpf_loop) keeps track of current 321 * simulated iteration number. 322 * Value in frame N refers to number of times callback with frame 323 * N+1 was simulated, e.g. for the following call: 324 * 325 * bpf_loop(..., fn, ...); | suppose current frame is N 326 * | fn would be simulated in frame N+1 327 * | number of simulations is tracked in frame N 328 */ 329 u32 callback_depth; 330 331 /* The following fields should be last. See copy_func_state() */ 332 int acquired_refs; 333 struct bpf_reference_state *refs; 334 /* The state of the stack. Each element of the array describes BPF_REG_SIZE 335 * (i.e. 8) bytes worth of stack memory. 336 * stack[0] represents bytes [*(r10-8)..*(r10-1)] 337 * stack[1] represents bytes [*(r10-16)..*(r10-9)] 338 * ... 339 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)] 340 */ 341 struct bpf_stack_state *stack; 342 /* Size of the current stack, in bytes. The stack state is tracked below, in 343 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE. 344 */ 345 int allocated_stack; 346 }; 347 348 #define MAX_CALL_FRAMES 8 349 350 /* instruction history flags, used in bpf_jmp_history_entry.flags field */ 351 enum { 352 /* instruction references stack slot through PTR_TO_STACK register; 353 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8) 354 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512, 355 * 8 bytes per slot, so slot index (spi) is [0, 63]) 356 */ 357 INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */ 358 359 INSN_F_SPI_MASK = 0x3f, /* 6 bits */ 360 INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */ 361 362 INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */ 363 }; 364 365 static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES); 366 static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8); 367 368 struct bpf_jmp_history_entry { 369 u32 idx; 370 /* insn idx can't be bigger than 1 million */ 371 u32 prev_idx : 22; 372 /* special flags, e.g., whether insn is doing register stack spill/load */ 373 u32 flags : 10; 374 /* additional registers that need precision tracking when this 375 * jump is backtracked, vector of six 10-bit records 376 */ 377 u64 linked_regs; 378 }; 379 380 /* Maximum number of register states that can exist at once */ 381 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES) 382 struct bpf_verifier_state { 383 /* call stack tracking */ 384 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 385 struct bpf_verifier_state *parent; 386 /* 387 * 'branches' field is the number of branches left to explore: 388 * 0 - all possible paths from this state reached bpf_exit or 389 * were safely pruned 390 * 1 - at least one path is being explored. 391 * This state hasn't reached bpf_exit 392 * 2 - at least two paths are being explored. 393 * This state is an immediate parent of two children. 394 * One is fallthrough branch with branches==1 and another 395 * state is pushed into stack (to be explored later) also with 396 * branches==1. The parent of this state has branches==1. 397 * The verifier state tree connected via 'parent' pointer looks like: 398 * 1 399 * 1 400 * 2 -> 1 (first 'if' pushed into stack) 401 * 1 402 * 2 -> 1 (second 'if' pushed into stack) 403 * 1 404 * 1 405 * 1 bpf_exit. 406 * 407 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 408 * and the verifier state tree will look: 409 * 1 410 * 1 411 * 2 -> 1 (first 'if' pushed into stack) 412 * 1 413 * 1 -> 1 (second 'if' pushed into stack) 414 * 0 415 * 0 416 * 0 bpf_exit. 417 * After pop_stack() the do_check() will resume at second 'if'. 418 * 419 * If is_state_visited() sees a state with branches > 0 it means 420 * there is a loop. If such state is exactly equal to the current state 421 * it's an infinite loop. Note states_equal() checks for states 422 * equivalency, so two states being 'states_equal' does not mean 423 * infinite loop. The exact comparison is provided by 424 * states_maybe_looping() function. It's a stronger pre-check and 425 * much faster than states_equal(). 