xref: /linux-6.15/include/linux/bpf_verifier.h (revision 6edf2e37)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  */
7 #ifndef _LINUX_BPF_VERIFIER_H
8 #define _LINUX_BPF_VERIFIER_H 1
9 
10 #include <linux/bpf.h> /* for enum bpf_reg_type */
11 #include <linux/filter.h> /* for MAX_BPF_STACK */
12 #include <linux/tnum.h>
13 
14 /* Maximum variable offset umax_value permitted when resolving memory accesses.
15  * In practice this is far bigger than any realistic pointer offset; this limit
16  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
17  */
18 #define BPF_MAX_VAR_OFF	(1 << 29)
19 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
20  * that converting umax_value to int cannot overflow.
21  */
22 #define BPF_MAX_VAR_SIZ	(1 << 29)
23 
24 /* Liveness marks, used for registers and spilled-regs (in stack slots).
25  * Read marks propagate upwards until they find a write mark; they record that
26  * "one of this state's descendants read this reg" (and therefore the reg is
27  * relevant for states_equal() checks).
28  * Write marks collect downwards and do not propagate; they record that "the
29  * straight-line code that reached this state (from its parent) wrote this reg"
30  * (and therefore that reads propagated from this state or its descendants
31  * should not propagate to its parent).
32  * A state with a write mark can receive read marks; it just won't propagate
33  * them to its parent, since the write mark is a property, not of the state,
34  * but of the link between it and its parent.  See mark_reg_read() and
35  * mark_stack_slot_read() in kernel/bpf/verifier.c.
36  */
37 enum bpf_reg_liveness {
38 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
39 	REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */
40 	REG_LIVE_WRITTEN, /* reg was written first, screening off later reads */
41 };
42 
43 struct bpf_reg_state {
44 	/* Ordering of fields matters.  See states_equal() */
45 	enum bpf_reg_type type;
46 	union {
47 		/* valid when type == PTR_TO_PACKET */
48 		u16 range;
49 
50 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
51 		 *   PTR_TO_MAP_VALUE_OR_NULL
52 		 */
53 		struct bpf_map *map_ptr;
54 
55 		/* Max size from any of the above. */
56 		unsigned long raw;
57 	};
58 	/* Fixed part of pointer offset, pointer types only */
59 	s32 off;
60 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
61 	 * offset, so they can share range knowledge.
62 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
63 	 * came from, when one is tested for != NULL.
64 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
65 	 * same reference to the socket, to determine proper reference freeing.
66 	 */
67 	u32 id;
68 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
69 	 * the actual value.
70 	 * For pointer types, this represents the variable part of the offset
71 	 * from the pointed-to object, and is shared with all bpf_reg_states
72 	 * with the same id as us.
73 	 */
74 	struct tnum var_off;
75 	/* Used to determine if any memory access using this register will
76 	 * result in a bad access.
77 	 * These refer to the same value as var_off, not necessarily the actual
78 	 * contents of the register.
79 	 */
80 	s64 smin_value; /* minimum possible (s64)value */
81 	s64 smax_value; /* maximum possible (s64)value */
82 	u64 umin_value; /* minimum possible (u64)value */
83 	u64 umax_value; /* maximum possible (u64)value */
84 	/* parentage chain for liveness checking */
85 	struct bpf_reg_state *parent;
86 	/* Inside the callee two registers can be both PTR_TO_STACK like
87 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
88 	 * while another to the caller's stack. To differentiate them 'frameno'
89 	 * is used which is an index in bpf_verifier_state->frame[] array
90 	 * pointing to bpf_func_state.
91 	 */
92 	u32 frameno;
93 	enum bpf_reg_liveness live;
94 };
95 
96 enum bpf_stack_slot_type {
97 	STACK_INVALID,    /* nothing was stored in this stack slot */
98 	STACK_SPILL,      /* register spilled into stack */
99 	STACK_MISC,	  /* BPF program wrote some data into this slot */
100 	STACK_ZERO,	  /* BPF program wrote constant zero */
101 };
102 
103 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
104 
105 struct bpf_stack_state {
106 	struct bpf_reg_state spilled_ptr;
107 	u8 slot_type[BPF_REG_SIZE];
108 };
109 
110 struct bpf_reference_state {
111 	/* Track each reference created with a unique id, even if the same
112 	 * instruction creates the reference multiple times (eg, via CALL).
