xref: /linux-6.15/include/linux/bpf_verifier.h (revision 81fa7a69)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  */
7 #ifndef _LINUX_BPF_VERIFIER_H
8 #define _LINUX_BPF_VERIFIER_H 1
9 
10 #include <linux/bpf.h> /* for enum bpf_reg_type */
11 #include <linux/filter.h> /* for MAX_BPF_STACK */
12 #include <linux/tnum.h>
13 
14 /* Maximum variable offset umax_value permitted when resolving memory accesses.
15  * In practice this is far bigger than any realistic pointer offset; this limit
16  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
17  */
18 #define BPF_MAX_VAR_OFF	(1 << 29)
19 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
20  * that converting umax_value to int cannot overflow.
21  */
22 #define BPF_MAX_VAR_SIZ	(1 << 29)
23 
24 /* Liveness marks, used for registers and spilled-regs (in stack slots).
25  * Read marks propagate upwards until they find a write mark; they record that
26  * "one of this state's descendants read this reg" (and therefore the reg is
27  * relevant for states_equal() checks).
28  * Write marks collect downwards and do not propagate; they record that "the
29  * straight-line code that reached this state (from its parent) wrote this reg"
30  * (and therefore that reads propagated from this state or its descendants
31  * should not propagate to its parent).
32  * A state with a write mark can receive read marks; it just won't propagate
33  * them to its parent, since the write mark is a property, not of the state,
34  * but of the link between it and its parent.  See mark_reg_read() and
35  * mark_stack_slot_read() in kernel/bpf/verifier.c.
36  */
37 enum bpf_reg_liveness {
38 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
39 	REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */
40 	REG_LIVE_WRITTEN, /* reg was written first, screening off later reads */
41 };
42 
43 struct bpf_reg_state {
44 	/* Ordering of fields matters.  See states_equal() */
45 	enum bpf_reg_type type;
46 	union {
47 		/* valid when type == PTR_TO_PACKET */
48 		u16 range;
49 
50 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
51 		 *   PTR_TO_MAP_VALUE_OR_NULL
52 		 */
53 		struct bpf_map *map_ptr;
54 	};
55 	/* Fixed part of pointer offset, pointer types only */
56 	s32 off;
57 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
58 	 * offset, so they can share range knowledge.
59 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
60 	 * came from, when one is tested for != NULL.
61 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
62 	 * same reference to the socket, to determine proper reference freeing.
63 	 */
64 	u32 id;
65 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
66 	 * the actual value.
67 	 * For pointer types, this represents the variable part of the offset
68 	 * from the pointed-to object, and is shared with all bpf_reg_states
69 	 * with the same id as us.
70 	 */
71 	struct tnum var_off;
72 	/* Used to determine if any memory access using this register will
73 	 * result in a bad access.
74 	 * These refer to the same value as var_off, not necessarily the actual
75 	 * contents of the register.
76 	 */
77 	s64 smin_value; /* minimum possible (s64)value */
78 	s64 smax_value; /* maximum possible (s64)value */
79 	u64 umin_value; /* minimum possible (u64)value */
80 	u64 umax_value; /* maximum possible (u64)value */
81 	/* parentage chain for liveness checking */
82 	struct bpf_reg_state *parent;
83 	/* Inside the callee two registers can be both PTR_TO_STACK like
84 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
85 	 * while another to the caller's stack. To differentiate them 'frameno'
86 	 * is used which is an index in bpf_verifier_state->frame[] array
87 	 * pointing to bpf_func_state.
88 	 */
89 	u32 frameno;
90 	enum bpf_reg_liveness live;
91 };
92 
93 enum bpf_stack_slot_type {
94 	STACK_INVALID,    /* nothing was stored in this stack slot */
95 	STACK_SPILL,      /* register spilled into stack */
96 	STACK_MISC,	  /* BPF program wrote some data into this slot */
97 	STACK_ZERO,	  /* BPF program wrote constant zero */
98 };
99 
100 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
101 
102 struct bpf_stack_state {
103 	struct bpf_reg_state spilled_ptr;
104 	u8 slot_type[BPF_REG_SIZE];
105 };
106 
107 struct bpf_reference_state {
108 	/* Track each reference created with a unique id, even if the same
109 	 * instruction creates the reference multiple times (eg, via CALL).