426 * 427 * This algorithm may not find all possible infinite loops or 428 * loop iteration count may be too high. 429 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 430 */ 431 u32 branches; 432 u32 insn_idx; 433 u32 curframe; 434 435 struct bpf_active_lock active_lock; 436 bool speculative; 437 bool active_rcu_lock; 438 u32 active_preempt_lock; 439 /* If this state was ever pointed-to by other state's loop_entry field 440 * this flag would be set to true. Used to avoid freeing such states 441 * while they are still in use. 442 */ 443 bool used_as_loop_entry; 444 bool in_sleepable; 445 446 /* first and last insn idx of this verifier state */ 447 u32 first_insn_idx; 448 u32 last_insn_idx; 449 /* If this state is a part of states loop this field points to some 450 * parent of this state such that: 451 * - it is also a member of the same states loop; 452 * - DFS states traversal starting from initial state visits loop_entry 453 * state before this state. 454 * Used to compute topmost loop entry for state loops. 455 * State loops might appear because of open coded iterators logic. 456 * See get_loop_entry() for more information. 457 */ 458 struct bpf_verifier_state *loop_entry; 459 /* jmp history recorded from first to last. 460 * backtracking is using it to go from last to first. 461 * For most states jmp_history_cnt is [0-3]. 462 * For loops can go up to ~40. 463 */ 464 struct bpf_jmp_history_entry *jmp_history; 465 u32 jmp_history_cnt; 466 u32 dfs_depth; 467 u32 callback_unroll_depth; 468 u32 may_goto_depth; 469 }; 470 471 #define bpf_get_spilled_reg(slot, frame, mask) \ 472 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 473 ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \ 474 ? &frame->stack[slot].spilled_ptr : NULL) 475 476 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 477 #define bpf_for_each_spilled_reg(iter, frame, reg, mask) \ 478 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \ 479 iter < frame->allocated_stack / BPF_REG_SIZE; \ 480 iter++, reg = bpf_get_spilled_reg(iter, frame, mask)) 481 482 #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \ 483 ({ \ 484 struct bpf_verifier_state *___vstate = __vst; \ 485 int ___i, ___j; \ 486 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ 487 struct bpf_reg_state *___regs; \ 488 __state = ___vstate->frame[___i]; \ 489 ___regs = __state->regs; \ 490 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ 491 __reg = &___regs[___j]; \ 492 (void)(__expr); \ 493 } \ 494 bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \ 495 if (!__reg) \ 496 continue; \ 497 (void)(__expr); \ 498 } \ 499 } \ 500 }) 501 502 /* Invoke __expr over regsiters in __vst, setting __state and __reg */ 503 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ 504 bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr) 505 506 /* linked list of verifier states used to prune search */ 507 struct bpf_verifier_state_list { 508 struct bpf_verifier_state state; 509 struct bpf_verifier_state_list *next; 510 int miss_cnt, hit_cnt; 511 }; 512 513 struct bpf_loop_inline_state { 514 unsigned int initialized:1; /* set to true upon first entry */ 515 unsigned int fit_for_inline:1; /* true if callback function is the same 516 * at each call and flags are always zero 517 */ 518 u32 callback_subprogno; /* valid when fit_for_inline is true */ 519 }; 520 521 /* pointer and state for maps */ 522 struct bpf_map_ptr_state { 523 struct bpf_map *map_ptr; 524 bool poison; 525 bool unpriv; 526 }; 527 528 /* Possible states for alu_state member. */ 529 #define BPF_ALU_SANITIZE_SRC (1U << 0) 530 #define BPF_ALU_SANITIZE_DST (1U << 1) 531 #define BPF_ALU_NEG_VALUE (1U << 2) 532 #define BPF_ALU_NON_POINTER (1U << 3) 533 #define BPF_ALU_IMMEDIATE (1U << 4) 534 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 535 BPF_ALU_SANITIZE_DST) 536 537 struct bpf_insn_aux_data { 538 union { 539 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 540 struct bpf_map_ptr_state map_ptr_state; 541 s32 call_imm; /* saved imm field of call insn */ 542 u32 alu_limit; /* limit for add/sub register with pointer */ 543 struct { 544 u32 map_index; /* index into used_maps[] */ 545 u32 map_off; /* offset from value base address */ 546 }; 547 struct { 548 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 549 union { 550 struct { 551 struct btf *btf; 552 u32 btf_id; /* btf_id for struct typed var */ 553 }; 554 u32 mem_size; /* mem_size for non-struct typed var */ 555 }; 556 } btf_var; 557 /* if instruction is a call to bpf_loop this field tracks 558 * the state of the relevant registers to make decision about inlining 559 */ 560 struct bpf_loop_inline_state loop_inline_state; 561 }; 562 union { 563 /* remember the size of type passed to bpf_obj_new to rewrite R1 */ 564 u64 obj_new_size; 565 /* remember the offset of node field within type to rewrite */ 566 u64 insert_off; 567 }; 568 struct btf_struct_meta *kptr_struct_meta; 569 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 