113 	 */
114 	int id;
115 	/* Instruction where the allocation of this reference occurred. This
116 	 * is used purely to inform the user of a reference leak.
117 	 */
118 	int insn_idx;
119 };
120 
121 /* state of the program:
122  * type of all registers and stack info
123  */
124 struct bpf_func_state {
125 	struct bpf_reg_state regs[MAX_BPF_REG];
126 	/* index of call instruction that called into this func */
127 	int callsite;
128 	/* stack frame number of this function state from pov of
129 	 * enclosing bpf_verifier_state.
130 	 * 0 = main function, 1 = first callee.
131 	 */
132 	u32 frameno;
133 	/* subprog number == index within subprog_stack_depth
134 	 * zero == main subprog
135 	 */
136 	u32 subprogno;
137 
138 	/* The following fields should be last. See copy_func_state() */
139 	int acquired_refs;
140 	struct bpf_reference_state *refs;
141 	int allocated_stack;
142 	struct bpf_stack_state *stack;
143 };
144 
145 #define MAX_CALL_FRAMES 8
146 struct bpf_verifier_state {
147 	/* call stack tracking */
148 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
149 	u32 curframe;
150 };
151 
152 #define bpf_get_spilled_reg(slot, frame)				\
153 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
154 	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
155 	 ? &frame->stack[slot].spilled_ptr : NULL)
156 
157 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
158 #define bpf_for_each_spilled_reg(iter, frame, reg)			\
159 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
160 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
161 	     iter++, reg = bpf_get_spilled_reg(iter, frame))
162 
163 /* linked list of verifier states used to prune search */
164 struct bpf_verifier_state_list {
165 	struct bpf_verifier_state state;
166 	struct bpf_verifier_state_list *next;
167 };
168 
169 struct bpf_insn_aux_data {
170 	union {
171 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
172 		unsigned long map_state;	/* pointer/poison value for maps */
173 		s32 call_imm;			/* saved imm field of call insn */
174 	};
175 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
176 	int sanitize_stack_off; /* stack slot to be cleared */
177 	bool seen; /* this insn was processed by the verifier */
178 };
179 
180 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
181 
182 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
183 
184 struct bpf_verifier_log {
185 	u32 level;
186 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
187 	char __user *ubuf;
188 	u32 len_used;
189 	u32 len_total;
190 };
191 
192 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
193 {
194 	return log->len_used >= log->len_total - 1;
195 }
196 
197 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
198 {
199 	return log->level && log->ubuf && !bpf_verifier_log_full(log);
200 }
201 
202 #define BPF_MAX_SUBPROGS 256
203 
204 struct bpf_subprog_info {
205 	u32 start; /* insn idx of function entry point */
206 	u16 stack_depth; /* max. stack depth used by this function */
207 };
208 
209 /* single container for all structs
210  * one verifier_env per bpf_check() call
211  */
212 struct bpf_verifier_env {
213 	struct bpf_prog *prog;		/* eBPF program being verified */
214 	const struct bpf_verifier_ops *ops;
215 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
216 	int stack_size;			/* number of states to be processed */
217 	bool strict_alignment;		/* perform strict pointer alignment checks */
218 	struct bpf_verifier_state *cur_state; /* current verifier state */
219 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
220 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
221 	u32 used_map_cnt;		/* number of used maps */
222 	u32 id_gen;			/* used to generate unique reg IDs */
223 	bool allow_ptr_leaks;
224 	bool seen_direct_write;
225 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
226 	struct bpf_verifier_log log;
227 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
228 	u32 subprog_cnt;
229 };
230 
231 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
232 				      const char *fmt, va_list args);
233 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
234 					   const char *fmt, ...);
235 
236 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
237 {
238 	struct bpf_verifier_state *cur = env->cur_state;
239 
240 	return cur->frame[cur->curframe];
241 }
242 
243 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
244 {
245 	return cur_func(env)->regs;
246 }
247 
248 int bpf_prog_offload_verifier_prep(struct bpf_verifier_env *env);
249 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
250 				 int insn_idx, int prev_insn_idx);
251 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
252 
253 #endif /* _LINUX_BPF_VERIFIER_H */
254