110 	 */
111 	int id;
112 	/* Instruction where the allocation of this reference occurred. This
113 	 * is used purely to inform the user of a reference leak.
114 	 */
115 	int insn_idx;
116 };
117 
118 /* state of the program:
119  * type of all registers and stack info
120  */
121 struct bpf_func_state {
122 	struct bpf_reg_state regs[MAX_BPF_REG];
123 	/* index of call instruction that called into this func */
124 	int callsite;
125 	/* stack frame number of this function state from pov of
126 	 * enclosing bpf_verifier_state.
127 	 * 0 = main function, 1 = first callee.
128 	 */
129 	u32 frameno;
130 	/* subprog number == index within subprog_stack_depth
131 	 * zero == main subprog
132 	 */
133 	u32 subprogno;
134 
135 	/* The following fields should be last. See copy_func_state() */
136 	int acquired_refs;
137 	struct bpf_reference_state *refs;
138 	int allocated_stack;
139 	struct bpf_stack_state *stack;
140 };
141 
142 #define MAX_CALL_FRAMES 8
143 struct bpf_verifier_state {
144 	/* call stack tracking */
145 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
146 	u32 curframe;
147 };
148 
149 #define bpf_get_spilled_reg(slot, frame)				\
150 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
151 	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
152 	 ? &frame->stack[slot].spilled_ptr : NULL)
153 
154 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
155 #define bpf_for_each_spilled_reg(iter, frame, reg)			\
156 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
157 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
158 	     iter++, reg = bpf_get_spilled_reg(iter, frame))
159 
160 /* linked list of verifier states used to prune search */
161 struct bpf_verifier_state_list {
162 	struct bpf_verifier_state state;
163 	struct bpf_verifier_state_list *next;
164 };
165 
166 struct bpf_insn_aux_data {
167 	union {
168 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
169 		unsigned long map_state;	/* pointer/poison value for maps */
170 		s32 call_imm;			/* saved imm field of call insn */
171 	};
172 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
173 	int sanitize_stack_off; /* stack slot to be cleared */
174 	bool seen; /* this insn was processed by the verifier */
175 };
176 
177 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
178 
179 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
180 
181 struct bpf_verifier_log {
182 	u32 level;
183 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
184 	char __user *ubuf;
185 	u32 len_used;
186 	u32 len_total;
187 };
188 
189 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
190 {
191 	return log->len_used >= log->len_total - 1;
192 }
193 
194 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
195 {
196 	return log->level && log->ubuf && !bpf_verifier_log_full(log);
197 }
198 
199 #define BPF_MAX_SUBPROGS 256
200 
201 struct bpf_subprog_info {
202 	u32 start; /* insn idx of function entry point */
203 	u16 stack_depth; /* max. stack depth used by this function */
204 };
205 
206 /* single container for all structs
207  * one verifier_env per bpf_check() call
208  */
209 struct bpf_verifier_env {
210 	struct bpf_prog *prog;		/* eBPF program being verified */
211 	const struct bpf_verifier_ops *ops;
212 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
213 	int stack_size;			/* number of states to be processed */
214 	bool strict_alignment;		/* perform strict pointer alignment checks */
215 	struct bpf_verifier_state *cur_state; /* current verifier state */
216 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
217 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
218 	u32 used_map_cnt;		/* number of used maps */
219 	u32 id_gen;			/* used to generate unique reg IDs */
220 	bool allow_ptr_leaks;
221 	bool seen_direct_write;
222 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
223 	struct bpf_verifier_log log;
224 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
225 	u32 subprog_cnt;
226 };
227 
228 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
229 				      const char *fmt, va_list args);
230 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
231 					   const char *fmt, ...);
232 
233 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
234 {
235 	struct bpf_verifier_state *cur = env->cur_state;
236 
237 	return cur->frame[cur->curframe];
238 }
239 
240 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
241 {
242 	return cur_func(env)->regs;
243 }
244 
245 int bpf_prog_offload_verifier_prep(struct bpf_verifier_env *env);
246 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
247 				 int insn_idx, int prev_insn_idx);
248 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
249 
250 #endif /* _LINUX_BPF_VERIFIER_H */
251