570 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 571 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 572 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ 573 bool zext_dst; /* this insn zero extends dst reg */ 574 bool needs_zext; /* alu op needs to clear upper bits */ 575 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */ 576 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */ 577 bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */ 578 u8 alu_state; /* used in combination with alu_limit */ 579 /* true if STX or LDX instruction is a part of a spill/fill 580 * pattern for a bpf_fastcall call. 581 */ 582 u8 fastcall_pattern:1; 583 /* for CALL instructions, a number of spill/fill pairs in the 584 * bpf_fastcall pattern. 585 */ 586 u8 fastcall_spills_num:3; 587 588 /* below fields are initialized once */ 589 unsigned int orig_idx; /* original instruction index */ 590 bool jmp_point; 591 bool prune_point; 592 /* ensure we check state equivalence and save state checkpoint and 593 * this instruction, regardless of any heuristics 594 */ 595 bool force_checkpoint; 596 /* true if instruction is a call to a helper function that 597 * accepts callback function as a parameter. 598 */ 599 bool calls_callback; 600 }; 601 602 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 603 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 604 605 #define BPF_VERIFIER_TMP_LOG_SIZE 1024 606 607 struct bpf_verifier_log { 608 /* Logical start and end positions of a "log window" of the verifier log. 609 * start_pos == 0 means we haven't truncated anything. 610 * Once truncation starts to happen, start_pos + len_total == end_pos, 611 * except during log reset situations, in which (end_pos - start_pos) 612 * might get smaller than len_total (see bpf_vlog_reset()). 613 * Generally, (end_pos - start_pos) gives number of useful data in 614 * user log buffer. 615 */ 616 u64 start_pos; 617 u64 end_pos; 618 char __user *ubuf; 619 u32 level; 620 u32 len_total; 621 u32 len_max; 622 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 623 }; 624 625 #define BPF_LOG_LEVEL1 1 626 #define BPF_LOG_LEVEL2 2 627 #define BPF_LOG_STATS 4 628 #define BPF_LOG_FIXED 8 629 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 630 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED) 631 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 632 #define BPF_LOG_MIN_ALIGNMENT 8U 633 #define BPF_LOG_ALIGNMENT 40U 634 635 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 636 { 637 return log && log->level; 638 } 639 640 #define BPF_MAX_SUBPROGS 256 641 642 struct bpf_subprog_arg_info { 643 enum bpf_arg_type arg_type; 644 union { 645 u32 mem_size; 646 u32 btf_id; 647 }; 648 }; 649 650 struct bpf_subprog_info { 651 /* 'start' has to be the first field otherwise find_subprog() won't work */ 652 u32 start; /* insn idx of function entry point */ 653 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 654 u16 stack_depth; /* max. stack depth used by this function */ 655 u16 stack_extra; 656 /* offsets in range [stack_depth .. fastcall_stack_off) 657 * are used for bpf_fastcall spills and fills. 658 */ 659 s16 fastcall_stack_off; 660 bool has_tail_call: 1; 661 bool tail_call_reachable: 1; 662 bool has_ld_abs: 1; 663 bool is_cb: 1; 664 bool is_async_cb: 1; 665 bool is_exception_cb: 1; 666 bool args_cached: 1; 667 /* true if bpf_fastcall stack region is used by functions that can't be inlined */ 668 bool keep_fastcall_stack: 1; 669 670 u8 arg_cnt; 671 struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS]; 672 }; 673 674 struct bpf_verifier_env; 675 676 struct backtrack_state { 677 struct bpf_verifier_env *env; 678 u32 frame; 679 u32 reg_masks[MAX_CALL_FRAMES]; 680 u64 stack_masks[MAX_CALL_FRAMES]; 681 }; 682 683 struct bpf_id_pair { 684 u32 old; 685 u32 cur; 686 }; 687 688 struct bpf_idmap { 689 u32 tmp_id_gen; 690 struct bpf_id_pair map[BPF_ID_MAP_SIZE]; 691 }; 692 693 struct bpf_idset { 694 u32 count; 695 u32 ids[BPF_ID_MAP_SIZE]; 696 }; 697 698 /* single container for all structs 699 * one verifier_env per bpf_check() call 700 */ 701 struct bpf_verifier_env { 702 u32 insn_idx; 703 u32 prev_insn_idx; 704 struct bpf_prog *prog; /* eBPF program being verified */ 705 const struct bpf_verifier_ops *ops; 706 struct module *attach_btf_mod; /* The owner module of prog->aux->attach_btf */ 707 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 708 int stack_size; /* number of states to be processed */ 709 bool strict_alignment; /* perform strict pointer alignment checks */ 710 bool test_state_freq; /* test verifier with different pruning frequency */ 711 bool test_reg_invariants; /* fail verification on register invariants violations */ 712 struct bpf_verifier_state *cur_state; /* current verifier state */ 713 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 714 struct bpf_verifier_state_list *free_list; 715 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 716 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 717 u32 used_map_cnt; /* number of used maps */ 718 u32 used_btf_cnt; /* number of used BTF objects */ 719 u32 id_gen; /* used to generate unique reg IDs */ 720 u32 hidden_subprog_cnt; /* number of hidden subprogs */ 721 int exception_callback_subprog; 722 bool explore_alu_limits; 723 bool allow_ptr_leaks; 724 /* Allow access to uninitialized stack memory. Writes with fixed offset are 725 * always allowed, so this refers to reads (with fixed or variable offset), 726 * to writes with variable offset and to indirect (helper) accesses. 727 */ 728 bool allow_uninit_stack; 729 bool bpf_capable; 730 bool bypass_spec_v1; 731 bool bypass_spec_v4; 732 bool seen_direct_write; 733 bool seen_exception; 734 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 735 const struct bpf_line_info *prev_linfo; 736 struct bpf_verifier_log log; 737 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */ 738 union { 739 struct bpf_idmap idmap_scratch; 740 struct bpf_idset idset_scratch; 741 }; 742 struct { 743 int *insn_state; 744 int *insn_stack; 745 int cur_stack; 746 } cfg; 747 struct backtrack_state bt; 748 struct bpf_jmp_history_entry *cur_hist_ent; 749 u32 pass_cnt; /* number of times do_check() was called */ 750 u32 subprog_cnt; 751 /* number of instructions analyzed by the verifier */ 752 u32 prev_insn_processed, insn_processed; 753 /* number of jmps, calls, exits analyzed so far */ 754 u32 prev_jmps_processed, jmps_processed; 755 /* total verification time */ 756 u64 verification_time; 757 /* maximum number of verifier states kept in 'branching' instructions */ 758 u32 max_states_per_insn; 759 /* total number of allocated verifier states */ 760 u32 total_states; 761 /* some states are freed during program analysis. 762 * this is peak number of states. this number dominates kernel 763 * memory consumption during verification 764 */ 765 u32 peak_states; 766 /* longest register parentage chain walked for liveness marking */ 767 u32 longest_mark_read_walk; 768 bpfptr_t fd_array; 769 770 /* bit mask to keep track of whether a register has been accessed 771 * since the last time the function state was printed 772 */ 773 u32 scratched_regs; 774 /* Same as scratched_regs but for stack slots */ 775 u64 scratched_stack_slots; 776 u64 prev_log_pos, prev_insn_print_pos; 777 /* buffer used to temporary hold constants as scalar registers */ 778 struct bpf_reg_state fake_reg[2]; 779 /* buffer used to generate temporary string representations, 780 * e.g., in reg_type_str() to generate reg_type string 781 */ 782 char tmp_str_buf[TMP_STR_BUF_LEN]; 783 }; 784 785 static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog) 786 { 787 return &env->prog->aux->func_info_aux[subprog]; 788 } 789 790 static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog) 791 { 792 return &env->subprog_info[subprog]; 793 } 794 795 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 796 const char *fmt, va_list args); 797 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 798 const char *fmt, ...); 799 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 800 const char *fmt, ...); 801 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, 802 char __user *log_buf, u32 log_size); 803 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos); 804 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual); 805 806 __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, 807 u32 insn_off, 808 const char *prefix_fmt, ...); 809 810 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 811 { 812 struct bpf_verifier_state *cur = env->cur_state; 813 814 return cur->frame[cur->curframe]; 815 } 816 817 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 818 { 819 return cur_func(env)->regs; 820 } 821 822 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 823 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 824 int insn_idx, int prev_insn_idx); 825 int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 826 void 827 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 828 struct bpf_insn *insn); 829 void 830 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 831 832 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 833 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 834 struct btf *btf, u32 btf_id) 835 { 836 if (tgt_prog) 837 return ((u64)tgt_prog->aux->id << 32) | btf_id; 838 else 839 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 840 } 841 842 /* unpack the IDs from the key as constructed above */ 843 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 844 { 845 if (obj_id) 846 *obj_id = key >> 32; 847 if (btf_id) 848 *btf_id = key & 0x7FFFFFFF; 849 } 850 851 int bpf_check_attach_target(struct bpf_verifier_log *log, 852 const struct bpf_prog *prog, 853 const struct bpf_prog *tgt_prog, 854 u32 btf_id, 855 struct bpf_attach_target_info *tgt_info); 856 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 857 858 int mark_chain_precision(struct bpf_verifier_env *env, int regno); 859 860 #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 861 862 /* extract base type from bpf_{arg, return, reg}_type. */ 863 static inline u32 base_type(u32 type) 864 { 865 return type & BPF_BASE_TYPE_MASK; 866 } 867 868 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */ 869 static inline u32 type_flag(u32 type) 870 { 871 return type & ~BPF_BASE_TYPE_MASK; 872 } 873 874 /* only use after check_attach_btf_id() */ 875 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog) 876 { 877 return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ? 878 prog->aux->saved_dst_prog_type : prog->type; 879 } 880 881 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) 882 { 883 switch (resolve_prog_type(prog)) { 884 case BPF_PROG_TYPE_TRACING: 885 return prog->expected_attach_type != BPF_TRACE_ITER; 886 case BPF_PROG_TYPE_STRUCT_OPS: 887 case BPF_PROG_TYPE_LSM: 888 return false; 889 default: 890 return true; 891 } 892 } 893 894 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF) 895 896 static inline bool bpf_type_has_unsafe_modifiers(u32 type) 897 { 898 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; 899 } 900 901 static inline bool type_is_ptr_alloc_obj(u32 type) 902 { 903 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 904 } 905 906 static inline bool type_is_non_owning_ref(u32 type) 907 { 908 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 909 } 910 911 static inline bool type_is_pkt_pointer(enum bpf_reg_type type) 912 { 913 type = base_type(type); 914 return type == PTR_TO_PACKET || 915 type == PTR_TO_PACKET_META; 916 } 917 918 static inline bool type_is_sk_pointer(enum bpf_reg_type type) 919 { 920 return type == PTR_TO_SOCKET || 921 type == PTR_TO_SOCK_COMMON || 922 type == PTR_TO_TCP_SOCK || 923 type == PTR_TO_XDP_SOCK; 924 } 925 926 static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 927 { 928 env->scratched_regs |= 1U << regno; 929 } 930 931 static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 932 { 933 env->scratched_stack_slots |= 1ULL << spi; 934 } 935 936 static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 937 { 938 return (env->scratched_regs >> regno) & 1; 939 } 940 941 static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 942 { 943 return (env->scratched_stack_slots >> regno) & 1; 944 } 945 946 static inline bool verifier_state_scratched(const struct bpf_verifier_env *env) 947 { 948 return env->scratched_regs || env->scratched_stack_slots; 949 } 950 951 static inline void mark_verifier_state_clean(struct bpf_verifier_env *env) 952 { 953 env->scratched_regs = 0U; 954 env->scratched_stack_slots = 0ULL; 955 } 956 957 /* Used for printing the entire verifier state. */ 958 static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env) 959 { 960 env->scratched_regs = ~0U; 961 env->scratched_stack_slots = ~0ULL; 962 } 963 964 static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size) 965 { 966 #ifdef __BIG_ENDIAN 967 off -= spill_size - fill_size; 968 #endif 969 970 return !(off % BPF_REG_SIZE); 971 } 972 973 const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type); 974 const char *dynptr_type_str(enum bpf_dynptr_type type); 975 const char *iter_type_str(const struct btf *btf, u32 btf_id); 976 const char *iter_state_str(enum bpf_iter_state state); 977 978 void print_verifier_state(struct bpf_verifier_env *env, 979 const struct bpf_func_state *state, bool print_all); 980 void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state); 981 982 #endif /* _LINUX_BPF_VERIFIER_H */ 983